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Abstract

Although ImageNet was initially proposed as a dataset for performance benchmark-
ing in the domain of computer vision, it also enabled a variety of other research
efforts. Adversarial machine learning is one such research effort, employing de-
ceptive inputs to fool models in making wrong predictions. To evaluate attacks
and defenses in the field of adversarial machine learning, ImageNet remains one of
the most frequently used datasets. However, a topic that is yet to be investigated
is the nature of the classes into which adversarial examples are misclassified. In
this paper, we perform a detailed analysis of these misclassification classes, lever-
aging the ImageNet class hierarchy and measuring the relative positions of the
aforementioned type of classes in the unperturbed origins of the adversarial exam-
ples. We find that 71% of the adversarial examples that achieve model-to-model
adversarial transferability are misclassified into one of the top-5 classes predicted
for the underlying source images. We also find that a large subset of untargeted
misclassifications are, in fact, misclassifications into semantically similar classes.
Based on these findings, we discuss the need to take into account the ImageNet
class hierarchy when evaluating untargeted adversarial successes. Furthermore, we
advocate for future research efforts to incorporate categorical information.

1 Introduction
Soon after its release, ImageNet [31] became the de facto standard dataset for performance bench-
marking in the field of computer vision, primarily thanks to the diverse set of images and classes
it contains. This diversity allowed for research on various vision tasks, including, but not limited
to, classification [20, 36], segmentation [1, 23], and localization [14, 30]. Although the tasks put
forward during the introduction of ImageNet were considered to be some of the hardest problems to
address in the field of computer vision, a number of deep neural networks (DNNs) were, in recent
years, able to achieve super-human results on many of these challenges, thus effectively “solving”
the aforementioned problems [9]. However, research efforts that make use of ImageNet are not
limited to the performance-oriented tasks mentioned before. Indeed, thanks to the diverse set of
images it contains, ImageNet enabled a large number of research efforts beyond its initial scope,
allowing researchers to experiment with model interpretability [34, 37], model calibration [12], object
relations [32], fairness [42], and many other topics.

One research field that was enriched by the availability of ImageNet is the field of study that focuses
on adversarial examples. In this context, the term “adversarial examples” refers to meticulously
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created data points that come with a malicious intent, aimed at deceiving models that are performing
a pre-defined task, steering the prediction outcome in favor of the adversary [2, 40]. Although
adversarial examples are a threat for predictive models in domains other than the domain of computer
vision [3, 28], the latter is acknowledged to be the one that suffers the most from adversarial examples,
since an adversarial example created from a genuine image, through the use of adversarial perturbation,
often looks the same as its unperturbed counterpart [10, 25]. This makes it, in most cases, impossible
to detect adversarial examples by visually inspecting images.

Although the vulnerability of DNNs to adversarial examples in the image domain was originally
mostly evaluated through the usage of two datasets, namely MNIST [22] and CIFAR [19], the authors
of [4] revealed that methods derived through the usage of one of these datasets do not necessarily
generalize to other datasets. In particular, compared to ImageNet, both of the aforementioned datasets
contain images with a smaller resolution and a lower number of classes. As a result, most of the
research efforts in recent years started to favor ImageNet over MNIST and CIFAR [7, 11, 39, 41].

From the perspective of adversarial evaluation, ImageNet does not only allow for most, if not all, of
the research work that was performed using the previously mentioned datasets, it also enables a wide
range of additional research topics in the area of adversariality, such as investigations with regards to
regional perturbation [18], color channels [35, 41], and defenses that use certain properties of natural
images [13]. However, as demonstrated in this paper, ImageNet has a major shortcoming when it
comes to evaluating adversarial attacks, especially in model-to-model transferability scenarios: a
large number of synsets/classes in ImageNet are semantically highly similar to one another.

Different from previous research efforts that mostly focus on generating more effective adversarial
perturbations or evaluating adversarial defenses, we investigate a topic that is yet to be touched
upon: untargeted misclassification classes for adversarial examples. Specifically, with the help of
two of the most frequently used adversarial attacks and seven unique DNN architectures, including
two recently proposed vision transformer architectures, we present a large-scale study that solely
focuses on model-to-model adversarial transferability and misclassification classes in the context of
ImageNet, resulting in the following contributions:

• In model-to-model transferability scenarios, we demonstrate that a large portion of adversarial
examples are classified into the top-5 predictions obtained for their source image counterparts.

• With the help of the ImageNet class hierarchy, we show that adversarial examples created from
certain synset collections are mostly misclassified into classes belonging to the same collections (e.g.,
a dog breed is misclassified as another dog breed).

• Interestingly, we can make the two aforementioned observations consistently for all of the
evaluated models, as well as for both adversarial attacks. As a result, we discuss the necessity of
evaluating misclassification classes when experimenting with adversarial attacks and untargeted
misclassification in the context of ImageNet.

2 Adversarial attacks
Given anM -class classification problem, a data point x ∈ Rk and its categorical association y ∈ RM
associated with a correct class k (yk = 1 and ym = 0 ,∀m ∈ {0, . . . ,M}\{k}) are used to train a
machine learning model represented by θ. Let g(θ,x) ∈ RM represent the prediction (logit) produced
by the model θ and a data point x. This data point is then assigned to the class that contains the
largest output value G(θ,x) = arg max(g(θ,x)). When G(θ,x) = arg max(y), this prediction is
recognized as the correct one. For the given setting, a perturbation ∆ bounded by an Lp ball centered
at x with radius ε is said to be an adversarial perturbation if G(θ,x) 6= G(θ,x + ∆). In this case,
x̂ = x + ∆ is said to be an adversarial example.

Adversarial examples can be highly transferable: an adversarial sample that fools a certain classifier
can also fool completely different classifiers that have been trained for the same task [6, 8, 29]. This
property, which is called transferability of adversarial examples, is a popular metric for assessing
the effectiveness of a particular attack. Let θ1 and θ2 represent two DNNs and let x, k, and x̂1 be a
genuine image, the correct class of this image, and a corresponding adversarial example, respectively,
with the adversarial example generated from this genuine image using an attack that targets a class c
by leveraging the DNN represented by θ1. If G(θ1, x̂1) = G(θ2, x̂1) = c and G(θ{1,2},x) = k, then
the adversarial example is said to have achieved targeted adversarial transferability to the model θ2.
If G(θ1, x̂1) = c but G(θ2, x̂1) /∈ {c, k}, the adversarial example in question is classified into a class
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Figure 1: Number (percentage) of source images that became adversarial examples with PGD (left)
and CW (right). Adversarial examples are generated by the models listed along the y-axis and tested
by the models listed along the x-axis.

that is different than the targeted one (c) and the correct one (k). In cases like this, an adversarial
example is said to have achieved untargeted adversarial transferability.

In the context of ImageNet, the success of targeted transferability for adversarial examples is known
to be abysmally lower compared to the success of untargeted transferability [38]. As a result, many
studies that propose a novel attack or perform a large-scale analysis of model-to-model transferability
use untargeted transferability when showcasing the effectiveness of attacks, without evaluating the
classes that adversarial examples are classified into [7, 11, 41]. Therefore, in this work, we investigate
the success of untargeted adversarial transferability and the characteristics of misclassification classes.

3 Methodology
Models – In order to evaluate a variety of model-to-model adversarial transferability scenarios, we
employ the following architectures: AlexNet [20], SqueezeNet [17], VGG-16 [36], ResNet-50 [15],
and DenseNet-121 [16], as well as two recently proposed vision transformer architectures, namely
ViT-Base/16− 224 and ViT-Large/16− 224 [9].

Data – For our adversarial attacks (see further in this section), we use images from the ImageNet
validation set as inputs. Hereafter, these unperturbed input images will be referred to as source
images. In order to perform a trustworthy analysis of adversarial transferability, we ensure that all
source images are correctly classified by all employed models. To that end, we filter out all images
incorrectly classified by at least one model, leaving us with 19, 025 source images to work with.

ImageNet hierarchy – Classes in ImageNet are organized according to the WordNet hierarchy [26,
31], grouping classes into various collections depending on their semantic meaning. We use the
aforementioned hierarchy in order to measure intra-collection adversarial misclassifications. In that
respect, an intra-collection misclassification is when an adversarial example created from a source
image that belongs to a class under a collection is misclassified into a class under the same collection
(e.g., an image belonging to a cat breed misclassified as another breed of cat is an intra-collection
misclassification for the Feline collection). More details about the ImageNet hierarchy are given in
the supplementary material (see Figure I).

Attacks – We use the adversarial examples generated for our previous study [27], where those
adversarial examples are generated using two of the most commonly used attacks: Projected Gradient
Descent (PGD) [24] and Carlini & Wagner’s attack (CW) [5].

PGD can be seen as a generalization of L∞ attacks [10, 21], aiming at finding an adversarial example
x̂ that satisfies ||x̂− x||∞ < ε. The adversarial example is iteratively generated as follows:

x̂(n+1) = Πε

(
x̂(n) − α sign

(
∇xJ(g(θ, x̂(n))c)

))
, (1)

with x̂(1) = x, c the selected class, and J(·) the cross-entropy loss. We use PGD with 50 iterations
and set ε to 38/255. We adopt this constraint as the maximum perturbation-size bound in order to be
able to produce a large number of adversarial examples that achieve model-to-model transferability.
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Figure 2: Number of adversarial examples, given per class, that are classified into the top−{2, 3, 4, 5}
classes predicted for their underlying source images.

CW, on the other hand, is a complex attack that incorporates L2 norm minimization:

miminize ||x− (x + ∆)||22 + f(x + ∆) . (2)

In the paper introducing CW [5], multiple loss functions (i.e., f ) are discussed. However, in later
works, the creators of CW prefer to make use of the loss function that is constructed as follows:

f(x) = max
(

max{g(θ,x)i : i 6= c} − g(θ,x)c,−κ
)
, (3)

where this loss compares the predicted logit value of target class c with the predicted logit value
of the next-most-likely class i. The constant κ can be used to adjust the strength of the produced
adversarial examples (for our experiments, we use κ = 20 and the settings described in [5] and [27]).

We keep executing the attacks until a source image becomes an adversarial example or until the
attacks reach a maximum number of iterations. At each iteration, we examine whether or not the
images under consideration became adversarial examples for the aforementioned models.

4 Experiments
Leveraging the attacks described above and through the usage of 19, 025 source images that are
correctly classified by the models employed, we create 289, 244 adversarial examples, where 173, 549
of those adversarial examples are generated with PGD and 115, 695 with CW. Detailed untargeted
model-to-model transferability successes of those adversarial examples can be found in Figure 1.

To investigate misclassifications made into semantically similar classes, we first have a look at the
adversarial examples that are misclassified into classes that lie in the top-5 positions of their source
image predictions, where the four remaining classes, apart from the first one, are the classes that were
deemed to be the most-likely prediction classes by the model under consideration, with the first one
being the correct classification. Doing so, we provide Figure 2, with this figure displaying, for each
class, the percentage of adversarial examples that had their predictions changed into one of the top-5
classes as described above. Specifically, we observe that 215, 717 (approximately 71%) adversarial
examples are predicted into one of the top-5 predictions of their unperturbed source images, where
these classes in the top-5 are often highly similar to the correct predictions for the source images the
adversarial examples are generated from (see Figure II in the supplementary material).

Although this graph hints that a large portion of untargeted adversarial transferability successes are
(plausible) misclassifications rather than adversarial successes, on its own, it does not provide enough
evidence to make such a claim. In order to solidify this observation, we expand on misclassifications
and utilize the ImageNet class hierarchy. In Table 1, we provide the count and the percentage of
adversarial examples that are originating from a number of collections and their intra-collection
misclassification rates for a number of collections under the Organism branch of the hierarchy. Table 1
represents the aforementioned measurements for all adversarial examples that achieved adversarial
transferability to any of the models and with any attack.

Naturally, the larger the collection, the higher the intra-collection misclassification rate will be.
For example, a source image taken from the Organism collection has 409 other classes that may
contribute to intra-collection misclassification. However, even for smaller, more granular collections
such as the Bird collection, which only contains 59 classes, we observe that adversarial examples
are more-often-than-not misclassified into the classes in the same collection. Furthermore, a number
of collections such as Canine, Bird, Reptilian, and Arthropod stand out among other collections for
having remarkably high intra-collection misclassification rates. For example, 84% of all adversarial
examples that originate from a canine (i.e., dog) image are misclassified as another breed of canine.
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Table 1: For the adversarial examples that achieved model-to-model transferability, intra-collection
misclassifications and misclassifications into the top-{3,5} prediction classes in the target models
are provided. The results for the adversarial examples are grouped into collections according to the
classes of their source image origins.

Hierarchy Collection
Classes

in collection

Source
images

in collection

Adversarial
examples

originating
from collection

Intra-collection
misclassifications

Misclassification
into top-K

classes

Count % Top-3 Top-5

All 1000 19,025 289,244 289,244 100.0% 59.6% 71.1%

1 Organism 410 9,390 147,621 132,865 90.0% 61.2% 72.8%
1.1 Creature 398 9,009 143,996 130,409 90.6% 61.4% 73.1%
1.1.1 Domesticated animal 123 2,316 50,036 41,978 83.9% 63.4% 75.6%
1.1.2 Vertebrate 337 7,692 126,913 112,828 88.9% 61.3% 73.2%
1.1.2.1 Mammalian 218 4,665 89,004 76,351 85.8% 61.4% 73.5%
1.1.2.1.1 Primate 20 475 9,333 5,301 56.8% 58.9% 70.4%
1.1.2.1.2 Hoofed mammal 17 419 6,206 2,751 44.3% 58.4% 71.6%
1.1.2.1.3 Feline 13 319 3,895 1,998 51.3% 64.3% 75.9%
1.1.2.1.4 Canine 130 2,502 53,294 45,089 84.6% 63.5% 75.7%
1.1.2.2 Aquatic vertebrate 16 366 5,355 2,383 44.5% 65.0% 75.6%
1.1.2.3 Bird 59 1,937 22,402 15,993 71.4% 59.8% 71.3%
1.1.2.4 Reptilian 36 547 7,635 4,795 62.8% 63.8% 75.2%
1.1.2.4.1 Saurian 11 188 2,416 1,050 43.5% 58.4% 71.1%
1.1.2.4.2 Serpent 17 223 3,202 1,700 53.1% 67.0% 77.1%
1.1.3 Invertebrate 61 1,317 17,083 10,698 62.6% 61.9% 72.3%
1.1.3.1 Arthropod 47 1,018 13,200 8,863 67.1% 63.1% 73.5%
1.1.3.1.1 Insect 27 652 7,850 4,468 56.9% 59.9% 70.5%
1.1.3.1.2 Arachnoid 9 189 2,824 1,476 52.3% 69.7% 79.5%
1.1.3.1.3 Crustacean 9 137 2,035 955 46.9% 70.0% 80.1%

In Table 1, we also provide misclassifications into the top-3 and the top-5 classes for adversarial
examples that are originating from source images taken from individual collections. As can be seen,
the observations we made when evaluating all adversarial examples also hold true for individual
collections, where most of the adversarial examples in those collections have a misclassification
rate of about 60% and 70% for the top-3 and the top-5 classes, respectively. To make matters
worse, we can even see trends similar to the aforementioned observations when we filter adversarial
examples for individual attacks and when we investigate misclassifications on a model-to-model
basis, demonstrating that our observations are not specific to a single model or to one of the attacks.
Extended results covering more collections and individual models/attacks can be found in the
supplementary material (Table I to Table V).

5 Conclusions and outlook
In the context of a classification problem, what differentiates an adversarial success from a plausible
misclassification? If an adversarial example is misclassified into a class that is highly similar to the
class of its unperturbed origin, should it still be considered an adversarial success? In this case, how
should we measure the similarity between the classes? The aforementioned questions are not trivial
to answer, and different answers may find different logical explanations depending on the context
of the evaluation performed. However, given that the threat of adversarial examples is evaluated
from the perspective of security, does a semantically similar misclassification that has been made in
the context of ImageNet (e.g., a brown dog breed misclassified as another brown dog breed) carry
the same weight as a lethal misclassification in the context of self-driving cars (e.g., a road sign
misclassification leading to an accident)?

Finding answers to the questions presented above requires meticulous investigations on the topic of
misclassification classes, where these investigations should involve various threat scenarios, similar to
the work presented in [33, 43, 44]. In this paper, we took one of the first steps in analyzing misclassi-
fication classes in the context of ImageNet, with the help of large-scale experiments and the ImageNet
class hierarchy, showing that a large number of untargeted adversarial misclassifications in model-to-
model transferability scenarios are, in fact, plausible misclassifications. In particular, we observe
that categories under the Organism branch have considerably high intra-collection misclassifications
compared to classes in the Artifact branch. To aid future work on this topic in the context of ImageNet,
we share an easy-to-use class hierarchy of ImageNet, as well as other resources, in the following repos-
itory: https://github.com/utkuozbulak/imagenet-adversarial-image-evaluation.
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