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Abstract

This dissertation presents several novel techniques and guidelines
to advance the field of simulation-based inference. Simulation-based
inference, or likelihood-free inference, refers to the process of statis-
tical inference whenever simulating synthetic realizations x through
detailed descriptions of their generating processes is possible, but
evaluating the likelihood p(x | ϑ) of parameters ϑ tied to realizations
x is intractable. What this effectively means is that while it is relatively
simple to execute a computer simulation and collect samples from its
generative process for various inputs ϑ, it is rather difficult to invert
the process where one poses the question: “what set of parameters ϑ

could have been responsible producing x and what is their probability
of doing that“? An important point here is

that the answer to this
question only holds under the
assumed scientific model – the
model that the simulator
implements.

The likelihood p(x | ϑ) plays a central role in answering this ques-
tion. However, for most scientific simulators, the direct evaluation of
the (true and unknown) likelihood involves solving an inverse prob-
lem that rests on the integration of all possible forward realizations
implicitly defined by the computer code of the simulator. This issue is
the core reason why it is typically impossible to evaluate the likelihood
model of a computer simulator: it requires us to integrate across all
possible code paths for all inputs ϑ that could have potentially led to
the realization x.

Classical statistical inference based on the likelihood is for this rea-
son impractical. Nevertheless, approximate inference remains possible
by relying on surrogates that produce estimates of key quantities
necessary for statistical inference. This thesis introduces various tech-
niques and guidelines to effectively construct such surrogates and
demonstrates how these approximations should be applied reliably.
We explicitly make the point that the dogma of data efficiency should
not be central to the field. Rather, reliable approximations should if we
ever are to deduce scientific results with the techniques we developed
over the years. This point is strengthened by demonstrating that all
techniques can produce approximations that are not reliable from a
scientific point of view, that is, when one is interested in constrain-
ing parameters or models. We argue for novel protocols that provide
theoretically backed reliability properties. To that end, this thesis in-
troduces a novel algorithm that provides such guarantees in terms of
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the binary classifier. In fact, the theoretical result is applicable to any
binary classification problem.

Finally, these contributions are framed within the context of the au-
tomation of science. This thesis concerned itself with the automation of
the last step of the scientific method, which is described as a recurrence
over the sequence hypothesis, experiment, and conclusion. For the
most part, the steps of hypothesis formation and experiment design
remain however solely for the scientists to decide. Only occasionally
are they explored, designed and automated through computer-assisted
means. For these two steps, we provide research avenues and proof of
concepts that could unlock their automation.



Usage

The contents of this thesis should be read in sequential order, as every
part establishes dependencies in preceding chapters. To support the
reproducability of this work, we provide all code on GitHub. Some
results and demonstration are annotated with the clickable icon ,
which links to the code or Jupyter notebook used to generate it.

digital resources

The GitHub repository

https://github.com/JoeriHermans/phd-thesis

contains several resources:

1. Software in the form of demonstratory Jupyter notebooks and
scripts to generate the figures and several experimental results.
It should be noted that code specific to publications are not
included in this repository. However, I have tried to make this
thesis as self-contained as I could.

2. This thesis and its LATEX source code.

3. Presentations associated with the contents of this thesis, including
the slides of my doctoral defense.

ix

 https://github.com/JoeriHermans/phd-thesis/blob/master/
https://github.com/JoeriHermans/phd-thesis




Acknowledgments

The contents of this manuscript are financed by the Fund for Research
Training in Industry and Agriculture, awarded by the Fonds de la Recherche
Scientifique. This thesis would not have been possible if it wasn’t for
the generosity of many open-source software authors. Specifically,
I would like to thank all developers of pytorch [2], matplotlib [3],
numpy [4], the jupyter project [5], and all other open source tools I use
daily. Thank you for building such thorough high-quality software.

Gilles, I would like to express my sincere gratitude and compliment
you for your approach to guiding students, and of course, your near-
infinite wisdom, creativity and playfulness. Thank you giving me the
freedom to explore my own path, nudging me in the right direction
along the way, and more importantly, allowing me to make mistakes
and fail. Unknown to many, I have a moment of reflection at the end
of every year. At that time, I classify the year as “successful” whenever
I consider my historic self an idiot. Let me tell you, the gravity of the
term idiot does not suffice to cover the past few years. It is insane
how much I learned and the amount of skills I developed. For this
reason alone, it was worth all the sweat. Although I probably do not
often express my gratitude in public, let me tell you this is very sincere:
Gilles, thank you.

Arnaud, Antoine, François, thank you in particular for your enthou-
siastic collaboration within the casbi project (our internal name for
everything related to conservative amortized simulation-based infer-
ence). There were a lot of insightful discussions that were necessary
to make the theory work out. Thank you for your critical, bright and
happy personalities. A big thank you goes to all physicists involved in
these projects, thank you for your willingness to integrate and jointly
innovate these machine learning workflows for better science! Finally,
an applause for the friendly face at SEGI – Raphaël Philippart – for
always finding the time to aid us whenever Alan needed maintenance,
even during your holidays. Give that man a raise!

Volodimir and Misha, although our countries are effectively in a
state of war, I’m sure we’ll meet again at Lac Leman to celebrate the
good times.

xi



Kristof, Gaëtan, Wok and Nathan Ebel (whose identity remains
elusive even after 8 years), thanks for all the support and cozy drinks
over these years. We’ll have another party with those Crypto profits
soon!

Katelijn and Jens, thank you for entrusting me with being the godfa-
ther of Remi. It is a responsibility that I will carry until the end of my
days. Let’s spark his curiosity about this interesting but chaotic and
unforgiving universe we live in. To all my grandparents and Annie,
thank you for always having been there and pushing me to learn new
things. I really miss those summer-evenings and -nights in the garden
with the stars twinkling in the distance above us. Mom, dad, thank
you for – always – being there for us, your unconditional love and
support, no matter the context or magnitude of my stubbornness.

Finally but not least, Ellen, your smile, love and enthousiasm is
surely the biggest indirect contributor to this manuscript. Thank you
for motivating me to (eventually) finish this wall of text and just, you
know, being there.



Contents

Preface vii
Acknowledgements xi

1 Introduction 1

1.1 Outline and Thesis Organization . . . . . . . . . . . . . 4

1.1.1 Publications . . . . . . . . . . . . . . . . . . . . . 5

i Approximating statistical quantities for simulation-based
inference

2 Adversarial Variational Optimization 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Problem statement . . . . . . . . . . . . . . . . . . . . . 10

2.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Generative adversarial networks . . . . . . . . . 10

2.3.2 Computing gradients with respect to non-differentiable
objectives . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.1 Empirical Bayes through Variational Inference . 14

2.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5.1 Illustrative example . . . . . . . . . . . . . . . . 17

2.5.2 Detector calibration in High-Energy Physics . . 17

2.5.3 On benchmarking avo . . . . . . . . . . . . . . . 19

2.6 Related work . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.7 Summary & discussion . . . . . . . . . . . . . . . . . . . 24

3 Approximating Posteriors with Amortized Approximate Ra-
tio Estimators 25

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 Markov chain Monte Carlo . . . . . . . . . . . . 26

3.2.2 Approximating likelihood ratios . . . . . . . . . 30

3.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.1 Drawing samples from an intractable posterior
without a likelihood . . . . . . . . . . . . . . . . 32

3.3.2 Improving the ratio estimator r̂(x|ϑ) by directly
estimating the posterior probability density func-
tion . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.3 Assessing the quality of the ratio estimates . . . 38

3.4 Related work . . . . . . . . . . . . . . . . . . . . . . . . . 40

xiii



xiv contents

3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5.3 Demonstrations: strong gravitational lensing . . 47

3.5.4 Estimator capacity and sequential ratio estimation 51

3.6 Summary and discussion . . . . . . . . . . . . . . . . . 52

4 Constraining Dark Matter with Stellar Streams and Machine
Learning 55

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Modeling of stellar streams . . . . . . . . . . . . . . . . 57

4.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.1 Statistical formalism . . . . . . . . . . . . . . . . 58

4.3.2 Motivation . . . . . . . . . . . . . . . . . . . . . . 59

4.3.3 Inference . . . . . . . . . . . . . . . . . . . . . . . 60

4.3.4 Diagnostics . . . . . . . . . . . . . . . . . . . . . 63

4.3.5 Overview of the proposed recipe . . . . . . . . . 67

4.4 Experiments and results . . . . . . . . . . . . . . . . . . 67

4.4.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4.2 Statistical quality . . . . . . . . . . . . . . . . . . 70

4.4.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . 73

4.4.4 Towards constraining mWDM with GD-1 . . . . . 78

4.5 Summary and discussion . . . . . . . . . . . . . . . . . 78

ii Reliable simulation-based inference
5 Averting A Potential Crisis in Simulation-Based Inference 83

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2.1 Statistical formalism . . . . . . . . . . . . . . . . 84

5.2.2 Statistical quality assessment . . . . . . . . . . . 85

5.3 Experimental observations . . . . . . . . . . . . . . . . . 87

5.3.1 Benchmarks . . . . . . . . . . . . . . . . . . . . . 90

5.3.2 Setup . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . 92

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6 Towards Reliable Simulation-Based Inference with Binary
Classification 99

6.1 An initial attempt . . . . . . . . . . . . . . . . . . . . . . 101

6.2 The balancing condition . . . . . . . . . . . . . . . . . . 103

6.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.3.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . 110

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

iii Conclusion and prospects
7 Conclusions 117



contents xv

7.1 Summary and take-away messages . . . . . . . . . . . . 118

7.2 Moving forward . . . . . . . . . . . . . . . . . . . . . . . 119

7.2.1 Optimal Bayesian Experimental Design . . . . . 119

7.2.2 Hypothesis synthesis . . . . . . . . . . . . . . . . 122

Bibliography 125





1
Introduction

In this dissertation we take a first step towards the complete automa-
tion of the scientific method, which can be summarized as a body of
techniques whose goal is to acquire new knowledge about a phenom-
ena of interest while at the same time incorporating previous domain
insights and limiting the number of initial assumptions. The key to
novel scientific knowledge lies in its ability to explain current observa-
tions and make precise predictions. Central to scientific knowledge
is the concept of a natural law, a falsifiable generalization expressed
through concise statements, supported by rigorous mathematical de-
scriptions. Guided by this formalization, domain scientists compute
the implied predictions or consequences of a law, and verify whether
these are in agreement with nature by means of an experiment. Falsifi-
cation of a law in this setup is decisive — if the computed predictions
disagree with experiment, the law is wrong.

Figure 1.2: Visualization of the
Mandelbrot set in the complex
plane. A complex number c
is part of the Mandelbrot set
whenever the absolute value
of the recursive computation
of zn+1 = z2

n + c, for the se-
quence n > 0 and z0 = 0 does
not diverge. This mathematical
description can easily be con-
verted into an algorithm which
– albeit approximately – decides
whether c is an element of the
Mandelbrot set. While the im-
plementation of the decision
problem is trivial, it generates
geometrical structures of infi-
nite richness.

Although the computation of these consequences typically involves
solving a set of equations, most are too complex to be studied analyt-
ically. The complexity does not necessarily arise from mathematical
intricacies, but are rather driven by the implications of these equa-
tions and their dynamics. Meaning, even simple and straightforward
descriptions can produce complex patterns that are challenging to
study. Well-known instances of this class include the Mandelbrot set [6]
whose boundary is a fractal curve, Sir Conway’s Game of Life [7], and
Dr. Wolfram’s Rule 30 [8].

Advances in computing technologies, programming languages, and
a prevalent availability of high quality software libraries have jointly
enabled domain scientists to express their scientific models through
computer code with increasing fidelity. By expressing scientific models
in the form of a computer program, or simulation model, the evalua-
tion of a model’s consequences simply amounts to the execution of
said simulation model. Verifying whether the model is in agreement
with nature therefore reduces to comparing the generated output of
the simulation model with the data collected by the real experiment.
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2 introduction

Figure 1.3: The Galton board as originally drawn by Sir Francis Galton.

Like most computer programs, simulation code and the scientific
models they implement have configurable settings which influence
the generated output — so-called model or free parameters ϑ. These
parameters are of particular interest to domain scientists, as informa-
tion about the value of these parameters automatically translates into
scientific knowledge that could be applied to other models or theories.
To infer the value of these parameters, domain scientists assume the
scientific model to be true, and from there, determine plausible values
such that the expected simulation output under the plausible set of
values is in agreement with the experimentally observed data x.It should be noted however,

that the aforementioned com-
parison is non-trivial, and we
only mention it here to provide
some insight on a conceptual
level. The following chapters
will treat approaches to this
problem in detail.

Statistical inference plays a crucial role in determining the likelihood
of parameter values or simulator configurations given the observed
data. However, evaluating the likelihood implicitly defined through
the computer code of the simulator requires us to solve an inverse
problem that rests on the integration of all possible code paths, for
all possible simulator configurations that could have potentially led
to the observed data. Clearly, computing this quantity is infeasible or
intractable. The increase in fidelity of modern computer simulations
only amplified this problem.

To give the reader some additional intuition as to why the likeli-
hood is intractable, let us briefly consider a metaphor that has been
popularized by Kyle Cranmer and Gilles Louppe amongst others. It
starts from the premises that the popular Galton board, as depicted in
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Figure 1.3, could be viewed as a scientific simulator. The possible set of
simulator outputs correspond to the various bins of the Galton board
into which the beads can end up, whereas the simulator’s configu-
ration or free parameters relate to the position or bias of the various
pegs. To simplify the discussion, let us make the assumption that there
are n + 1 bins for n rows of pegs. Contrary to most simulators, the
likelihood of a bead ending up in a particular bin does have a tractable
likelihood whenever we consider an idealized Galton board. Under this
assumed model, the probability of a bead ending up in bin k when
counting from the left is defined as

(
n
k

)
pk(1− p)n−k, (1.1)

where p is the probability of a bead bouncing to the right. Recall
that the evaluation of the likelihood depends on the integration of all
possible code paths that could have produced the observed data. If we
view the bead traveling through the Galton board as an execution
trace of a computer program with stochastic function calls, then the
number of possible paths the computer code can take to produce a
bead in bin k is fully described by the binomial coefficient (n

k). However,
evaluating this likelihood analytically would not be possible if we were
to change the position or bias of various pegs. In that case we would
not be able to analytically describe the likelihood in the same way, but
we would still be able to sample from the simulation model by simply
dropping beads into the Galton board!

While the Galton board metaphor demonstrates that even for con-
ceptual problems the computation of the likelihood quickly becomes
impractical, the metaphor does not imply that statistical inference in
these settings is impossible. In fact, one can still rely on approximate
inference as long as it is likelihood-free. This is easier said than done
as virtually all statistical inference relies on the likelihood in some
way. However, the idea is that surrogates can be constructed that do
not rely on the direct evaluation of the likelihood but rather produce
estimates of key quantities necessary for statistical inference, be it
numerically or otherwise. For instance, one such intractable quantity
that is central to this dissertation is the Bayesian posterior

p(ϑ | x) ≜ p(ϑ)
p(x | ϑ)

p(x)
, (1.2)

where the marginal model

p(x) ≜
∫

d ϑ p(ϑ)p(x | ϑ), (1.3)

for a given prior p(ϑ) quantifying the initial belief about the free
parameters ϑ.
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Simulation-based inference

In the literature, the problem setting outlined above is commonly re-
ferred to as likelihood-free - or simulation-based inference. The term
is a common denominator for the process of approximate statistical in-
ference whenever simulating synthetic realizations x through detailed
descriptions of its generating processes is possible, but evaluating the
likelihood p(x | ϑ) of parameters ϑ tied to realizations x is intractable.

This thesis will demonstrate that although the Bayesian posterior
and other statistical quantities such as the likelihood ratio are not
tractable in many problem domains and therefore not suitable for
statistical inference, they can in fact be accurately approximated with
modern supervised machine learning techniques. It should be noted
that the use of supervised machine learning in this context does not
imply that the desired target values, such as the posterior density
function, are known beforehand. Rather, they are learned indirectly.

To that end, this dissertation contributes serveral techniques that
are able to approximate these quantities in the aforementioned way.

1.1 outline and thesis organization

Part i presents several inference protocol to effectively learn likelihood-
free approximations with supervised machine learning techniques.
Diagnostics are discussed to inspect the quality of these approxima-
tions and guidelines are put forward for the application of these
algorithms to scientific problems. A complete demonstration of a
simulation-based inference workflow within the context of inferring
the properties of the Dark Matter particle is presented in Chapter 4.

Part ii tackles the problem of reliable simulation-based inference,
which is critical to the goal of automated science. Unfortunately, but
although expected, we provide experimental evidence that all (com-
mon) inference protocols can in fact produce unreliable estimates from
a scientific point of view. That is, when the practitioner is concerned
with constraining free parameters or models. Concretely, we show that
the constraints these approximations produce – in expectation – are in
fact stronger than their theoretical optima and are therefore overconfi-
dent. We motivate that likelihood-free approximations do not need to
be exact. Rather, they should be conservative despite the available sim-
ulation budget and other hyper-parameters in order to be practically
applicable. Since most algorithms do not reach their theoretical optima
in practice anyway, we argue for theoretically motivated algorithms
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that have guarantees in practice. To this end, we develop a reliability
criterion that can be applied to any simulation-based inference proto-
col that relies on binary classifiers as a surrogate. In fact, the technique
is applicable to any binary classification problem and opens the door
for various applications outside of simulation-based inference.

Finally, Part iii summarizes the main conclusions of the dissertation
and present several research avenues towards the complete automation
of the scientific method.

1.1.1 Publications

The following publications form the core of this dissertation:

[9] Gilles Louppe, Joeri Hermans, and Kyle Cranmer. “Adversar-
ial Variational Optimization of Non-Differentiable Simulators.” In:
Proceedings of the Twenty-Second International Conference on Artificial
Intelligence and Statistics. Ed. by Kamalika Chaudhuri and Masashi
Sugiyama. Vol. 89. Proceedings of Machine Learning Research. PMLR,
2019, pp. 1438–1447. url: https://proceedings.mlr.press/v89/
louppe19a.html

[10] Joeri Hermans, Volodimir Begy, and Gilles Louppe. “Likelihood-
free MCMC with Amortized Approximate Ratio Estimators.” In: Pro-
ceedings of the 37th International Conference on Machine Learning. Ed.
by Hal Daumé III and Aarti Singh. Vol. 119. Proceedings of Ma-
chine Learning Research. PMLR, 2020, pp. 4239–4248. url: https:
//proceedings.mlr.press/v119/hermans20a.html

[11] Joeri Hermans et al. “Towards constraining warm dark matter
with stellar streams through neural simulation-based inference.” In:
Monthly Notices of the Royal Astronomical Society 507.2 (Aug. 2021),
pp. 1999–2011. issn: 0035-8711. doi: 10.1093/mnras/stab2181. eprint:
https://academic.oup.com/mnras/article- pdf/507/2/1999/

40078147/stab2181.pdf. url: https://doi.org/10.1093/mnras/
stab2181

[12] Joeri Hermans et al. “Averting A Crisis In Simulation-Based
Inference.” In: arXiv e-prints, arXiv:2110.06581 (Oct. 2021). arXiv: 2110.
06581 [stat.ML]

Other manuscripts that are not included in this thesis, but were
worked on during my scholarship:

[13] Joeri Hermans and Gilles Louppe. “Gradient Energy Matching
for Distributed Asynchronous Gradient Descent.” In: arXiv e-prints,
arXiv:1805.08469 (May 2018). arXiv: 1805.08469 [cs.LG]

https://proceedings.mlr.press/v89/louppe19a.html
https://proceedings.mlr.press/v89/louppe19a.html
https://proceedings.mlr.press/v119/hermans20a.html
https://proceedings.mlr.press/v119/hermans20a.html
https://doi.org/10.1093/mnras/stab2181
https://academic.oup.com/mnras/article-pdf/507/2/1999/40078147/stab2181.pdf
https://academic.oup.com/mnras/article-pdf/507/2/1999/40078147/stab2181.pdf
https://doi.org/10.1093/mnras/stab2181
https://doi.org/10.1093/mnras/stab2181
https://arxiv.org/abs/2110.06581
https://arxiv.org/abs/2110.06581
https://arxiv.org/abs/1805.08469
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[14] Volodimir Begy et al. “Simulating Data Access Profiles of Com-
putational Jobs in Data Grids.” In: 2019 15th International Conference
on eScience (eScience). 2019, pp. 394–402. doi: 10.1109/eScience.2019.
00051

[15] Johann Brehmer et al. “Mining for Dark Matter Substructure:
Inferring Subhalo Population Properties from Strong Lenses with
Machine Learning.” In: The Astrophysical Journal 886.1 (2019), p. 49. doi:
10.3847/1538-4357/ab4c41. url: https://doi.org/10.3847/1538-
4357/ab4c41

https://doi.org/10.1109/eScience.2019.00051
https://doi.org/10.1109/eScience.2019.00051
https://doi.org/10.3847/1538-4357/ab4c41
https://doi.org/10.3847/1538-4357/ab4c41
https://doi.org/10.3847/1538-4357/ab4c41
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2
Adversarial Variational Optimization

The contents of this chapter are based on Louppe, Hermans, and Cranmer [9].

This chapter introduces Adversarial Variational Optimization (avo),
a simulation-based inference algorithm for fitting the parameters of
a non-differentiable generative model to a set of observed data. The
technique incorporates ideas from generative adversarial networks,
variational optimization and empirical Bayes. In particular, we adapt
the training procedure of generative adversarial networks by replacing
the differentiable generative network with a non-differentiable domain-
specific computer simulator. However, this particular formulation re-
sults in a non-differentiable minimax problem which is addressed by
minimizing the variational upper bounds of two adversarial objectives
designed such that avo is able to adjust a parameterized proposal
distribution over the simulator parameters. In doing so, avo effectively
minimizes the Jensen-Shannon divergence between the marginal dis-
tribution of the synthetic data generated by the simulator and the
empirical distribution of the observed data.

2.1 introduction

The inception of variational auto-encoders [16] and generative ad-
versarial networks [17] initiated a vibrant research program around
the learning of and in implicit generative models based on neural
networks [18–24]. Like most scientific simulators, these generative
models do not admit a tractable density. They are however, all differ-
entiable by construction and can therefore be optimized by gradient
descent. While generative models based on neural networks are highly
parameterized, these parameters have no obvious interpretation. In
contrast, scientific simulators can usually be thought of as highly
regularized generative models because the models they implement
can be described by relatively few parameters and are endowed with

9
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some level of interpretation with a connection to the phenomena the
scientific simulator is modelling.

2.2 problem statement

We consider a family of parameterized densities p(x | ϑ) implicitely
defined through a simulation model, where x is the observable and ϑ

are the model parameters of interest. The simulation may involve some
complicated latent process where z ∈ Z is a latent variable providing
an external source of randomness. Unlike implicit generative models
based on neural networks, we do not assume z to be a fixed-size vector
with a simple density. Instead, the dimension of z and the nature of its
components (uniform, normal, discrete, continuous, etc.) are inherited
from the control flow of the simulation code and may depend on ϑ

in some intricate way. Meaning, the execution of the simulation code
for a specific parameterization ϑ implicitely defines a distribution
over x because the execution of code paths defined by the program is
influenced by the values of the latent variables during the simulation.

formalism We assume the stochastic generative process that im-
plicitely defines p(x | ϑ), is specified through a non-differentiable de-
terminisitic function g(·) : Z → Rd, where d is the dimensionality of
the observable x. Operationally, we consider a synthetic observable

x ∼ p(x | ϑ) ≜ z ∼ p(z| ϑ), x = g(z), (2.1)

where the latent variable z can depend on the simulator parameter ϑ.The dependence of the latent
variable z on the simulator
parameter ϑ can be thought
of in the following intuitive
example: the value of ϑ con-
trols which specific code paths
are executed. Depending on ϑ,
there is effectively a distribu-
tion over the executed code,
i.e., p(z| ϑ) by analogy.

objective Given a set of observed data {xi}N
i=1 drawn from the

unknown true distribution pr(x), our goal is to estimate the parameter
ϑ∗ which minimizes some divergence or distance ρ between pr(x) and
the implicit model p(x | ϑ). That is, we solve the following optimization
problem

ϑ∗ = arg min
ϑ

ρ(pr(x) || p(x | ϑ)), (2.2)

which implies we are interested in point-estimates of ϑ∗.

2.3 background

2.3.1 Generative adversarial networks

Generative Adversarial Networks (gans) were first proposed by Good-
fellow et al. [17] as a way to build an implicit generative model capable
of producing rich samples from random noise z ∼ p(z). The core prin-
ciple of gans is to pit a generative model gϑ(·) : Z → Rd with



2.3 background 11

parameters ϑ against an adversarial discriminator dϕ(·) : Rd → [0, 1]
whose task is to recognize or discriminate empirically observed data
xo ∼ pr(x) from synthetic data x = gϑ(z), z ∼ p(z). Both models are
optimized simultaneously such that the generator gϑ produces observ-
ables x for which dϕ assigns the label “real”, while dϕ continuously
adapts to infinitesimal changes in gϑ .

In practice however, the discriminator dϕ and generator gϑ are
usually optimized with alternating stochastic gradient descent to
respecitively minimize

Ld(ϕ) ≜−Epr(x)
[
log dϕ(x)

]
−Ep(x | ϑ)

[
log(1− dϕ(x))

]
, (2.3)

Lg(ϑ) ≜ Ep(x | ϑ)
[
log(1− dϕ(x))

]
, (2.4)

where Ld(ϕ) corresponds to the binary cross-entropy between the
empirically observed and synthetic data produced by the implicit
model p(x | ϑ) defined by the generator gϑ .

Whenever dϕ is trained to optimality before each infinitesimal small
parameter update of the generator, it can be shown that the original
adversarial learning procedure of Goodfellow et al. [17] amounts to
minimizing the Jensen-Shannon divergence between the distributions
pr(x) and p(x | ϑ). Of course, this assumption is never met in practice
and it often observed that the alternating optimization procedure of
gans does not lead to convergence. Research has therefore focused on
finding optimization algorithms to promote stability in the optimiza-
tion objective [25–29], and a better theoretical understanding of the
training dynamics [30, 31].

2.3.2 Computing gradients with respect to non-differentiable objectives

Variational optimization [32, 33] and evolutionary strategies [34] are
general optimization techniques that can be used to form a differen-
tiable bound on the optima of a non-differentiable function. Given a
function f to minimize and a proposal distribution qψ(ϑ) parameter-
ized by ψ over inputs ϑ, these techniques are based on the observation

min
ϑ

f (ϑ) ≤ Eqψ(ϑ) [ f (ϑ)] . (2.5)

That is, the minimum of a set of function values is always less than or
equal to any of their expectation. Provided the proposal distribution
is sufficiently flexible, the parameters ψ can be updated to place the
mass of the proposal distribution arbitrarily tight around the optimum

ϑ∗ = min
ϑ

f (ϑ). (2.6)
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Under mild restrictions outlined by [32], the variational bound U(ψ)

is differentiable with respect to ψ. Using the log-likelihood trick, its
gradient can be rewritten as

∇ψ U(ψ) = ∇ψ Eqψ(ϑ) [ f (ϑ)] , (2.7)

= ∇ψ

∫
d ϑ qψ(ϑ) f (ϑ), (2.8)

=
∫

d ϑ ∇ψ qψ(ϑ) f (ϑ), (2.9)

=
∫

d ϑ qψ(ϑ) ∇ψ log qψ(ϑ), (2.10)

= Eqψ(ϑ)

[
∇ψ log qψ(ϑ)

]
. (2.11)

Effectively, this means that provided the score function∇ψ log qψ(ϑ) of
the proposal is known, and that one can evaluate f (ϑ) for any ϑ, then
one can construct empirical estimates of Equation 2.7. These estimates
can in turn be used to minimize U(ψ) with stochastic gradient descent.

It should be noted that in the reinforcement learning literature,
Equation 2.7 appears in the context of policy gradients, where f (ϑ)
corresponds to a reward signal for the action ϑ and the proposal qψ(ϑ)

to a policy πψ we aim to optimize. In this context, empirical estimates
of Equation 2.7 are better known as reinforce estimates [35].

2.4 method

The alternating stochastic gradient descent on Ld(ϕ) and Lg(ϑ) in
gans implicitely assumes that the generator gϑ is a differentiable
function. This is in stark contrast to our specific setting, where it is not
possible to compute the gradient ∇ϑ g because differentiating through
a scientific computer simulator, or any computer program for that
matter, is typically not possible. As a result, the gradient ∇ϑ Lg cannot
be computed and the optimization procedure cannot be carried out.

A short intermezzo on differentiable programming

There are various proposals [36–40] across the scientific community
to integrate automatic differentiation packages inside scientfic simu-
lators with the goal to effectively compute gradients with respect to
domain-specific model parameters. Usually with the intended pur-
pose to efficiently optimize the model parameters such that the best
possible fit is obtained. Notable examples include Chianese et al. [41],
in which a differentiable simulation of gravitational lensing is imple-
mented using concepts from probabilistic programming combined
with a differentiable surrogate of the underlaying physics simulation.
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Although the above relies on a neural approximation of the physical
system, fully differentiable simulations have the advantage that they
obey dynamical laws by construction, i.e., concepts such as conserva-
tion of energy and momentum are embedded in the programming of
the simulator. An aspect which needs to be specifically addressed in
any approximation.

Closely related is the field of physically based rendering or differentiable
rendering [42–48], in which the parameters of a 3D scene are optimized
with respect to some target image. Recent approaches in differential
rendering step away from automatic differentiation because of the
vast memory requirements for complex scenes [46]. In addition, a
prominent issue in differentiable rendering are (latent) boundary
conditions, which causes the gradients to negatively infuence any
gradient-based scene optimization procedure. On top of this is the
problem of potential local minima and execution time of the involved
physics simulation.

It is therefore not unthinkable that the same issues will arise in dif-
ferentiable domain-specific simulators. The question becomes whether
the benefits of implementing a new differentiable simulator, with the
potential gains in statistical power, outweigh the cost of validating
the simulation chain with respect to learning a sufficiently expressive
surrogate. This has its own issues obviously, because the (Bayesian) in-
ference results of the approximation still have to be validated in some
way. However, it should be noted that a fully-differentiable simulator
would still suffer from all common quirks attributed to gradient-based
optimization.

In this work, we propose to address this problem by relying on
variational optimization to minimize Ld and Lg, thereby effectively
bypassing the non-differentiability of the simulation model. We con-
sider a proposal distribution qψ(ϑ) over the simulator parameters and
alternately minimize the variational upper bounds

Ud(ϕ) = Eqψ(ϑ)[Ld(ϕ)], (2.12)

Ug(ψ) = Eqψ(ϑ)[Lg(ϑ)], (2.13)

respectively over ϕ and ψ. The discriminator dϕ is therefore no longer
pit against a single generator g, but instead against a family of genera-
tors induced by the proposal distribution.

When updating the discriminator parameters ϕ, unbiased estimates
of ∇ϕ Ud can be obtained by directly evaluating the gradient of Ud

over mini-batches of real and synthetic observables. When updating
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the proposal parameters ψ, ∇ψ Ug can be estimated as described in
the previous section with f (ϑ) = Lg(ϑ). That is,

∇ψUg = Ep(x | ϑ)qψ(ϑ)

[
∇ψ log qψ(ϑ) log(1− dϕ(x))

]
, (2.14)

which we can approximate with mini-batches of synthetic observables
produced by the simulation model. While the latter reinforce-like
gradient estimator is unbiased, it is well-known that it suffers from
high variance, which makes the optimization unstable and therefore
tedious. A common remedy to this issue [35] is to make use of

Eqψ(ϑ)[∇ψ log qψ(ϑ) f (ϑ)] = Eqψ(ϑ)[∇ψ log qψ(ϑ)( f (ϑ)− b)] (2.15)

for any constant b. The choice of a baseline b does not bias the gradient
estimator, but it can however have an effect on its variance. For avo,
we pick the baseline which minimizes the variance of the empirical
estimators of ∇ψUg, which is

b ≜
E
[
(∇ψ log qψ(ϑ))2(log(1− dϕ(x))2]

E
[
(∇ψ log qψ(ϑ))2

] . (2.16)

For completeness, Algorithm 1 outlines the proposed procedure, as
built on top of gans with R1 regularization [29]. Under suitable as-
sumptions, this regularization term guarantees the (local) convergence
of the training procedure, while keeping the original gan algorithm
otherwise unchanged.

2.4.1 Empirical Bayes through Variational Inference

The variational objectives in Equations 2.12-2.13 effectively replace the
modeled data distribution p(x | ϑ) with the parameterized marginal
distribution of the generated data

qψ(x) =
∫

d ϑ p(x | ϑ)qψ(ϑ). (2.17)

We can think of qψ(x) as a variational program as described by Ran-
ganath et al. [49], although more complicated compared to a simple
reparameterization of normally distributed noise z through a differen-
tiable function. In our case, the variational program is a marginalized,
non-differentiable program with an intractable density, i.e., the simu-
lator. Nevertheless, it can generate samples x whose expectations are
differentiable with respect to ψ through avo. Operationally, we sample
from this marginal model via

x ∼ qψ(x) ≜ ϑ ∼ qψ(ϑ), z ∼ p(z| ϑ), x = g(z). (2.18)

The optimization of qψ(x) with respect to ψ can therefore be viewed
through the lens of Empirical Bayes, where samples from pr(x) are
used to optimize the prior within the family qψ(ϑ).
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Algorithm 1 Adversarial Variational Optimization (avo)

Inputs: Observed data {xi ∼ pr(x)}N
i=1, simulator g.

Outputs: Proposal distribution qψ(ϑ) ≈ pr(x).
Hyper-parameters: Training iterations k of the discriminator dϕ,

Batch-size M (default = 32),
R1 regularization coefficient λ (default: λ = 0),
Baseline strategy b in reinforce estimates,
Entropy penalty coefficient γ (default: γ = 0).

1: qψ(ϑ)← prior on θ (with differentiable and known density)
2: while qψ(ϑ) has not converged do
3: for i = 1 to k do ▷ Update dϕ

4: Ld ← −Epr(x)
[
log dϕ(x)

]
−Ep(x | ϑ)qψ(ϑ)

[
log(1− dϕ(x))

]

5: R1 ← Epr(x)
[
||∇ϕ dϕ(x)||2

]

6: ϕ← optimizer(∇ϕLd + λ∇ϕR1)

7: end for
8: Simulate {ϑm ∼ qψ(ϑ), x ∼ p(x | ϑm)}M

m=1 ▷ Update qψ(ϑ)

9: ∇ψUg ← 1
M ∑M

m=1∇ψ log qψ(ϑ)(log(1− dϕ(xm))− b)
10: ∇ψH ← − 1

M ∑M
m=1∇ψ qψ(ϑm) log qψ(ϑm)

11: ψ← optimizer(∇ψUg + γ∇ψ H)

12: end while

Whenever the simulator is misspecified, avo will smear qψ(ϑ) over
the parameter space such that the marginal model qψ(x) is as close
as possible to pr(x) because the gan-inspired procedure effectively
minimizes the Jensen-Shannon divergence between the observed data
distribution pr(x) and the marginal distribution qψ(x). However, if
the simulator is well-specified, then qψ(ϑ) will concentrate its mass
around the true data generating parameter ϑ∗ whenever a sufficient
amount of observables are available.

In order to effectively target point estimates of ϑ∗ through the maxi-
mum likelihood estimator of qψ(ϑ), we can augment the variational
objective with an entropic regularization term Hψ(ϑ) such that

Ug ≜ Ep(x | ϑ)qψ(ϑ)

[
Lg

]
+ γH

[
qψ(ϑ)

]
, (2.19)

where γ ∈ R+ is a hyper-parameter controlling the trade-off between
the generator object and the Shannon entropy H of the proposal
distribution. For small values of γ, proposal distributions with large The hyper-parameter γ

effectively controls the
“sharpness“ of the proposal
distribution.

entropy are not penalized. On the other hand, for large values of γ,
the procedure is encouraged to fit a proposal distribution with low
entropy, which has the effect of concentrating its density.

Finally, we note that very large penalties might eventually make the
optimization procedure unstable, as the variance of ∇ψ log qψ(ϑ) typi-
cally increases as the entropy of the proposal distribution decreases.
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Depending on the proposal, it may also be possible to always arbi-
trarily decrease the entropy, without necessarily producing accurate
parameter point estimates. In this case, properly controlling for γ and
the number of training epochs is critical. It should be noted however,
that in practice this is not desired, as practicioners are interested in
plausible values of the simulator parameters which are consistent with
empirical observations.

Behaviour of the proposal parameterization ψ in practice

An important point to consider when applying avo in practice is
the choice of the proposal qψ(ϑ) and its parameterization ψ. In fact,
for particular choices of qψ(ϑ), the parameterization ψ can have a
significant effect on avo’s stability during the optimization procedure.

Intuition of the problem Consider the case where qψ(ϑ) is a normal
distribution whose mean µ and standard deviation σ are embedded
in ψ, i.e., ψ ≜ (µ, σ). Because avo effectively applies gradient descent
on ψ, it remains numerically possible for the standard deviation σ to
be smaller than 0. Such invalid configurations are in practice mainly
reached due to (i) the settings of the optimization procedure (e.g., the
learning rate), or (ii) optimizer effects such as momentum [50, 51].

Possible solutions After every optimization step, a procedure can be
implemented to verify the integrity of ψ. Although various procedures
could be implemented which are specific to the family of the proposal
distributions in question, a simple strategy could be to compute the
absolute value of the standard deviation or the diagonal of the co-
variance matrix whenever the proposal distribution was a normal or
multivariate normal distribution respectively. While such an operation
might in itself introduce instabilities in avo’s optimization procedure,
the approach proved to be sufficient at a minimal implementation
cost.

Alternatively, one could avoid hardcoding ad-hoc constraints like
the above by parameterizing σ through some auxilliary free variable
σ ′ such that ψ ≜ (µ, σ ′) and σ ′ = log(1 + exp(σ)). By parameterizing
ψ in this way, we ensure that invalid configurations of σ cannot be
reached. Our reference implementation in hypothesis, and therefore
the experiments in this manuscript, apply this procedure.
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2.5 experiments

2.5.1 Illustrative example

As a first illustrative demonstration, we evaluate the inference perfor-
mance of avo on a discrete Poisson distribution with unknown rate
ϑ∗. We artificially consider the distribution as the likelihood model
of some scientific simulator, from which we can only generate data.
That is, we consider evaluating the likelihood of the parameters with
respected to the observed data – samples from pr(x) – to be intractable.

The discrete observed data is sampled from a Poisson distribution
with rate ϑ∗ = 1.0. We initialize the proposal distribution qϕ(ϑ) as
N (µ = 8.0, σ = 2.5), whose density is completely described the mean
µ = 8.0 and the standard deviation σ = 2.5, such that ψ ≜ (µ, σ). We
execute avo for 1000 iterations with mini-batches of sizes 32 using the
default configuration specified in Algorithm 1.

The top row in Figure 2.1 illustrates the effects of updating the
proposal distribution qψ(ϑ) after executing avo for 250 iterations.
In particular, the left subplot shows how the empirical distribution
pr(x) compares against the estimated marginal model qψ(x), while
the right subplot shows the evolution of the proposal distribution
compared to its initial state. The bottom row – the results after having
ran avo for 1000 iterations – shows the final result. It should be noted
the proposal distribution correctly concentrates its density around
the true generating parameter value ϑ∗ = 1.0, yielding in this case
more precise inference as the uncertainty – directly related to the
entropy of qψ(ϑ) – reduces. In addition, as we expect theoretically
from adversarial training, we see that the marginal model qψ(x) aligns
with the (true) empirical distribution pr(x), a direct result from the fact
that avo minimizes the Jensen-Shannon divergence pr(x) and qψ(x).
These results highlight that avo is effective despite the discreteness of
the data and the lack of access to the density p(x | ϑ) or its gradient.

2.5.2 Detector calibration in High-Energy Physics

As a more challenging demonstration, we now turn to a particle
physics inference problem. We consider the pythia simulator [52]
for high-energy particle collisions. In particular, electron-positron
collisions at a center-of-mass energy of 91.2 GeV are simulated, in
which a Z boson is produced which subsequently decays to quarks.
Our particle detector emulates a 32× 32 spherical uniform grid in
pseudorapidity η and in azimuthal angle ϕ, covering (η, ϕ). The
detector itself is parameterized by an offset parameter ϑ in the z-axis
relative to the beam crossing point [53]. An offset of ϑ = 0 implies



18 adversarial variational optimization

0.0 2.5 5.0 7.5 10.0
Observable

0.0

0.1

0.2

0.3

D
en

si
ty

qψ(x) vs. pr(x)

pr(x) (ϑ∗ = 1.0)

qψ(x)(µ = 4.90)

0.0 2.5 5.0 7.5 10.0
ϑ

0.000

0.025

0.050

0.075

0.100

0.125

0.150

D
en

si
ty

Proposal qψ(ϑ) optimization

Initial proposal

Final proposal

Groundtruth

0.0 2.5 5.0 7.5 10.0
Observable

0.0

0.1

0.2

0.3

D
en

si
ty

qψ(x) vs. pr(x)

pr(x) (ϑ∗ = 1.0)

qψ(x)(µ = 0.99)

0.0 2.5 5.0 7.5 10.0
ϑ

0

1

2

3

4

D
en

si
ty

Proposal qψ(ϑ) optimization

Initial proposal

Final proposal

Groundtruth

Figure 2.1: Discrete Poisson model with an unkown rate ϑ∗. In this
case, the proposal qψ(ϑ) is a normal distribution which is initialized
with mean µ = 8.0 and standard-deviation σ = 2.5. The proposal is
therefore completely described by ψ ≜ (µ, σ). (Top left) Direct compar-
ison of the pr(x) against the estimated marginal model qψ(x) after 250

iterations of avo. (Top right) Evolution of the proposal distribution (in
blue) with respect to its initial state (in black). It should be noted that
at this stage of the optimization procedure, avo decreases the entropy
of the proposal distribution as an initial approach to maximize the
likelihood of the parameters given emperical samples of pr(x). (Bottom
left) Final estimated marginal model qψ(x) after 1000 iterations of avo,
this figure illustrates that avo minimizes the Jensen-Shannon diver-
gence between pr(x) and qψ(x), a result which directly stems from the
adversarial training procedure included in avo. (Bottom right) Final
optimized proposal, which concentrates its density tightly around the
true generating parameter ϑ∗.

that spherical detector is centered at the collision point, while ϑ = 1
leads to a shift of roughly one pixel.

 https://github.com/JoeriHermans/phd-thesis/blob/master/code/part-inference/avo/illustrative.py
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The inference problem we are concerned with is the estimation of the
detector offset parameter ϑ from a set of 32× 32-dimensional observ-
ables which represent the pixels in the particle detector. Although the
problem at hand is simplified by assuming a simple detector structure,
this task is representative of calibration and alignment tasks, which
are critical in experimental particle physics as they have significant
impact on the accoracy of the collision reconstruction algorithms.
avo could therefore provide an automated calibration strategy of an
experimental setup in High-Energy Physics.

Figure 2.2 shows the average detector response of detector offsets
ϑ = 0 and ϑ = 1. The figures highlight the challenging difficulty of
the inference problem: the difference between the average detector
responses is barely noticeble, even when these response constitue
of 10 000 individual e−e+ collisions. These samples also stress the
critical role of a relevant summary statistic on such high-dimensional
observables, which is essential to alternative likelihood-free inference
methodologies such as Approximate Bayesian Computation (abc), where
such summary statistics have to be handcrafted.

For this problem setting, we consider observables drawn from the
empirical data distribution pr(x) to be simulated at the nominal pa-
rameter ϑ∗ = 1, which means particle detector is offset by 1 unit from
the collising crossing point of the particles. We initialize the proposal
distribution as N (µ = 0.0, σ = 2.5), reflecting our belief in our expec-
tation that the particle detector has been aligned correctly. As before,
we use the defaults of avo as specified in Algorithm 1 and run the
optimization procedure for 1000 steps. The results are summarized in
Figure 2.3.

2.5.3 On benchmarking avo

In contrast to most related works in the simulation-based inference
literature, avo takes a unique position: whereas most works concern
themselves with inferring model parameters tied to a single observable
x, avo specializes in dealing with a (large) sample of observables
drawn from the data distribution pr(x). For this reason, we cannot
consider common likelihood-free benchmarks such as the m/g/1

queueing model, or the Lotka-Volterra population model, which are all
defined as inference problems with single observables. Our proposed
method, avo, is less appropriate in these settings as the discriminator
d is not expected to provide a good learning signal for fitting the
simulator parameters, because the discriminator will easily overfit and
therefore not properly guide qψ(ϑ) to a suitable solution. Figure 2.4
illustrates the behaviour of various dataset sizes within the detector
calibration problem.
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10000 collisions, offset ϑ∗ = 0.0 10000 collisions, offset ϑ∗ = 1.0

Single collision, offset ϑ∗ = 0.0 Single collision ϑ∗ = 1.0

Figure 2.2: Detector responses at various detector offsets. Every pixel
in the particle detector “activates” whenever a particle hits the cor-
responding area, this constitutes a (binary) activation of such a cell
and are highlighted in black. The top row shows the average detector
response after 10000 particle collisions. A difference between the de-
tector offsets only becomes visually apparent after a large number of
particle collisions. Detector calibration is therefore associated with a
significant computational cost, something we would like to prevent
with avo by directly performing gradient descent on the detector offset
to minimize the Jensen-Shannon divergence between the emperical
data distribution pr(x) – collected by the real experiment – and the
marginal model qψ(x). The bottom row shows individual particle colli-
sions, demonstrating the complexity and and wide range of variability
of the individual particle collisions, emphasizing the difficulty of the
problem.

2.6 related work

This work sits at the intersection of several lines of research related to
likelihood-free inference, Approximate Bayesian Computation (abc),

 https://github.com/JoeriHermans/phd-thesis/blob/master/code/part-inference/avo/pythia-illustration.py
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Figure 2.3: Results of the particle detector alignment experiment where
the proposal is a normal distribution, where ψ describes its mean (solid
black line) and standard deviation (semi-transparent gray area). (Top)
Experimental setup with a proposal learning rate of 0.01. (Bottom)
Proposal learning rate of 0.005.

implicit generative models, and variational inference. Viewed from
the literature around implicit generative models based on neural net-
works, the proposed method can be considered as a direct adaptation
of generative adversarial networks [17] to non-differentiable simula-
tors using variational optimization [32]. From the point of view of
likelihood-free inference, where non-differentiable simulators are the
norm, our contributions are threefold.

First is the process of lifting the expectation with respect to the non-
differentiable simulator Ep(x | ϑ) to a differentiable expectation with
respect to the variational program Eqψ(x). Secondly, is the introduction
of a novel form of variational inference that works in a likelihood-free
setting. Thirdly, avo can be viewed as a form of Empirical Bayes where
the prior is optimized based on the data.

 https://github.com/JoeriHermans/phd-thesis/blob/master/code/part-inference/avo/pythia.py
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Figure 2.4: Demonstration that avo requires a sufficiently large dataset
to provide a good learning signal to the discriminator in order to fit
the simulator parameters. (Top) Dataset size of 100. Although overfit-
ting might play a very important role here, we selected the proposal
parameterization for which the discriminator validation loss was mini-
mized. It should be noted that in this regime avo actually increased
its uncertainty about the detector offset parameter ϑ to minimize the
Jensen-Shannen divergence. In addition, this highlights the difficulity
of the - although simplified - task based on individual particle colli-
sions. (Bottom) Dataset size of 10 000.

As for many likelihood-free inference algirhtms, avo is tied to a
class of algorithms which can be framed as density estimation-by-
comparison, as reviewed in Mohamed and Lakshminarayanan [19]. In
most case, these inference algorithms are formulated as an iterative
two-step process where the model distribution is first compared to
the true data distribution and subseuquently updated to make said
distribution more comparable to the latter. Relevant work in this direc-
tion includes those that rely on a classifier to estimate the discrepancy
between the observed data and the model distributions [54–59].

 https://github.com/JoeriHermans/phd-thesis/blob/master/code/part-inference/avo/pythia-overfit.py
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Of direct relevance to the likelihood-free setup, Hamiltonian abc

estimates gradients with respect to ϑ through finite difference from
multiple forward passes of the simulation with variance reduction
strategies based on controlling the source of randomness used for the
latent variable ϑ. Sharing similar foundational principles as avo, the
spiral [60] makes use of the Wasserstein gan [27] objective and vari-
ants of reinforce gradient estimates to adversarially train an agent to
synthesize programs controlling a non-differentiable graphics engine
to reconstruct target images, or perform unconditional generation.

Likewise, avo closely relates to recent extensions of gans, such as
ali [61], adversarial feature learning (bigan) [62], α-gan [63], avb

[64], and the PC-Adv algorithm [65], which add an inference network
to the generative model. Each of these assume a tractable density
p(x | ϑ) that is differentiable with respect to ϑ, which is per-definition
impossible in the likelihood-free setting.

In avo, lifing the likelihood model of the non-differentiable sim-
ulator p(x | ϑ) to the variational program qψ(x) provides the ability
to differentiate expectations with respect to ψ. However, the marginal
model density qψ(x) is still intractable. Moreover, we do not attempt
to define a recognition model qψ(z, ϑ) as the latent space of many
real-world simulators is highly complex and not amenable to a neural
recognition model. Although recently Baydin et al. [66] has succesfully
approached this problem in a High-Energy Physics setting.

This work has also many connections to work on variational infer-
ence, in which the goal is to optimize the recognition model qψ(z, ϑ)

so that it is close the the true posterior p(z, ϑ |x). There have been ef-
forts to extend variational inference to intractable likelihoods; however,
many require restrictive assumptions. In [67], the authors consider
Variational Bayes with an Intractable Likelihood (vbil). In that ap-
proach “the only requirement is that the intractable likelihood can be
estimated unbiasedly.” In the case of simulators, they propose to use
abc (Approximate Bayesian Computation) approximated-likelihood
with an ϵ-kernel. This likelihood is only unbiased as ϵ→ 0 and the
summary statistic used to reduce the dimensionality of the observ-
able is sufficient, thus this method inherits the drawbacks of the abc

including the choice of summary statistics and the inefficiency in eval-
uating the abc likelihood for high-dimensional data and small ϵ. More
recently, Tran, Ranganath, and Blei [68] adapted variational inference
to hierarchical implicit models defined on simulators. In this work, the
authors step around the intractable likelihoods by reformulating the
optimization of the Evidence Lower Bound (elbo) in terms of a neural
and differentiable approximation r of the log-likelihood ratio log p

q ,
thereby effectively using the same core principle as used in GANs
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[19]. With a similar objective, McCarthy, Rodriguez, and Minchole [69]
adapt variational inference to a non-differentiable cardiac simulator
by maximizing the elbo using Bayesian optimization, hence bypassing
altogether the need for gradient estimates.

2.7 summary & discussion

In this work, se developed a likelihood-free inference methodology
for non-differentiable implicit generative models. The algorithm com-
bines ideas from adversarial training and variational optimization to
minimize variational upper bounds on otherwise non-differentiable
adversarial objectives. avo enables Emperical Bayes through varia-
tional inference in the likelihood-free setting and does not incur the
inefficiences of an abc-like rejection sampler nor the disadvantages
of likelihood-free inference algorithms which rely on ad-hoc hyper-
paramters and handcrafted summary statistics, which can potentially
lead to biased inference results due to the (possibly naive) human
element. avo does not suffer from these limitations, as the discrimina-
tor automatically learns an internal representation directly from the
presented data. Whenever the simulation model is well-specified, avo

provides point estimates for the generative model, which asymptoti-
cally corresponds to the data generating parameters.

We expect avo to shine in inference settings where a large amount
of observables are available, as the discriminator will have a proper
learning signal because of the sufficiently large dataset size. This is
typically the case in population studies, where a large set of observ-
ables are jointly being examined. After having learned some proposal
qψ(ϑ) with avo over the model parameters of interest, qψ(ϑ) could in
fact serve as a prior for more in-depth analyses of a specific observable.
Some caution needs to be applied however, as we do not guarantee
that the prior is conservative, i.e., it never excludes viable solutions
with respect to the assumed simulation model. To combat this from
a practical point of view, we suggest to tune the entropic regularizer
to force the proposal distribution to be more uncertain, and run avo

multiple times with distinct initial parameterizations ψ to prevent the
optimization procedure being stuck in local minima and limitations
that arise due to the selected family of the proposal distribution.



3
Approximating Posteriors with
Amortized Approximate Ratio

Estimators

The contents of this chapter are based on Hermans, Begy, and Louppe [10].

This chapter presents an approach to address the intractability of the
likelihood and the marginal model in a Bayesian analysis concerned
with approximating a posterior given a single observable. This is
achieved by learning a flexible estimator which directly approximates
the likelihood-to-evidence ratio for any observable supported by the
marginal model.

The resulting amortized ratio estimator is subsequently embedded in
Markov chain Monte Carlo samplers such as Metropolis-Hastings and
Hamiltonian Monte Carlo to approximate the likelihood-ratio between
consecutive states in the Markov chain, allowing us to draw samples
from the unknown intractable posterior. Techniques are presented to
improve the numerical stability. We demonstrate our approach on
a variety of benchmarks and compare against well-established ap-
proximate inference techniques. Scientific applications in high energy
and astrophysics with high-dimensional observations demonstrate the
applicability of the presented methodology.

3.1 introduction

In a Bayesian analysis, domain scientists are interested in the posterior

p(ϑ| x) = p(ϑ)p(x |ϑ)
p(x)

, (3.1)

which relates the parameters ϑ of a model or theory under some prior
p(ϑ) to an observation x. Although Bayesian inference is natural for

25



26 approximating posteriors with amortized approximate ratio estimators

such settings, the implied computation is generally not. Often the
marginal model

p(x) =
∫

p(ϑ)p(x |ϑ)d ϑ (3.2)

cannot be evaluated directly due to the associated computational cost
or the absence of an analytical expression. Thereby making posterior
inference by direct evaluation of Bayes’ rule impractical. Methods such
as Markov chain Monte Carlo (mcmc), as described by Metropolis
et al. [70] and Hastings [71], bypass the dependency and evaluation
of the marginal model by evaluating some form of the likelihood
ratio between consecutive states in the Markov chain. This allows the
posterior to be approximated numerically, provided the likelihood
p(x |ϑ) and the prior p(ϑ) are tractable.

This chapter considers an equally common and more challenging
setting in which the likelihood cannot be evaluated in a reasonable
amount of time, or has no closed-form expression (intractable). How-
ever, drawing samples from the forward or simulation model remains
possible. The prevalence of this problem gave rise to a large body of
research typically referred to as “simulation-based” or “likelihood-free”
inference.

This chapter introduces an approach to perform likelihood-free
posterior inference and a technique to draw samples from the approx-
imated posteriors using mcmc. Our method relies on an amortized
ratio estimator that can be trained on presimulated samples from the
joint p(ϑ, x) to approximate the likelihood-to-evidence ratio

r(x |ϑ) ≜ p(x |ϑ)
p(x)

, (3.3)

and subsequently the posterior

p(ϑ| x) = p(ϑ)r(x |ϑ). (3.4)

In addition, the amortized ratio estimator can be used to compute
the acceptance probability in Metropolis-Hastings [70, 71]. Whenever
the ratio estimator is differentiable – typically the case whenever the
estimator is a neural network – we derive the score ∇ϑ log p(x |ϑ),
making the proposed method also applicable to Hamiltonian Monte
Carlo [72, 73].

3.2 background

3.2.1 Markov chain Monte Carlo

In Bayesian analyses, Markov Chain Monte Carlo (mcmc) methods
are generally applied to (i) draw samples from a posterior probability
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distribution p(ϑ| x) with an intractable marginal model, or (ii) to
estimate expectations under various functions f (ϑ) of the form

Ep(ϑ| x) [ f (ϑ)] =
∫

ϑ
d ϑ p(ϑ| x) f (ϑ), (3.5)

for which point-wise evaluations of the likelihood are possible [70, 71,
74].

These two problems are useful for approximating the target distri-
bution p(ϑ| x) itself, because posterior samples can be drawn from the
posterior p(ϑ| x) by collecting a set of dependent states ϑ0:T from a
Markov chain. Although the mechanism for transitioning from ϑt to
the next state ϑ ′ depends on the algorithm at hand, the acceptance of a
transition ϑt → ϑ ′ for ϑ ′ sampled from a proposal mechanism q(ϑ ′|ϑt)

is usually determined by evaluating some form of the posterior ratio

p(ϑ ′|x)
p(ϑt|x)

=

p(ϑ ′)p(x |ϑ ′)
p(x)

p(ϑt)p(x |ϑt)

p(x)

=
p(ϑ ′)p(x |ϑ ′)
p(ϑt)p(x |ϑt)

. (3.6)

From this formulation it is directly evident that (i) the normalizing
constant p(x) cancels out within the ratio, thereby bypassing the need
for its intractable evaluation, and (ii) how necessary the likelihood
ratio is in assessing the quality of a candidate state ϑ ′ against the
current state ϑt of the Markov chain.

3.2.1.1 Metropolis-Hastings Markov Chain Monte Carlo

The Metropolis-Hastings (mh) [70, 71] Markov Chain Monte Carlo
sampler is a straightforward implementation of Equation 3.6. The pro-
posal mechanism q(ϑ ′|ϑt) is typically a tractable distribution, whose
conditional likelihood can be evaluated efficiently and for which it is
easy to draw samples from. For a given state ϑt in the Markov chain,
these components are subsequently combined to generate a proposal
sample

ϑ
′ ∼ q(ϑ|ϑt), (3.7)

and to compute the acceptance probability ρ of a transition ϑt → ϑ ′:

ρ = min
(

1,
p(ϑ ′)p(x |ϑ ′)
p(ϑt)p(x |ϑt)

q(ϑ ′|ϑt)

q(ϑt|ϑ ′)

)
. (3.8)

The choice of an appropriate transition distribution is important to
maximize the effective sample size (sampling efficiency) and reduce
the autocorrelation.
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On transition distributions and their parameterizations

Consider the case where the proposal or transition distribution is a
normal distribution with a relatively small standard deviation and
whose mean is parameterized by ϑt. That is q(ϑ|ϑt) ≜ N (ϑt; σ). The
sample efficiency of the resulting Markov chain will be very low due
to the large autocorrelation between the accepted samples, driven by
the small standard deviation of the proposal distribution. To reduce
the autocorrelation, one can subsample accepted states from the chain
and thereby increase its sample efficiency. However, this comes at
a cost because subsampling reduces the number of samples in the
Markov chain. To retain a certain effective sample size, one can simply
increase the number of sampling steps, or tune the parameterization
of the proposal distribution to reduce the autocorrelation.

In addition, for a single Markov chain with for the same proposal
distribution it would be impossible to properly approximate a bimodal
posterior whose modes are clearly seperated in the parameter space,
since the proposal distribution will have an extremely low probability
of generating a proposal state in the other mode of the posterior. As
before, this can be addressed by tuning the parameterization of the
transition distribution. As before, autocorrelation needs to be moni-
tored. Note that in this specific instance, a large standard deviation
negatively affects the autocorrelation as well due to rejected Markov
chain transitions. A certain balance concerning the hyperparameters
of the transition distribution is therefore required.

Other approaches are possible however, one such instance is the
usage of ensembles: n walkers or Markov chains are evolved simulta-
neously [75], such that the proposal of a single walker is defined by
the current state of the remaining n− 1 Markov chains. This approach
reduces the autocorrelation since it draws proposal states from a sym-
metric proposal distribution which is implicitely defined through an
ensemble of Markov chains covering distinct parts of the parameter
space.

Algorithm 2 summarizes the implementation of a Metropolis-Hastings
sampler in a Bayesian context for completeness.

3.2.1.2 Hamiltonian Markov Chain Monte Carlo

Hamiltonian Monte Carlo (hmc) [72, 73, 76] improves upon the sam-
pling efficiency of Metropolis-Hastings by reducing the autocorrelation
of the Markov chain. Improving the sampling efficiency is especially
useful in scenarios where designing a proper transition distribution is
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Algorithm 2 Metropolis-Hastings Markov Chain Monte Carlo

Inputs: Initial sample ϑ0

Prior p(ϑ)
Likelihood p(x |ϑ)
Transition distribution q(ϑ)
Observable x

Outputs: Markov chain ϑ0:T

Hyperparameters: Markov chain transitions (steps) T
1: t← 0
2: ϑt ← ϑ0

3: for t < T do
4: ϑ ′ ∼ q(ϑ|ϑt)

5: ρ← min
(

1,
p(ϑ ′)p(x |ϑ ′)
p(ϑt)p(x |ϑt)

q(ϑ ′|ϑt)

q(ϑt|ϑ ′)

)

6: ϑt+1 ←





ϑ ′ with probability ρ

ϑt with probability 1− ρ

7: t← t + 1
8: end for
9: return ϑ0:T

difficult. This is achieved by modeling the target density p(ϑ| x) as a
potential energy function

U(ϑ) ≜ − log p(ϑ| x), (3.9)

≜ − log p(ϑ)− log p(x |ϑ) + log p(x), (3.10)

and attributing some kinetic energy,

K(m) ≜
1
2

m2 (3.11)

with momentum m ∼ p(m) to the current state ϑt.

A new state ϑ ′ can subsequently be proposed by simulating the
Hamiltonian dynamics of ϑt. This is achieved by leapfrog integration
of ∇ϑ U(ϑ) over a fixed number of steps with initial momentum m.
Afterwards, the acceptance ratio

ρ ≜ min
(
1, exp

(
U(ϑ ′)−U(ϑt) + K(m ′)− K(m)

))
(3.12)

is computed to assess the quality of the candidate ϑ ′. Note that in our
earlier definition, U(ϑ) describes the energy potential of the target
density. Given the Bayesian lens of this chapter, this target density
is a posterior with an intractable marginal model. Like Metropolis-
Hastings however, the energy potential only requires the prior and the
likelihood

U(ϑ) ≜ − log p(ϑ)− log p(x |ϑ), (3.13)
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because the evidence term − log p(x) cancels out in Equation 3.12.
Algorithm 3 summarizes the complete procedure

While the simulation of the Hamiltonian dynamics should in princi-
ple concentrate the available computational resources on the typical set
[76] – the region which only contributes significantly to the approxima-
tion of the posterior or some expectation – there are various practical
issues. First and foremost is the critical hyperparameterization of the
hmc sampler. It requires a properly specified momentum distribution
q(m) to efficiently let the Hamiltonian dynamics postively affect the
autocorrelation [76]. Another crucial hyperparameter is the number of
leapfrog integration steps and stepsize. Both are able to significantly
affect performance of the sampler, and the sample efficiency of the
resulting Markov chain as well. To that end, the No-U-Turn Sampler
[77] (nuts) has been proposed as an extension to hmc. The sampler
automatically adjusts the number of leapfrog-integration steps, and
emperically performs at least as efficiently compared to a well-tuned hmc

application [77] without requiring corrections from the end-user.

3.2.2 Approximating likelihood ratios

The most powerful test-statistic to compare two hypotheses ϑ0 and ϑ1

for an observation x is the likelihood ratio [78]

r(x |ϑ0, ϑ1) ≜
p(x |ϑ0)

p(x |ϑ1)
. (3.14)

Previous work [55] shows that it is possible to express the test-statistic
through a change of variables (.x) : Rm 7→ [0, 1], where m is the dimen-
sionality of the observable x.

This observation can be used in a supervised setting to train a
classifier d(x) to distinguish samples x ∼ p(x |ϑ0) with class label
y = 1 from x ∼ p(x |ϑ1) labeled y = 0. In this case, the decision
function modeled by the optimal classifier [55] or discriminator d(x)
is

d(x) = p(y = 1| x) = p(x |ϑ0)

p(x |ϑ0) + p(x |ϑ1)
, (3.15)

thereby obtaining the likelihood ratio

r(x |ϑ0, ϑ1) =
d(x)

1− d(x)
. (3.16)

This approach of density ratio estimation by classification, also known
as the “likelihood ratio trick” (lrt), is well-established in the literature
[19, 55, 57, 68, 79, 80], especially in the area of Generative Adversarial
Networks (gans) [81–84] and variational inference [85].
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Algorithm 3 Hamiltonian Markov Chain Monte Carlo

Inputs: Initial parameter ϑ0

Differentiable prior p(ϑ)
Momentum distribution q(m)

Differentiable likelihood p(x |ϑ)
Observable x

Outputs: Markov chain ϑ0:T

Hyperparameters: Steps T.
Leapfrog-integration steps l and stepsize η.

1: t← 0
2: ϑt ← ϑ0

3: for t < T do
4: mt ∼ q(m)

5: k← 0
6: mk ← mt

7: ϑk ← ϑt

8: U(ϑt)← − log p(ϑt)− log p(x |ϑt)

9: for k < l do
10: mk ← mk −

η

2
∇ϑ U(ϑk)

11: ϑk ← ϑk + η ·mk

12: U(ϑk)← − log p(ϑk)− log p(x |ϑk)

13: mk ← mk +
η

2
∇ϑ U(ϑk)

14: k← k + 1
15: end for

16: ρ← min
[

1,
exp (U(ϑk) + K(mk))

exp (U(ϑt) + K(mt))

]

17: ϑt+1 ←





ϑk with probability ρ

ϑt with probability 1− ρ

18: t← t + 1
19: end for
20: return ϑ0:T



32 approximating posteriors with amortized approximate ratio estimators

Because domain scientists are often interested in computing the
likelihood ratio between arbitrary hypotheses, training d(x) for every
possible pair of hypotheses becomes impractical. A solution proposed
by [55, 86] is to, in addition to x, parameterize the classifier d with
ϑ and train d(ϑ, x) to distinguish between samples from p(x |ϑ) and
samples from a mathematically arbitrary (but fixed) reference density
p(x |ϑref) as described above. In this case, the decision modeled by the
optimal classifier [55] is

d(ϑ, x) =
p(x |ϑ)

p(x |ϑ) + p(x |ϑref)
, (3.17)

thereby defining the likelihood-to-reference ratio

r(x |ϑ) ≜ r(x |ϑ, ϑref) =
d(ϑ, x)

1− d(ϑ, x)
. (3.18)

The likelihood ratio between arbitrary hypotheses ϑ0 and ϑ1 of choice
can subsequently be computed through the amortized ratio estimator
r(x |ϑ0) as

r(x |ϑ0, ϑ1) =
r(x | ϑ0)

r(x | ϑ1)
. (3.19)

3.3 method

We now introduce a new method that is able to

1. draw samples from a posterior with an intractable likelihood
and marginal model,

2. and directy evaluate estimates of the posterior density function,

and does so for arbitrary observables x ∼ p(x) without retraining.

3.3.1 Drawing samples from an intractable posterior without a likelihood

As noted above, mcmc samplers rely on the likelihood ratio to compute
the acceptance probability between consequative states in the Markov
chain. We propose to remove the dependency on the intractable likeli-
hoods p(x |ϑ ′) and p(x |ϑt) by directly modeling their ratio using an
amortized ratio estimator

r̂(x|ϑ ′, ϑt) =
r̂(x|ϑ ′)
r̂(x|ϑt)

. (3.20)

We call this method amortized approximate likelihood ratio mcmc

(aalr-mcmc).
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3.3.1.1 Likelihood-free Metropolis-Hastings

Adapting Metropolis-Hastings to the likelihood-free setup with likelihood-
ratio estimators is achieved by replacing the computation of the in-
tractable acceptance probability in Equation 3.8 with

ρ = min
(

1,
p(ϑ ′)r̂(x|ϑ ′)
p(ϑt)r̂(x|ϑt)

q(ϑ ′|ϑt)

q(ϑt|ϑ ′)

)
. (3.21)

The algorithm remains otherwise unchanged. The full procedure is
summarized in Algorithm 4.

Algorithm 4 Likelihood-free Metropolis-Hastings mcmc

Inputs: Initial sample ϑ0

Prior p(ϑ)
Likelihood p(x |ϑ)
Ratio estimator r̂(x|ϑ)
Transition distribution q(ϑ)
Observable x

Outputs: Markov chain ϑ0:T

Hyperparameters: Markov chain transitions (steps) T
1: t← 0
2: ϑt ← ϑ0

3: for t < T do
4: ϑ ′ ∼ q(ϑ|ϑt)

5: ρ = min
(

1,
p(ϑ ′)r̂(x|ϑ ′)
p(ϑt)r̂(x|ϑt)

q(ϑ ′|ϑt)

q(ϑt|ϑ ′)

)

6: ϑt+1 ←





ϑ ′ with probability ρ

ϑt with probability 1− ρ

7: t← t + 1
8: end for
9: return ϑ0:T

3.3.1.2 Likelihood-free Hamiltonian Monte Carlo

The first step in making hmc likelihood-free, is by showing that
U(ϑt)−U(ϑ ′) primarily reduces to the log-likelihood ratio,

U(ϑt)−U(ϑ ′) = log
p(x |ϑ ′)
p(x |ϑt)

+ log
p(ϑ ′)
p(ϑt)

,

= log r(x |ϑ ′, ϑt) + log
p(ϑ ′)
p(ϑt)

.
(3.22)
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Furthermore, to simulate the Hamiltonian dynamics of ϑt, we require a
likelihood-free definition of ∇ϑ U(ϑ). Within our framework, ∇ϑ U(ϑ)

can be expressed as

∇ϑ U(ϑ) = −∇ϑ r(x |ϑ)
r(x |ϑ) −∇ϑ p(ϑ). (3.23)

This form can be recovered by a differentiable ratio estimator r(x |ϑ),
as expanding r(x |ϑ) in Equation 3.23 yields

−∇ϑ p(x |ϑ)
p(x |ϑ) = −∇ϑ r(x |ϑ)

r(x |ϑ) = −∇ϑ log p(x |ϑ). (3.24)

Having likelihood-free alternatives for U(ϑ)−U(ϑ ′) and ∇ϑ U(ϑ),
we can replace these components in hmc to obtain a likelihood-free
hmc sampler. This procedure is summarized in Algorithm 5. While
likelihood-free hmc does not rely on the intractable likelihood, it
still depends on the computation of ∇ϑ r̂(x|ϑ) to recover ∇ϑ U(ϑ).
This can be a costly operation depending on the architecture of the
ratio estimator. Similar to hmc, the sampler requires careful tuning to
maximize the sampling efficiency. Ideas such as neural proposals [87],
or a likelihood-free nuts sampler could aid here.

3.3.2 Improving the ratio estimator r̂(x|ϑ) by directly estimating the poste-
rior probability density function

Simply relying on the previously defined amortized likelihood-to-
reference ratio estimator r̂(x|ϑ) does not yield satisfactory results, even
when considering simple toy problems. Experiments indicate that the
choice of the although mathematically arbitrary reference hypothesis
ϑref does have a significant effect on the approximated likelihood ratios
in practice. Other independent investigations [57] observe similar
issues and conclude, like us, that the reference hypothesis ϑref is
a sensitive hyper-parameter which requires careful tuning for the
problem at hand.

We find that poor inference results occur in the absence of sup-
port between p(x |ϑ) and p(x |ϑref), as illustrated in Figure 3.1. In
this example, the evaluation of the approximate ratio r̂(x|ϑ) for an
observable x ∼ p(x |ϑ∗) is undefined when the observation x does
not have density in p(x |ϑ) and p(x |ϑref), or either of the densities is
numerically negligible. Therefore, the continuous decision function
modeled by the optimal classifier d(ϑ, x) outside of the support of
p(x |ϑ) and p(x |ϑref) is undefined. Practically, this implies that the
ratio estimator r̂(x|ϑ) can take on an arbitrary value, which is detri-
mental to the inference procedure. In this case, the value of r̂(x|ϑ)
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Algorithm 5 Likelihood-free Hamiltonian mcmc

Inputs: Initial parameter ϑ0

Differentiable prior p(ϑ)
Momentum distribution q(m)

Differentiable ratio estimator r̂(x|ϑ)
Differentiable likelihood p(x |ϑ)
Observable x

Outputs: Markov chain ϑ0:T

Hyperparameters: Steps T.
Leapfrog-integration steps l and stepsize η.

1: t← 0
2: ϑt ← ϑ0

3: for t < T do
4: mt ∼ q(m)

5: k← 0
6: mk ← mt

7: ϑk ← ϑt

8: U(ϑt)← − log p(ϑt)− log r̂(x|ϑt)

9: for k < l do
10: mk ← mk −

η

2
∇ϑ U(ϑk)

11: ϑk ← ϑk + η ·mk

12: U(ϑk)← − log p(ϑk)− log r̂(x|ϑk)

13: mk ← mk +
η

2
∇ϑ U(ϑk)

14: k← k + 1
15: end for

16: ρ← min
[

1,
exp (U(ϑk) + K(mk))

exp (U(ϑt) + K(mt))

]

17: ϑt+1 ←





ϑk with probability ρ

ϑt with probability 1− ρ

18: t← t + 1
19: end for
20: return ϑ0:T
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Shared parameter ϑ and data x space.

x ∼ p(x |ϑ∗)p(x |ϑ) p(x |ϑref)

Figure 3.1: Consider having access to an optimal classifier d(ϑ, x)
modeling r(x |ϑ) with x ∼ p(x |ϑ∗). This ratio is undefined for x as
neither p(x |ϑ) nor p(x |ϑref) puts numerically non-negligible density
on x. This implies that r̂(x|ϑ) and its decision function d(ϑ, x) can
take on arbitrary values in regions not covered by p(x |ϑ) or p(x |ϑref)

(striped areas) because no such training data exists, or the availability
of such data is sparse. The red, green and blue lines depict optimal
decision functions as they all minimize the criterion which captures
the ability to classify between samples from p(x |ϑ) and p(x |ϑref).
However, the functions all have different approximations of r̂(x|ϑ).

might depend on architectural choices in d(ϑ, x) or stochastic aspects
of the training procedure.

To overcome the issues associated with a fixed reference hypothesis,
we propose to train the classifier to distinguish samples from p(x |ϑ)
(numerator) and the marginal model p(x) (denominator) such that

r(x |ϑ) ≜ p(x |ϑ)
p(x)

. (3.25)

This modification ensures that (i) the likelihood-to-evidence ratio
will always be defined everywhere it needs to be evaluated, as the
likelihood p(x |ϑ) is consistently supported by the marginal model
p(x), and (ii) enables the direct evaluation of the posterior density
function because

p(ϑ| x) = p(ϑ)
p(x |ϑ)

p(x)
, (3.26)

≈ p(ϑ)r̂(x|ϑ). (3.27)

We summarize the procedure for learning the associated discriminator
d(ϑ, x) and the corresponding ratio estimator r̂(x|ϑ) in Algorithm 6.

Proposition 1. The decision function modeled by the optimal discriminator
d(ϑ, x) trained under a prior p(ϑ) to distinguish samples from the joint
p(ϑ, x) and product of the marginals p(ϑ)p(x) is

d(ϑ, x) =
p(ϑ, x)

p(ϑ, x) + p(ϑ)p(x)
=

p(x |ϑ)
p(x |ϑ) + p(x)

. (3.28)
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Algorithm 6 Optimization of dψ(ϑ, x) to obtain a ratio estimator.

Inputs: Criterion ℓ (e.g., bce, or binary cross-entropy)
Implicit generative model (simulator) p(x |ϑ)
Prior p(ϑ)

Outputs: Discriminator dψ(ϑ, x)
Hyperparameters: Batch-size M
1: while not converged do
2: Sample ϑ ← {ϑm ∼ p(ϑ)}M

m=1
3: Sample ϑ

′ ← {ϑ ′m ∼ p(ϑ)}M
m=1

4: Simulate x ← {xm ∼ p(x |ϑm)}M
m=1

5: L
[
dψ(ϑ, x)

]
← ℓ(dψ(ϑ, x), 1) + ℓ(dψ(ϑ ′, x), 0)

6: ψ← optimizer(ψ, ∇ψL
[
dϕ(ϑ, x)

]
)

7: end while
8: return dψ

Proof. The core of our contribution rests on the proper estimation of
the likelihood-to-evidence ratio. This proof demonstrates the mini-
mization of the binary cross-entropy (bce) loss of a classifier tasked
to distinguish between dependent input pairs (ϑ, x) ∼ p(ϑ, x) (samples
drawn the joint) and independent input pairs (ϑ, x) ∼ p(ϑ)p(x) (sam-
ples drawn from the product of the marginals) results in an optimal
classifier d(ϑ, x) when minimized.

Using calculus of variations and reproducing the structure of Algo-
rithm 6, we define the loss functional L[d(ϑ, x)]

=
∫

dϑ
∫

dx
∫

dϑ ′p(ϑ)p(x |ϑ)p(ϑ ′)
[
− log d(ϑ, x)− log(1− (d(ϑ ′), x)

]

=
∫

dϑ
∫

dx
∫

p(ϑ)p(x |ϑ)
[
− log d(ϑ, x)

]
+ p(ϑ)p(x)

[
− log(1− d(ϑ, x))

]

︸ ︷︷ ︸
F(d(ϑ,x))

.

This loss functional is minimized for a function d(ϑ, x) such that

0 =
δF
δd

∣∣∣∣∣
d

= p(ϑ)p(x |ϑ)
[
− 1

d(ϑ, x)

]
+ p(ϑ)p(x)

[ 1
1− d(ϑ, x)

]
. (3.29)

As long as p(ϑ) > 0, this is equivalent to

p(x |ϑ) 1
d(ϑ, x)

= p(x)
1

1− d(ϑ, x)
, (3.30)

and
p(ϑ, x)

1
d(ϑ, x)

= p(ϑ)p(x)
1

1− d(ϑ, x)
. (3.31)

Which implies that

d(ϑ, x) =
p(ϑ, x)

p(ϑ, x) + p(ϑ)p(x)
=

p(x |ϑ)
p(x |ϑ) + p(x)

. (3.32)
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Therefore, the optimal discriminator models the likelihood-to-evidence
ratio

r(x |ϑ) ≜ p(ϑ, x)
p(ϑ)p(x)

=
p(x |ϑ)

p(x)
. (3.33)

Although the usage of the marginal model instead of an arbitrary
reference hypothesis vastly improves the accuracy of r̂(x|ϑ), obtaining
the likelihood-to-evidence ratio r̂(x|ϑ) by transforming the output of
d(ϑ, x) can still be susceptible to numerical errors. This may happen
in the saturating regime where the classifier d(ϑ, x) is able to (almost)
perfectly discriminate samples from p(x |ϑ) and p(x). We prevent this
issue by extracting log r̂(x|ϑ) from the neural network before applying
the sigmoidal projection in the output layer, since log r̂(x|ϑ) is the
logit of d(ϑ, x). This choice also mitigates a vanishing gradient due to
the sigmoidal output when computing ∇ϑ log r̂(x|ϑ) or ∇x log r̂(x|ϑ).
Which is benificial in any application of likelihood-free hmc.

Finally, approximating the likelihood-to-evidence ratio also en-
ables the direct estimation of the posterior probability density func-
tion because p̂(ϑ| x) = p(ϑ)r̂(x|ϑ). This is especially useful in low-
dimensional model parameter spaces, where scanning is a reasonable
strategy and much more efficient compared to mcmc. In addition,
scanning does not rely on tunable parameters.

3.3.3 Assessing the quality of the ratio estimates

Likelihood-free computations are challenging to verify as the quantity
which drives the inference procedure, the likelihood, is by definition
intractable. A robust strategy is therefore crucial to verify the quality of
any approximation before making any scientific conclusions. Inspired
by Cranmer, Pavez, and Louppe [55], one can identify issues in our
ratio estimator r̂(x|ϑ) by evaluating the identity

p(x |ϑ) = p(x)r(x |ϑ). (3.34)

Whenever the estimator r̂(x|ϑ) is exact, then a classifier should not be
able to distinguish between samples from p(x |ϑ) and the reweighted
marginal model p(x)r̂(x|ϑ). The discriminative performance of the
classifier can be assessed by means of a Receiver Operating Character-
istic (roc) curve. A diagonal roc (with Area Under Curve = 0.5) curve
indicates that a classifier is insensitive and r̂(x|ϑ) = r(x |ϑ). It should
be noted however this result could also be obtained by a classifier
that is insenstive to differences between samples from p(x | ϑ) and the
reweighted marginal model. Figure 3.2 provides an illustration of this
diagnostic.
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Figure 3.2: This figure demonstrates the diagnostic presented in Sec-
tion 3.3.3. We train two ratio estimators. The first approximates the
ratio r(x | ϑ) well, while the other does not. We denote these estimators
as r̂g(x | ϑ) and r̂b(x | ϑ) respectively. The test diagnostic is applied to a
single test hypothesis ϑ = 0. (Left): Marginal model reweighted using
r̂g(x | ϑ) and r̂b(x | ϑ). It is clear that r̂b(x | ϑ) does not properly approx-
imate r(x | ϑ), as the reweighted marginal model is distinguishable
from the test hypothesis p(x | ϑ = 0). (Right): A classifier is trained
to distinguish between samples from the test hypothesis and the
reweighted marginal models. The roc curve indicates that the clas-
sifier could not extract any predictive features for samples x ∼ p(x)
reweighted by r̂g(x | ϑ), indicating a good approximation of r(x | ϑ) by
r̂g(x | ϑ).
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While this particular approach is able to detect defects in the ratio
estimators for a specific ϑ, it does not give an indication about the
ratio estimator’s performance across the prior p(ϑ). To compute some
estimate of the ratio estimator’s reliability across the prior p(ϑ), there
are 2 distinct approaches. The first simply repeats the procedure above
for various ϑ ∼ p(ϑ). The second however, relies on the observation
that the Bayes optimal ratio estimator

r(x | ϑ) = p(x | ϑ)
p(x)

=
p(ϑ, x)

p(ϑ)p(x)
. (3.35)

This allows us to determine the exactness of any approximate ratio
estimator r̂(x | ϑ) over the prior, by evaluating the identity

p(ϑ, x) = r(x | ϑ)p(ϑ)p(x). (3.36)

In contrast to the identity in Equation 3.34, this formulation requires a
classifier that accepts both ϑ and x as inputs to discriminate between
samples from the joint and the reweighted product of marginals. It
should be noted however that the task of discriminating between
these two densities is harder compared to the previous formulation.
Because of this, special consideration should be given to the fact that
the classifier might be insensitive to discriminate the joint and the
reweighted product of the marginals.

3.4 related work

Algorithms such as abc [88–91] tackle the problem of Bayesian in-
ference by collecting proposal states ϑ ∼ p(ϑ) whenever an obser-
vation x produced by the forward model x ∼ p(x | ϑ) resembles an
observation xo. Formally, a proposal state ϑ is accepted whenever
a compressed observation σ(x) (low-dimensional summary statistic)
satisfies d(σ(x), σ(xo)) < ϵ for some distance function and acceptance
threshold ϵ. The resulting approximation of the posterior will only be exact
whenever the summary statistic is sufficient and ϵ→ 0 [90]. Several proce-
dures have been proposed to improve the acceptance rate by guiding
simulations based on previously accepted states [92–94]. Other works
investigated learning summary statistics [95–97]. Contrary to these
methods, aalr-mcmc does not actively use the simulator during infer-
ence and learns a direct mapping from data and parameter space to
likelihood-to-evidence ratios.

Other approaches take the perspective to cast inference as an opti-
mization problem [98, 99]. In variational inference, a parameterized
posterior over parameters of interest is optimized [100]. Amortized
variational inference [101, 102] expands on this idea by using gen-
erative models to capture inference mappings. Recent work in [9]
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proposes a novel form of variational inference by introducing an
adversary in combination with reinforce-estimates [103, 104] to opti-
mize a parameterized prior. Others have investigated meta-learning
to learn parameter updates [105]. However, these works only provide
point-estimates.

Sequential approaches such as snpe-a [106], snpe-b [107] and apt/snpe-
c [108] iteratively adjust an approximate posterior parameterized as a
mixture density network or a normalizing flow. Instead of learning
the posterior directly, snl [109] makes use of autoregressive flows
to model an approximate likelihood. aalr-mcmc mirrors snl as the
trained conditional density estimator is plugged into mcmc samplers
to bypass the intractable marginal model. This allows snl to approxi-
mate the posterior numerically. Contrary to our approach, snl cannot
directly provide estimates of the posterior posterior density function.

The usage of ratios is explored in several studies. carl [110] models
likelihood ratios for frequentist tests. As shown in Section 3.3.2, carl

does not produce accurate results in some cases. lfire [57] models
a likelihood-to-evidence ratio by logistic regression and relies on the
usage of summary statistics. Unlike us, they require samples from
the marginal model and a specific (reference) likelihood, while we
only require samples from the joint p(ϑ, x). Therefore, lfire requires
retraining for every evaluation of different ϑ.

Finally, an important concern of likelihood-free inference is mini-
mizing the number of simulation calls. Active simulation strategies
such as bolfi [111] and others [112, 113] achieve this through Bayesian
optimization. Emulator networks [114] exploit the uncertainty within
an ensemble to guide simulations. Recent works [80, 115] significantly
reduce the amount of required simulations, provided joint likelihood
ratios and scores can be extracted from the simulator.

Other approaches attempt to learn approximate versions of the simu-
lator [114] which is used to perform efficient inference, adapting a sim-
ilar strategy as in world models for reinforcement learning [116]. Our
method relies on the training of an amortized likelihood-to-evidence
ratio estimator using samples from the joint p(ϑ, x). Thereby directly
modeling all posteriors, unlike Lueckmann et al. [114], which learns
a global likelihood model, but does not provide a concrete density
estimator to achieve this. Our ratio estimator could enable this.
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3.5 experiments

3.5.1 Setup

We compare aalr-mcmc using our likelihood-to-evidence ratio esti-
mator against classical abc [117] and modern posterior approximation
techniques such as snpe-a [106], snpe-b [107], and apt [108]. All
methods have a simulation budget of one million samples. Sequential
approaches such as snpe-a, snpe-b, and apt spread this budget equally
across 50 rounds. These rounds are used to iteratively improve the
approximation of the posterior. Our evaluations consider the poste-
rior estimate of the final round. By default, our evaluations use the
likelihood-free Metropolis-Hastings sampler unless stated otherwise.
The experiments are repeated 10 times.

3.5.1.1 Benchmark problems

The accuracy and robustness of aalr-mcmc will be assessed by com-
paring aalr-mcmc against abc, snpe-a, snpe-b and apt on the follow-
ing benchmarks:

tractable problem Given a model parameter sample ϑ ∈ R5,
the forward generative process is defined as:

µϑ = (ϑ0, ϑ1), (3.37)

s1 = ϑ2
2, s2 = ϑ2

3, ρ = tanh(ϑ4), (3.38)

Σϑ =

[
s2

1 ρs1s2

ρs1s2 s2
2

]
, (3.39)

with x = (x1, . . . , x4) where xi ∼ N (µϑ , Σϑ) (3.40)

The likelihood p(x |ϑ) = ∏4
i=1N (xi | µϑ , Σϑ) with prior p(ϑ) ≜

U (−3, 3). The resulting posterior is non-trivial due to the squaring
operation, which is responsible for generating multiple modes. An
observation xo is generated by conditioning the forward model on
ϑ∗ = (0.7,−2.9,−1.0,−0.9, 0.6) as in [108, 109].

detector calibration We are interested in determining the
offset ϑ ∈ R of a particle detector from the collision point given a
detector response xo. Our particle detector emulates a 32× 32 spherical
uniform grid such that x ∈ R1024. Every detector pixel is able to
measure the momentum of the particles passing through the detector
material. The pythia simulator [52] generates electron-positron (e−e+)
collisions and is configured according to the parameters derived by
the Monash tune [118]. The resulting collision products and their
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momenta are processed by pythiamill [53] to compute the response
of the detector by simulating the interaction of the collision products
with the detector material. We consider a prior p(ϑ) ≜ U (−30, 30).
An observable xo is generated at the collision point ϑ∗ = 0.

population model The Lotka-Volterra model [119] describes
the evolution of predator-prey populations. The population dynamics
are driven by a set of differential equations with parameters ϑ ∈ R4.
An observation describes the population counts of both groups over
time. Simulations are typically compressed into a summary statistic
x̄ ∈ R9 [108, 109]. We also follow this approach to remain consistent.
The prior p(ϑ) ≜ U (−10, 2) (log-scale). We generate an observable
from the narrow oscillating regime ϑ∗ = (−4.61,−0.69, 0,−4.61).

m/g/1 queuing model This model describes a queuing system
of continuously arriving jobs at a single server and is described by
a model parameter ϑ ∈ R3. The time it takes to process every job is
uniformly distributed in the interval [ϑ1, ϑ2]. The arrival time between
two consecutive jobs is exponentially distributed according to the
rate ϑ3. An observation x are 5 equally evenly spaced percentiles of
interdeparture times, i.e., the 0th, 25th, 50th, 75th and 100th percentiles.
To generate the observation xo, we draw a sample from the forward
model using the generating parameter ϑ∗ = (1.0, 5.0, 0.2). We consider
the uniform prior p(ϑ) ≜ U (0, 10)×U (0, 10)×U (0, 0.333).

3.5.2 Results

Table 3.1 shows the posterior log probabilities of the generating pa-
rameter ϑ∗ for an observation xo. Our roc diagnostic reports auc = 0.5
for the detector calibration and m/g/1 benchmarks, and auc = 0.55

for the population evolution model. These results demonstrate that
the proposed ratio estimator provides accurate and consistent ratio
estimates.

If we assess the quality of a method exclusively based on the log
probabilities in Table 3.1, we could argue that snpe-a, snpe-b and apt

are close in terms of approximation. This is potentially misleading
as it does not take the structure of the posterior into account. To
demonstrate the accuracy of aalr-mcmc in this regard, we focus on the
tractable problem. We conduct two distinct quantitative analysis, the
first computes the Maximum Mean Discrepancy (mmd) [120] between
samples of the true posterior and the approximated posterior, while
the latter trains a classifier to compute the roc auc between samples
of the approximate posterior and the mcmc groundtruth. Results are
summarized in Table 3.2. Figure 3.3 shows the approximations of



44 approximating posteriors with amortized approximate ratio estimators

A
lgorithm

Tractable
problem

D
etector

calibration
Population

m
odel

m
/

g/
1

a
b
c
(ϵ

=
large)

−
8.686±

0.000
−

3.087±
0.000

n
/

a
n

/
a

a
b
c
(ϵ

=
interm

ediate)
−

7.620±
0.000

−
2.491±

0.000
n

/
a

n
/

a

a
b
c
(ϵ

=
sm

all)
−

6.668±
0.000

−
2.180±

0.000
n

/
a

n
/

a

a
p
t

−
4.441±

0.487
−

2.004±
0.753

6.366±
0.432

−
2.741±

3.356

s
n

p
e-

a
−

6.141±
1.227

−
1.775±

1.775
7.024±

0.515
1.177±

0.937

s
n

p
e-

b
−

5.693±
0.809

−
1.075±

0.226
−

0.632±
0.843

1.105±
0.384

a
a

l
r-

m
c

m
c

(ours)
−

4.126±
0.004

−
1.005±

0.074
6.482±

0.214
2.302±

0.189

Tab
le

3.1:
P

osterior
log

p
robability

p
(ϑ

=
ϑ
∗|x

=
x

o )
for

generating
p

aram
eters

ϑ
∗

and
observable

x
o .

For
s
n

p
e-

a
,

s
n

p
e-

b
and

a
p
t

w
e

d
irectly

extracted
the

p
osterior

log
p

robability
from

the
m

ixtu
re

of
G

au
ssians.Since

the
p

rop
osed

ratio
estim

ator
m

od
els

the
log

likelihood-to-evidence
ratio,w

e
have

to
add

the
log

prior
probability

of
the

generating
param

eters
to

obtain
the

posterior
log

probability.



3.5 experiments 45

1.5

0.0

1.5

3.0

1.5

0.0

1.5

3.0

1.5

0.0

1.5

3.0

1.5 0.0 1.5 3.0

1.5

0.0

1.5

3.0

1.5 0.0 1.5 3.0 1.5 0.0 1.5 3.0 1.5 0.0 1.5 3.0 1.5 0.0 1.5 3.0

1.5

0.0

1.5

1.5

0.0

1.5

3.0

1.5

0.0

1.5

3.0

1.5 0.0 1.5 3.0

1.5

0.0

1.5

3.0

1.5 0.0 1.5 1.5 0.0 1.5 3.0 1.5 0.0 1.5 3.0 1.5 0.0 1.5 3.0

2.8
5

2.7
0

2.5
5

2.4
0

1.5

0.0

1.5

3.0

1.5

0.0

1.5

3.0

1.5 0.0 1.5 3.0

1.5

0.0

1.5

3.0

1.5 0.0 1.5 3.0 1.5 0.0 1.5 3.0 1.5 0.0 1.5 3.0 1.5 0.0 1.5 3.0

2

1

0

1

1.5

0.0

1.5

3.0

1.5

0.0

1.5

3.0

1.5 0.0 1.5 3.0

1.5

0.0

1.5

3.0

1.5 0.0 1.5 3.0 1.5 0.0 1.5 3.0 1.5 0.0 1.5 3.0 1.5 0.0 1.5 3.0

2.8

2.4

2.0

1.6

1.5

0.0

1.5

3.0

1.5

0.0

1.5

3.0

1.5 0.0 1.5 3.0

1.5

0.0

1.5

3.0

1.5 0.0 1.5 3.0 1.5 0.0 1.5 3.0 1.5 0.0 1.5 3.0 1.5 0.0 1.5 3.0

1.5

0.0

1.5

1.5

0.0

1.5

1.5

0.0

1.5

1.5 0.0 1.5

1.5

0.0

1.5

1.5 0.0 1.5 1.5 0.0 1.5 1.5 0.0 1.5 1.5 0.0 1.5

Figure 3.3: Posteriors from the tractable benchmark. From left to right,
the mcmc ground truth, the proposed method, snpe-e, snpe-b, apt

and snl. The experiments are repeated 25 times and the approximate
posteriors are subsampled from those runs. An objective visual as-
sessment can be made: aalr-mcmc shares the same structure with
the mcmc truth, demonstrating its accuracy. Some runs of the other
methods were not consistent, contributing to the variance observed in
Table 3.2.
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Algorithm mmd roc auc

aalr-mcmc (ours) 0.05± 0.005 0.59± 0.0010

abc (ϵ = 32) 0.51± 0.001 0.99± 0.0001

abc (ϵ = 16) 0.50± 0.003 0.99± 0.0002

abc (ϵ = 8) 0.39± 0.001 0.99± 0.0003

abc (ϵ = 4) 0.29± 0.004 0.98± 0.0007

apt 0.17± 0.036 0.86± 0.0008

aalr-mcmc (lrt) 0.53± 0.004 0.99± 0.0001

snpe-a 0.21± 0.070 0.97± 0.0098

snpe-b 0.20± 0.061 0.92± 0.0181

Table 3.2: aalr-mcmc outperforms all other methods. Numerical
errors introduced by mcmc might have contributed to these results.
The mmd scores are in agreement with [108].

aalr-mcmc, snpe-a, snpe-b and apt against the mcmc groundtruth.
aalr-mcmc’s accuracy is especially apparent when comparing snpe-a,
snpe-b and apt against the groundtruth. While aalr-mcmc accurately
models the true posterior, snpe-a, snpe-b and apt fail to do so. The
discrepancy between the lrt and the proposed ratio estimator indicate
that the improvements from Section 3.3.2 are critical.

In addition to comparing the final approximations, we evaluate the
accuracy of the approximations with respect to a given simulation
budget. In doing so we challenge our method even further, as sequen-
tial approaches are specifically designed to be simulation efficient. We
expect sequential approaches to obtain more accurate approximations
with less simulations. The results of this evaluation are shown in
Figure 3.4. With the exception of snl which produces results compa-
rable to ours, we unexpectedly find that the sequential approaches
were not able to outperform our method on this (toy) problem, even
though aalr-mcmc and its ratio estimator tackle the harder task of
amortized inference. This demonstrates the accuracy and robustness
of our method.

Finally, because the other methodologies are not amortized, i.e., they
cannot approximate arbitrary posteriors, we note that experiments
consider a single and fixed observation only. General conclusions
should therefore be drawn with caution.
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Figure 3.4: We evaluate the accuracy of the approximations with
respect to different simulation budgets on the tractable benchmark.
The accuracy is obtained by computing the roc auc between samples
from the approximation and the mcmc groundtruth. Except for snl

which yields comparable results, sequential approaches are not able
to outperform aalr-mcmc.

3.5.3 Demonstrations: strong gravitational lensing

The following demonstrations will showcase several aspects of our
method while considering the problem of strong gravitational lens-
ing. We use autolens [121] to simulate the telescope optics, imaging
sensors and physics governing strong lensing. The simulation black-
box encapsulates these components. The output of the simulation
is a high-dimensional observation x ∈ R128×128 with uninformative
data dimensions. We use a ratio estimator based on resnet-18 [122]
parameterized by ϑ in the fully connected trunk.

The simulation model consists of 4 main components. The first
involves the telescope optics. We model the psf (point spread function)
as a Gaussian with standard deviation 0.5 in a 3× 3 pixel kernel. The
ccd sensor is set to an exposure time of 1000 seconds, background
sky level = 0.1 and ccd noise is added. The mass distribution of
the foreground galaxy is modeled as an elliptical isothermal [123] at
redshift z = 0.5 with axis ratio = 0.99, a random orientation-angle and
an Einstein radius sampled from the prior. We do not model galaxy
foreground light for the marginalization problem. For the Bayesian
model selection problem, we model the foreground light of the lensing
galaxy as an elliptical sersic with a random orientation angle and
a sersic index sampled from U (.5, 1.5). For every source galaxy, we
only model the light profile and their relative positions with respect
to the lens. Source galaxies have an assumed redshift of z = 2. We
assume the Plack15 cosmology. Table 3.3 describes the parameters and
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respective distributions we sampled from to generate a light profile
for a single source galaxy.

Parameter Distribution

Axis ratio U (0.1, 0.9)

Effective radius U (0.1, 0.4)

Intensity (flux) U (0.1, 0.5)

Location x U (−1.0, 1.0)

Location y U (−1.0, 1.0)

Axis orientation U (0, 360)

Sersic index U (0.5, 3.0)

Table 3.3: A complete description of the parameters describing the
light profile is described in the autolens documentation.

3.5.3.1 Marginalization

Often scientists are aphetic about a posterior describing all model
parameters. Rather, they are interested in a posterior in which nui-
sance parameters have been marginalized out. This is easily achieved
within our framework by including all parameters (including nuisance
parameters) to the simulation model, but only presenting the param-
eters of interest to the ratio estimator during training. The training
procedure remains otherwise unchanged. This problem focuses on
recovering the Einstein radius ϑ ∈ R of a gravitational lens. We are
not interested in the parameters describing the source and foreground
galaxy (15 parameters). Figure 3.5 depicts our posterior approxima-
tion, roc diagnostic and observation xo with ϑ∗ = 1.66 and prior
p(ϑ) ≜ U (0.5, 3.0).
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Figure 3.5: (Left): Approximation of the posterior. (Middle): Diagonal
roc diagnostic, indicating a good approximation of the posterior.
(Right): Observation associated with the posterior.
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3.5.3.2 Amortization enables population studies

Consider a set of n independent and identically distributed observa-
tions X = {x1, . . . , xn}. The amortization of the ratio estimator allows
additional observations to be included in the computation of the pos-
terior p(ϑ |X ) without requiring new simulations or retraining. This
allows us to efficiently undertake population studies. Bayes’ rule tells
us

p(ϑ |X ) =
p(ϑ)∏x∈X p(x | ϑ)∫
p(ϑ)∏x∈X p(x | ϑ)d ϑ

,

≈ p(ϑ)∏x∈X r̂(x | ϑ)∫
p(ϑ)∏x∈X r̂(x | ϑ)d ϑ

.
(3.41)

The denominator can efficiently be approximated by Monte Carlo
sampling using the ratio estimator r̂(x | ϑ). However, with mcmc the
denominator cancels out within the ratio between consecutive states
ϑt → ϑ ′. Thereby obtaining

p̂(ϑ ′|X )

p̂(ϑt|X )
=

p(ϑ ′)∏x∈X r̂(x | ϑ ′)∫
p(ϑ)∏x∈X r̂(x | ϑ)d ϑ

p(ϑt)∏x∈X r̂(x | ϑt)∫
p(ϑ)∏x∈X r̂(x | ϑ)d ϑ

. (3.42)

We consider the same simulation model as in Section 3.5.3.1, with
the exception that the Einstein radius used to simulate a gravitational
lens is not ϑ, but instead drawn from N (ϑ, 0.25). We reduce the
uncertainty about the generating parameter ϑ∗ = 2 by modeling the
posterior p̂(ϑ |X ). This is demonstrated in Figure 3.6. All individual
posteriors (dotted lines) are derived using the same pretrained ratio
estimator. The posterior p̂(ϑ |X ) is approximated using the formalism
described above.

3.5.3.3 Bayesian model selection

Until now we only considered posteriors with continuous model
parameters. We turn to a setting in which scientists are interested in
a discrete space of models. In essence casting classification as Bayesian
model selection, allowing us the quantify the uncertainty among models
(classes) with respect to an observation. where every model mi has a
parameter space ϑ ∈ Rdi of dimensionality di. Bayesian model selection
is achieved by computing the Bayes factor b of two models mi and mj

with parameter vectors ϑi and ϑ j:

b =

∫
p(mi, ϑi)p(x |mi, ϑi)d ϑi /

∫
p(x, ϑi)d ϑi∫

p(mj, ϑ j)p(x |mj, ϑ j)d ϑ j /
∫

p(x, ϑ j)d ϑ j
,

=
p(mi)p(x |mi)

p(mj)p(x |mj)
≈ p(mi)r̂(x |mi)

p(mj)r̂(x |mj)
,

(3.43)
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Figure 3.6: (Left): The dotted lines represent the posteriors p̂(ϑ | x = xi)

for every independent and identically distributed observation xi, while
the solid line depicts the posterior p̂(ϑ |X ). All posteriors are derived
using the same pretrained ratio estimator. (Right): Observations sam-
pled from p(x | ϑ = ϑ∗).

where a one-hot encoded model mi is supplied to the ratio estima-
tor during training. We demonstrate the task of model selection
by computing the posterior p̂(m| x) across a space of 10 models
M = {m0, . . . , m9}. The index i of a model mi corresponds to the
number of source galaxies present in the lensing system. The categori-
cal prior p(m) is uniform. Figure 3.7 shows p̂(m| x) and the associated
diagnostic for different observations. Both posteriors were computed
using the same ratio estimator.
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Figure 3.7: Posterior p̂(m| x) over the model spaceM. Both diagnos-
tics are diagonal. (Top): Lensing system with a single source galaxy.
(Bottom): Lensing system with 6 different source galaxies. The map of
the posterior p̂(m| x) identifies the correct number of source galaxies,
despite abundant lensing artifacts.

3.5.4 Estimator capacity and sequential ratio estimation

The amortization of our ratio estimator requires sufficient represen-
tational capacity to accurately approximate r(x | ϑ), which of course
directly depends on the complexity of the task at hand. Whenever the
capacity of the ratio estimator is not sufficient, the quality of inference
will be impacted.

However, increasing the capacity of a ratio estimator to match the
complexity of the inference problem is not always a viable strategy,
nor easy to determine beforehand. We observe that for a trained
classifier d̂(vtheta, x) with insufficient capacity (auc > 0.5) the poste-
rior p̂(ϑ | x = xo) is typically larger compared to the true posterior.
However, we make no statements as to whether this is always the
case.

Due to this observation, we can run a sequential ratio estimation
procedure in which the posterior for x = xo is refined iteratively across
a series of rounds. Starting with the initial prior p0(ϑ) := p(ϑ), we
improve the posterior by setting as prior for the next round, pt+1(ϑ),
the posterior p̂t(ϑ | x = xo) obtained at the previous round. At each
iteration, the training procedure is repeated and eventually terminates
based on the roc diagnostic (auc = 0.5).



52 approximating posteriors with amortized approximate ratio estimators

To demonstrate this sequential ratio estimation procedure, let us
assume the population model setting. Our ratio estimator is a low-
capacity mlp with 3 layers and 50 hidden units. In every round t,
10,000 sample-parameter pairs are drawn from the joint p(x, ϑ) with
prior pt(ϑ) for training. The following auc scores were obtained: .99,
.92, .54, and finally .50, terminating the algorithm.

Let us finally note that some time after the first version of this
work, Durkan, Murray, and Papamakarios [124] identified that the
sequential ratio estimation procedure outlined here is strongly related
to apt/snpe-c, in the sense that both approaches can actually be
viewed as instances of a more general and unified constrastive learning
scheme.

Regarding the naming of our method

It is widely known the hardest problem in Computer Science is in
fact naming things. While the method put forword here is referred
to as aalr, it should be noted that in the broader simulation-based
inference literature this algorithm is referred to as nre (neural ratio
estimation). Equally, the sequential version of aalr presented above
is commonly referred to as (s)nre (sequential neural ratio estimation).
As these names are objectively more suitable, we recommend the nre

naming scheme.

3.6 summary and discussion

This work introduces a novel approach for Bayesian inference.We
achieve this by replacing the intractable evaluation of the likelihood
ratio in mcmc with an amortized likelihood ratio estimator. We demon-
strate that a straightforward application of the likelihood ratio trick
to mcmc is insufficient. We solve this by modeling the likelihood-to-
evidence ratio for arbitrary observations x and model parameters ϑ.
This implies that a pretrained ratio estimator can be used to infer the
posterior density function of arbitrary observations. A theoretical argu-
ment demonstrates that the training procedure yields the optimal ratio
estimator. The accuracy of an approximation can easily be verified
by the proposed diagnostic. No summary statistics are required, as
the technique directly learns mappings from observations and model
parameters to likelihood-to-evidence ratios. Our framework allows for
the usage of off-the-shelf neural architectures such as resnet [122].
Experiments highlight the accuracy and robustness of our method.
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simulation efficiency We take the point of view that accuracy
of the approximation is preferred over simulation cost. This is the case
in many scientific disciplines which seek to reduce the uncertainty
over a parameter of interest. Despite the experimental handicap, we
have shown that existing simulation efficient approaches are not able
to outperform our method in terms of accuracy with respect to a
certain (and small) simulation budget.





4
Constraining Dark Matter with Stellar

Streams and Machine Learning

The contents of this chapter are based on Hermans et al. [11].

A statistical analysis of the observed perturbations in the density of
stellar streams can in principle set stringent constraints on the mass
function of dark matter subhaloes, which in turn can be used to con-
strain the mass of the dark matter particle. However, the likelihood of
a stellar density with respect to the stream and subhaloes parameters
involves solving an intractable inverse problem which rests on the
integration of all possible forward realisations implicitly defined by
the simulation model. In order to infer the subhalo abundance, previ-
ous analyses have relied on Approximate Bayesian Computation (abc)
together with domain-motivated but handcrafted summary statistics.
Here, we introduce a likelihood-free Bayesian inference pipeline based
on the technique presented in Chapter 3. In particular, we will apply
Amortized Approximate Likelihood Ratios (aalr, or nre), previously
introduced in Chapter 3, to automatically learn a mapping between
the data and the simulator parameters. Thereby obviating the need
to handcraft a possibly insufficient summary statistic. We apply the
method to the simplified case where stellar streams are only perturbed
by dark matter subhaloes, thus neglecting baryonic substructures, and
describe several diagnostics that demonstrate the effectiveness of the
new method and the statistical quality of the learned estimator.

4.1 introduction

Cold Dark Matter (cdm) models [125, 126] predict a hierarchical col-
lapse in which large haloes form through the merging of smaller dark
matter clumps [127–129]. This process is driven by CDM’s scale-free
halo mass function [130, 131] and depends on the initial conditions
of the matter power spectrum, which in turn anticipates the existence
of dark matter haloes down to 10−4 M⊙ [132]. Warm Dark Matter

55
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(wdm) models [133–135] on the other hand, in which the dark matter
particle is much lighter, influence structure formation down to the
scale of dwarf galaxies. While at large scales the collapse in WDM is
hierarchical as well, it becomes strongly suppressed below the half-
mode mass scale of the corresponding dark matter model, where the
non-negligible velocity dispersion of dark matter particles prevents
haloes to form and smooths the density field instead [136]. Therefore,
a powerful method of probing the particle nature of dark matter is to
measure the abundances of the lowest mass subhaloes in our galaxy.
While higher mass subhaloes will eventually initiate star formation
and manifest themselves as dwarf galaxies, detecting low mass sub-
haloes (≲ 109 M⊙) remains particularly hard since they either have
very few faint stars or none at all.

Cold stellar streams that formed due to the tidal disruption of
globular clusters by the Milky Way potential are a powerful probe for
detecting and measuring the abundances of these low mass subhaloes
[137–142]. When a subhalo flies past a stellar stream, it gravitationally
perturbs the orbit of the stream stars around the point of closest
approach, which leaves a visible imprint in the form of a region of low
stellar density or a gap. Such gaps can be individually analyzed to infer
the properties of a single subhalo perturber [142]. However, a stream
is expected to encounter many subhalo impacts over its dynamical
age, leading to complicated density structures that can be hard to
separate into individual gaps. Therefore, a more pragmatic approach
is to study the full stream density and statistically infer the subhalo
abundance within the galactocentric radius of the stream [143].

Stream-subhalo encounters are described by various quantities such
as the impact parameter, the flyby velocity of the subhalo, mass and
size of the subhalo, and the time and angle of the subhalo impact.
While simulating stream-subhalo encounters and their effects on the
stellar density through these parameters is relatively straightforward,
the forward model does not easily lend itself to statistical inference.
The reason for this is that the likelihood of a stellar density with
respect to these parameters involves solving an intractable inverse
problem which rests on the integration of all possible forward realisa-
tions implicitly defined by the simulation model. It remains however
possible to infer the underlying probabilities by relying on likelihood-
free approximations [144]. From this perspective, Bovy, Erkal, and
Sanders [143] applied Approximate Bayesian Computation (abc) [117]
to infer subhalo abundance using the power spectrum and bispec-
trum of the stream density as a summary statistic. With the same abc

technique, Banik et al. [145] and Banik et al. [146] applied the stream
density power spectrum as a summary statistic to infer the particle
mass of thermal relic dark matter.
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It should be noted that abc posteriors are only exact whenever the
handcrafted summary statistic is sufficient, and the distance function
chosen to express the similarity between observed and simulated data
tends to 0, which in practice is never achievable. We address this issue
by introducing a likelihood-free Bayesian inference pipeline based on
amortized approximate likelihood ratios (aalr) [147], which automati-
cally learns a mapping between the data and the simulator parameters
by solving a tractable minimization problem. Afterwards, the learned
estimator is able to accurately approximate the posterior density func-
tion of arbitrary stellar streams supported by the simulation model. By
automatically learning this relation from data, we obviate the need to
handcraft a possibly insufficient summary statistic, therefore enabling
domain-scientists to pivot from solving the intractable inverse problem
to the more natural forward modeling. In addition, we describe several
diagnostics to inspect the statistical quality of the learned estimators
with respect to the simulation model. We demonstrate the effectiveness
of this method by inferring the particle mass of dark matter within
the stellar stream framework.

4.2 modeling of stellar streams

We use the streampepperdf simulator1 that is based within the galpy

framework [148] to model stream-subhalo interactions. Baryonic struc-
tures in our galaxy, namely, the bar, spiral arms and the Giant Molecu-
lar clouds can induce stream density variations similar to those caused
by subhalo impacts [149–152]. However, owing to its retrograde orbit
and a perigalacticon of ∼ 14 kpc, the effect of the baryonic structures
on the GD-1 stream [153] is expected to be subdominant compared
to that by a CDM like population of subhalos. Therefore, we have
used the GD-1 stream for our analyses and ignored the effects from
the baryonic structures. Since the location of GD-1’s progenitor is
not known, we adopt the model presented in Webb and Bovy [154],
which proposes that the progenitor cluster disrupted in its entirety
approximately 500 Myr ago and resulted in the gap at the observed
stream coordinate ϕ = −40◦. The dynamical age of the GD-1 stream
is also unknown and so following the arguments in [155], we consider
all stream models in the range of 3-7 Gyr.

Our simulation model samples subhaloes in the sub-dwarf-galaxy
mass range [105 − 109] M⊙, since density perturbations due to sub-
haloes less massive than 105 M⊙ are below the level of noise in the
current data. Warm Dark Matter (WDM) is modeled as a thermal
relic candidate which is completely described by its particle mass. The

1 Available at https://github.com/jobovy/streamgap-pepper .

https://github.com/jobovy/streamgap-pepper
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implementation of the subhaloes follows the same procedure as in
[143, 145, 155].

We summarize the salient steps of the forward model for com-
pleteness. The WDM mass function is modeled following Lovell et al.
[156]: (

dn
dM

)

WDM
=

(
1 + γ

Mhm

M

)−β ( dn
dM

)

CDM
, (4.1)

where γ = 2.7, β = 0.99 and
(

dn
dM

)
CDM

∝ M−1.9. Here, Mhm is the
half-mode mass that quantifies the scale below which the mass func-
tion is strongly suppressed. Both the CDM and WDM mass functions
were obtained by fitting the subhaloes within a Milky Way like ana-
logue from the Aquarius cosmological simulations [157]. Being dark
matter only simulations, these mass functions do not account for the
disruption of subhaloes due to baryonic structures such as the disk,
which has been shown to be capable of destroying around ∼ 10− 50%
of the subhaloes within the galactocentric radius of the GD-1 stream
and in the mass range 106.5 − 108.5 M⊙ [158–162]. Moreover, the dis-
rupted fraction of WDM subhaloes is expected to be even higher due
to their lower concentrations. In this paper we have ignored subhalo
disruptions due to baryonic effects and defer a full analysis to a future
publication.

For each simulated stream density, we consider the region −34◦ <
ϕ < 10◦ in the observed coordinate frame, and normalize the stream
density by dividing it by the mean density. The latter step is different
from what was done in [143, 155], where the authors normalize the
stream density by dividing it by a 3rd order polynomial fit. We tested
that both normalization procedures gave similar results. This was also
demonstrated in Bovy, Erkal, and Sanders [143], where they found that
changing the order of the smoothing polynomial did not significantly
affect the (abc) posterior. Finally, noise is added to every simulated
stream density by sampling a Gaussian realisation of the noise from
the observed GD-1 data from Boer, Erkal, and Gieles [163].

4.3 method

4.3.1 Statistical formalism

This work considers two inference scenarios. In the first we jointly infer
the WDM mass mwdm and the stream age tage. The second scenario
solely considers mwdm while marginalizing the stream age. Because our
methodology generalizes to various domains, we ease the discussion
by simplifying the nomenclature into the following concepts:
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Target parameters ϑ denote the main parameters of our simulation
model. Depending on the inference scenario at hand, ϑ ≜ (mwdm, tage)

or ϑ ≜ (mwdm). Given the Bayesian perspective of this analysis, we
define the priors over the WDM mass mwdm and stream age tage to be
uniform(1, 50) keV and uniform(3, 7) billion years (Gyr) respectively.
The upper bound of 50 keV is justified since it corresponds to a half-
mode mass of ∼ 4× 104 M⊙, which is below the sensitivity of stellar
streams given current observational uncertainties.

Observables x encapsulate the simulated stellar density of mock
streams and the observed GD-1 density. An observable is encoded as
a 66-dimensional vector along the linear angle ϕ between -34 and 10

degrees.

Nominal value ϑ∗ or groundtruth used to simulate the observable x
of a mock stream, i.e., x ∼ p(x | ϑ∗).

Nuisance parameters η such as the impact angle and subhalo mass are
not of direct interest, but their (random) effects must be accounted for
to infer ϑ [164]. However, this leaves us with the likelihood function
p(x | ϑ, η). Given the Bayesian perspective of this work, we incorporate
nuisance parameter uncertainty [165] by integration. The priors associ-
ated with the nuisance parameters are implicitly defined through the
simulation model.

4.3.2 Motivation

Our multi-faceted simulation model induces an extensive space of
possible execution paths, which, for example, correspond to randomly
sampled dark matter haloes that impact the stellar stream throughout
its evolution. The evaluation of the likelihood p(x | ϑ) of an observable
x therefore involves amongst others the integration over a large variety
of possible collision histories that are consistent with ϑ. Given the high-
dimensional nature of this integral, directly evaluating data likelihoods
is intractable.

A common Bayesian approach to address the intractability of the
likelihood is to reduce the dimensionality of an observable x by means
of a summary statistic s(x). The reduction in dimensionality allows
the posterior to be approximated numerically by collecting samples
ϑ ∼ p(ϑ) for which observables produced by the forward model
s(x) ∼ p(x | ϑ) are similar, in terms of some distance, to the com-
pressed representation of the observed data s(xo). This rejection sam-
pling scheme is commonly referred to as Approximate Bayesian Compu-
tation [117] (ABC) and is, as the name indicates, approximate. Although
the compression of x into a summary statistic makes the numerical



60 constraining dark matter with stellar streams and machine learning

approximation of the posterior tractable, it may reduce the statistical
power of an analysis because the selected summary statistic often
destroys relevant information. In fact, ABC is only exact whenever
the summary statistic is sufficient and the distance function chosen to
express the similarity between between s(x) and s(xo) tends to 0. This
is in practice never achievable because for a given simulation budget
(i) a small acceptance threshold severely impacts the rate at which
proposed samples are accepted, affecting the approximation of the
posterior density function, and (ii) the assumed sufficiency of the sum-
mary statistic is virtually never thoroughly demonstrated in practice.
Despite these shortcomings, ABC has been fruitfully applied in cos-
mology to constrain dark matter models within the context of stellar
streams [145, 146, 166], and more recently gravitational lensing [167].

This work tackles the intractability of the likelihood from a different
perspective. Instead of manually crafting a summary statistic and a
distance function with a specific acceptance threshold, we propose to
learn an amortized mapping from target parameters ϑ and observables
x to posterior densities by solving a tractable minimization problem.
The learned mapping has the potential to increase the statistical power
of an analysis since the procedure, in contrast to ABC, automatically
attempts to learn an internal sufficient summary statistic of the data.
The automated procedure therefore enables domain-experts to solely
focus on the forward modeling of the phenomena of interest, because
the method does not require any consideration whether synthetic
observables are compressible into low-dimensional summary statistics.
Although the proposed method treats the simulation model as a black
box, we would like to point out that it is possible to improve the effi-
ciency of the minimization problem, provided that latent information
can be extracted from the simulation model [15, 168, 169], albeit at
some implementation cost.

4.3.3 Inference

The Bayesian paradigm finds model parameters compatible with ob-
servation by computing the posterior

p(ϑ | x) = p(ϑ)p(x | ϑ)
p(x)

. (4.2)

Evaluating the posterior density for a given target parameter ϑ and
an observable x in our setting is not possible because the likelihood
p(x | ϑ) is per definition intractable. To enable the tractable evaluation
of the posterior, we have to rely on likelihood-free surrogates for key
components in Bayes’ rule. Note that Equation 4.2 can be factorized
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Figure 4.1: Graphical representation of the inference procedure after
training the ratio estimator (neural network). The ratio estimator
accepts a target parameter ϑ and an observable x as inputs, which
are subsequently used to approximate the likelihood-to-evidence ratio
r̂(x | ϑ). The discriminator output d̂(ϑ, x) — the sigmoidal projection
σ(·) of log r̂(x | ϑ) — is only used during training. Given that the log
prior probability of ϑ is a tractable quantity, we can easily approximate
the log posterior probability log p̂(ϑ | x) by adding the approximated
log likelihood-to-evidence ratio. Taking the exponent of the produced
quantity results in a direct estimate of the posterior density. This
procedure can be repeated for arbitrary target parameters ϑ supported
by the prior. It should be noted that the neural network depicted here is
an abstract representation. Our technique does not put any constraints
on the architecture of the neural network. It is therefore possible to
use of-the-shelf architectures of arbitrary complexity available in the
Machine Learning literature.
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into the product of the tractable prior probability and the intractable
likelihood-to-evidence ratio r(x | ϑ):

p(ϑ | x) = p(ϑ)
p(x | ϑ)

p(x)
= p(ϑ)

p(ϑ, x)
p(ϑ)p(x)

= p(ϑ)r(x | ϑ). (4.3)

[147] show that an amortized estimator r̂(x | ϑ) of the intractable
likelihood-to-evidence ratio can be obtained by training a discriminator
d(ϑ, x) with inputs ϑ and x, to distinguish between samples from
the joint p(ϑ, x) with class label 1 and samples from the product of
marginals p(ϑ)p(x) with class label 0 using a discriminative criterion
such as the binary cross entropy. Whenever the training criterion is
minimized, the authors theoretically demonstrate that the optimal
discriminator d(ϑ, x) models the Bayes optimal decision function

d(ϑ, x) =
p(ϑ, x)

p(ϑ, x) + p(ϑ)p(x)
. (4.4)

Subsequently, given a model parameter ϑ and an observable x, we
can use the discriminator as a density ratio estimator to compute the
likelihood-to-evidence ratio

r(x | ϑ) = 1− d(ϑ, x)
d(ϑ, x)

=
p(ϑ, x)

p(ϑ)p(x)
=

p(x | ϑ)
p(x)

. (4.5)

However, the computation of this formulation suffers from significant
numerical issues in the saturating regime where the output of the
discriminator tends to 0. Considering that log r(x | ϑ) = logit(d(ϑ, x))
for classifiers with a sigmoidal projection at the output, it is possible to
directly obtain log r(x | ϑ) from the classifier by extracting the quantity
before the sigmoidal operation. This strategy ensures that the approx-
imation of log r(ϑ | x) is numerically stable. In addition, randomly
shuffling ϑ in a batch ϑ, x ∼ p(ϑ, x) instead of drawing a new samples
from the product of marginals significantly aids the convergence rate
of the discriminator. After training, estimates of the posterior prob-
ability density function can be approximated for arbitrary (without
retraining) target parameters ϑ and observables x by computing

log p(ϑ | x) ≈ log p(ϑ) + log r̂(x | ϑ), (4.6)

provided that ϑ and x are supported by the prior p(ϑ) and the
marginal model p(x) respectively, thereby enabling consistent and
fast likelihood-free posterior inference. Figure 4.1 provides a graphical
overview. We refer the reader to [147] or our GitHub repository for
implementation details.

The ratio estimator can likewise be adapted to compute a credible
region (CR) at a desired level of uncertainty α by constructing a region
Θ in the model parameter space which satisfies

∫

Θ
p(ϑ)r(x | ϑ) d ϑ = 1− α. (4.7)
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Since many such regions Θ exist, we select the highest posterior
density region, which is the smallest credible region.

Although our analysis focuses on the Bayesian paradigm, it is pos-
sible use the ratio estimator in a frequentist setting [15, 55]. The
likelihood-ratio λ(x | ϑ0, ϑ1) between two hypotheses ϑ0 and ϑ1 can
easily be computed with the ratio estimator as the denominators of
r(x | ϑ0) and r(x | ϑ1) cancel out, i.e.,

λ(x | ϑ0, ϑ1) =
p(x | ϑ0)

p(x | ϑ1)
=

r(x | ϑ0)

r(x | ϑ1)
. (4.8)

The same strategy applies to the likelihood-ratio [170] test statistic for
a specific observable x

−2 log λ(ϑ) = −2 log
p(x | ϑ)
p(x | ϑ̂)

, (4.9)

where the maximum likelihood estimate ϑ̂ is

ϑ̂ = arg max
ϑ

r(x | ϑ). (4.10)

The test statistic can thus be expressed [55] as

−2 log λ(ϑ) = −2
[
log r(x | ϑ)− log r(x | ϑ̂)

]
. (4.11)

As a result of Wilks’ theorem [171], we can directly convert the test
statistic into a confidence level (CL) under the assumption that the
statistic is X 2

k -distributed with k degrees of freedom (in function of
ϑ’s dimensionality).

4.3.4 Diagnostics

Before making any scientific conclusion, it is crucial to verify the result
of the involved statistical computation. This is especially challenging
in the likelihood-free setting because evaluating the likelihood is
intractable. The following subsections describe several diagnostics
to assess the quality of the amortized ratio estimates. No additional
training or fine-tuning is applied as this would change the statistical
properties of the ratio estimator.

4.3.4.1 Proper probability density

A ratio estimator r̂(x| ϑ) which correctly models the true likelihood-
to-evidence ratio should satisfy

∫

ϑ
p(ϑ)r̂(x| ϑ) d ϑ ≈ 1 ∀x. (4.12)



64 constraining dark matter with stellar streams and machine learning

10
20

30
40

50
m

w
d
m

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

Stream age in Gyr

99.993%

99.7%

95%

68%

68%

1
ob

servab
le

10
20

30
40

50
m

w
d
m

99.99994%

99.993%

99.993%

99.7%

95%
68%

10
ob

servab
les

10
20

30
40

50
m

w
d
m

99.99994%

99.993%

99.7%

95%

100
ob

servab
les

10
20

30
40

50
m

w
d
m

1000
ob

servab
les

Figu
re

4.2:
D

em
onstration

of
the

m
od

e
convergence

d
iagnostic

d
escribed

in
Section

4.
3.

4.
3.

T
he

fi
gu

res
show

,
from

left
to

right,
the

posteriors
for

1,
1

0,
1

0
0

and
1

0
0

0
independent

and
identically

distributed
m

ock
G

D
-
1

observables.Every
figure

adopts
the

sam
e

nom
inal

value
or

groundtruth,w
hich

is
highlighted

by
the

red
star.A

s
the

am
ountofobservables

increases,the
posteriors

are
becom

ing
increasingly

m
ore

tight
arou

nd
the

nom
inalvalu

e.T
his

ind
icates

that
the

ind
ivid

u
alposteriors

d
o

not,in
expectation,introd

u
ce

signifi
cant

bias
for

independent
and

identically
distributed

observables.

 https://github.com/JoeriHermans/phd-thesis/blob/master/https://github.com/JoeriHermans/constraining-dark-matter-with-stellar-streams-and-ml/blob/master/experiments/experiment-inference/out/diagnostic-map-convergence.ipynb


4.3 method 65

The diagnostic should be applied to observables x of an evaluation
dataset and real observables xo. Passing the diagnostic on the evalua-
tion dataset, while failing on xo indicates that xo is not supported by
the marginal model p(x), because ratio estimates in this regime are
undefined and can therefore take on arbitrary values.

4.3.4.2 Coverage

Coverage quantifies the reliability of a statistical method to reconstruct
the nominal value [172–175]. The approximation of the ratio estimator
can thus be assessed by determining whether the empirical coverage
probability matches the nominal coverage probability, which corre-
sponds to the confidence level 1− α. The empirical coverage probabil-
ity is estimated using samples from a (large) presimulated evaluation
dataset. This evaluation dataset consists of samples ϑ, x ∼ p(ϑ, x). For
every pair (ϑ, x) in the evaluation dataset, we compute the correspond-
ing credible or confidence interval. The fraction of samples for which
the groundtruth was contained within the interval corresponds to the
empirical coverage probability. If the empirical coverage probability
≥ 1− α, then the ratio estimator passes the diagnostic. It is of course
desirable that the empirical coverage probability of the ratio estimator
converges to the confidence level. A substantially larger empirical
coverage probability corresponds to intervals which are overly con-
servative. This implies that the ratio estimates are wrong, but, that in
expectation the estimated posteriors are conservative, which is not
an undesirable property. It should be noted that coverage can only
be computed efficiently because our ratio estimator amortizes the
estimation of the likelihood-to-evidence ratio. An equivalent study for
ABC would have a significant computational cost.

4.3.4.3 Convergence of the mode towards the nominal value

The diagnostic is based on the idea that the maximum a posteriori
(map) estimate converges towards the nominal value ϑ∗ for an increas-
ing number of independent and identically distributed observables
x ∼ p(x | ϑ∗). If the approximation of r̂(x | ϑ) is correct, the map should
in the limit coincide with the nominal value ϑ∗. Let X = {x1, . . . , xn}
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be a set of i.i.d. observables. To compute the map, we need p(ϑ |X ).
As noted by Brehmer et al. [15], Bayes’ rule can be rewritten as

p(ϑ |X ) =
p(ϑ)∏x∈X p(x | ϑ)∫

p(ϑ ′)∏x∈X p(x | ϑ ′) d ϑ
′ (4.13)

= p(ϑ)

[∫
p(ϑ

′
) ∏

x∈X

p(x | ϑ ′)
p(x | ϑ) d ϑ

′
]−1

(4.14)

≈ p(ϑ)

[∫
p(ϑ

′
) ∏

x∈X

r̂(x | ϑ ′)
r̂(x | ϑ) d ϑ

′
]−1

. (4.15)

The integral can be estimated through Monte Carlo sampling. By
checking whether the map concurs with the nominal value, we effec-
tively probe the bias. Ideally, this diagnostic should be repeated for
various groundtruths to inspect the behaviour of the ratio estimator
over the complete model parameter space. In some settings however,
the posterior may be multi-modal. In such scenarios the convergence
of the mode(s) instead of the map should be assessed. A trial of the
diagnostic is shown in Figure 4.2.

4.3.4.4 Receiver operating characteristic

We note that r̂(x | ϑ) is only exact whenever

p(x)
p(x | ϑ)

p(x)
= p(x)r̂(x | ϑ) = p(x | ϑ), (4.16)

is satisfied for all ϑ and x. Although p(x) and p(x | ϑ) cannot be evalu-
ated directly, it remains possible to sample from these densities. Given
samples from the reweighted marginal model p(x)r̂(x | ϑ), and from a
specific likelihood p(x | ϑ), the idea is that r̂(x | ϑ) can only be equiv-
alent to r(x | ϑ) whenever a classifier tasked to distinguish between
p(x)r̂(x | ϑ) and p(x | ϑ), cannot extract any predictive features. The
discriminative performance of this classifier can be assessed by means
of a Receiver Operating Characteristic (ROC) curve. A diagonal ROC,
which has an Area Under Curve (AUC) of 0.5, corresponds to a clas-
sifier which is insensitive. In that case, the ratio estimator passes the
diagnostic. We emphasize that the ratio estimator can incorrectly pass
the diagnostic whenever the classifier is not sufficiently expressive.

4.3.4.5 Alternative diagnostics

Our list of diagnostics is not exhaustive. Some diagnostics are specific
to our ratio estimator and can only be computed efficiently because ra-
tio estimates are amortized. In fact, the development of diagnostics for
the simulation-based inference literature is an active area of research.
For more recent methodologies we refer the reader to Talts et al. [176]
and Dalmasso et al. [177].
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4.3.5 Overview of the proposed recipe

1. Simulate a train and test dataset by sampling from the joint
p(ϑ, x). This is done by drawing samples ϑ ∼ p(ϑ) and con-
ditioning the simulation model on ϑ to generate observables
x ∼ p(x | ϑ). These simulations can be parallelised arbitrarily
because the samples are drawn independently. The effective
number of simulations depends on the problem at hand. In
practice additional simulations were added whenever the ratio
estimators did not pass the coverage diagnostic, or, if we found
over-fitting to be a significant issue during training.

2. Train several discriminators d(ϑ, x) on the previously simulated
dataset. This has several uses. First, the ratio estimators can be
ensembled to reduce the variance of the approximation. Secondly,
as there is only a single true likelihood-to-evidence ratio r(x | ϑ),
the variability of ratio estimates within the ensemble can be
used to quickly assess the convergence. A significant deviation
in the ratio estimates is indicative of a ill-tuned optimization
procedure.

3. Probe the trained ratio estimators for flaws with the diagnostics.
Afterwards, apply the diagnostic described in Section 4.3.4.1 to
the observable(s) xo.

4. Compute the posterior p̂(ϑ | xo) = p(ϑ)r̂(xo | ϑ) and the desired
credible or confidence intervals.

4.4 experiments and results

We demonstrate the usage of our technique on various synthetic
realisations of GD-1. Diagnostics are applied to probe the statistical
quality of the approximated posteriors under the specified simulation
model. By comparing our technique against ABC, we highlight the
gain in statistical power our technique can bring to the scientific
community. We compute preliminary constraints on mwdm based on
observations of GD-1 by Gaia proper motions [178, 179] and Pan-
STARRS photometry [180]. It should be noted these constraints only
hold under the assumed simulation model. An analysis of (simulation)
model misspecification is outside the scope of this work.

4.4.1 Setup
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simulations We follow the simulation formalism described in the
section above using the priors defined in Section 4.3.1. 10 million pairs
(ϑ, x) ∼ p(ϑ, x) are drawn from the simulation model for training,
and 100,000 for testing. The simulations in the training dataset are
reused in our ABC analyses.

ratio estimator training All architectures are trained with
identical hyperparameter settings. No exhaustive hyperparameter
optimization or architecture-search was conducted. Options such as
weight-decay and batch-normalization (bn) [181] were evaluated to
reduce over-fitting. All ratio estimators use selu [182] activations and
were trained using the adamw [183] optimizer for 50 epochs with a
batch-size of 4096. We found that larger batch-sizes, for our setting,
generalized better. We empirically found selu and elu activations to
be preferable over relu-like activations, because the approximation of
the posterior density function was generally smoother. Nevertheless,
architectural aspects should be evaluated on a per-problem basis.
This work considers 3 main architectures; (i) a simple feedforward
mlp, and variants to resnet [122] such as (ii) resnet-18 and (iii)
resnet-50. Both use 1 dimensional convolutions without dilations
since the usage of dilated convolutions did not yield any significant
improvements in terms of test loss. Because our methodology treats ϑ

as an input feature, we cannot easily condition the convolutional layers
of the resnet-based architectures on ϑ. This would require conditional
convolutions [184] or hypernetworks [185] to generate specialized
kernels for a given ϑ. To retain the simplicity of our architecture,
we inject the dependency on ϑ in the fully connected trunk of the
convolutional ratio estimators. Other architectural considerations were
not explored.

The same hyperparameters are used across all architectures. We
did not explore specific settings for every individual architecture,
demonstrating the robustness of our technique. A learning rate of
0.0001 with a batch-size of 4096 and a weight-decay factor of 0.1 was
used during training. The ratio estimators do not use dropout [186].
The remaining hyperparameters (e.g., of Batch Normalization) were
set to the PyTorch defaults. .

rejection approximate bayesian computation Instead
of using the stream density power as summary statistics as in Bovy,
Erkal, and Sanders [143] and Banik et al. [155], we construct a summary
statistics based on the stream density itself. We divide the synthetic
observable x (with n = 66 bins) by the observable of interest xo to

 https://github.com/JoeriHermans/phd-thesis/blob/master/https://github.com/JoeriHermans/constraining-dark-matter-with-stellar-streams-and-ml/blob/master/experiments/experiment-inference/pipeline.sh#L34
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obtain the bin-wise stellar density ratio d = x / xo. Our summary
statistic and distance function are jointly expressed as

s(x) =
1
n

n

∑
i=1

(di − d̄)2, (4.17)

where d̄ is the mean stellar density ratio. Ideally, if both observables
match perfectly, then s(x) = 0. The acceptance threshold is tuned such
that for any given observable of interest xo, the number of accepted
posterior samples is 0.1% of the simulation budget, therefore yielding
the smallest threshold with respect to the specified acceptance rate.
This corresponds to approximately 10,000 posterior samples. Our goal
is to highlight generic aspects of ABC with respect to the proposed
method in terms of tuning of the analyses, and its statistical quality
for the given simulation budget. We emphasize that several scheduling
and threshold strategies for ABC exist in the literature, see e.g. [187,
188]. We opted here for a method that is based on the same number of
simulations used for training the neural network. The threshold was
chosen heuristically to obtain sufficiently smooth posteriors across the
entire parameter space, and was not tuned depending on the WDM
mass and stream age. This is different from the targeted convergence
check and simulation strategy in previous ABC-based streams analy-
ses [143, 145, 146, 166]. We cannot exclude that the ABC results shown
here could further improve by significantly increasing the number of
simulations beyond what was needed for the neural network training.
This is beyond the scope of the current work.

4.4.2 Statistical quality

We now assess the statistical properties of the trained ratio estimators.
For every architecture, we select the weights which achieved the
smallest validation-loss.

proper probability density The computational cost of the
integration does not allow us to do an exhaustive analysis. Instead,
we apply the diagnostic to 1000 randomly sampled observables. As
before, we repeat the experiment 10 times. The following results
were obtained: mlp (1.023± 0.11), mlp-bn (1.037± 0.09), resnet-18

(1.00 ± 0.02), resnet-18-bn (0.973 ± 0.03), resnet-50 (0.993 ± 0.03),
and resnet-50-bn (1.001± 0.04) . Although the average integrated
area under the approximated posterior density functions approaches
1 for all ratio estimator architectures, the results suggest that the
approximations of the resnet-based architectures are more robust.
A more careful analysis of the integrated areas, presented in Fig-
ure 4.3, confirms this. Interestingly, the integrated areas for resnet

 https://github.com/JoeriHermans/phd-thesis/blob/master/https://github.com/JoeriHermans/constraining-dark-matter-with-stellar-streams-and-ml/blob/master/experiments/experiment-inference/out/summary-integrand.ipynb
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Figure 4.3: Result of the proper probability density diagnostic. As
expected, high-capacity models (resnet) have tighter approximations
compared to the mlp architectures. An interesting discrepancy be-
tween the usage of with and without batch normalization is observed.
(Left) With batch-normalization. (Right) Without batch-normalization.

architectures with batch-normalization have a larger spread compared
to their counterparts without batch-normalization. Our evaluations
on GD-1 will therefore focus on resnet-based architectures without
batch-normalization.

coverage Table 4.1 summarizes the empirical expected frequentist
coverage probability of the ratio estimators. For every ratio estimator,
we compute the credible and confidence intervals as described in Sec-
tion 4.3.3. For both paradigms, we evaluate the interval construction on
10,000 observables, which is repeated 10 times. The empirical coverage
probability of a ratio estimator is therefore based on approximately
100,000 observables in total. We empirically find that mlp-based archi-
tectures have coverage under both Bayesian credible and frequentist
confidence intervals. This is not the case for resnet-based architec-
tures. It is noteworthy that the empirical coverage probability of the
credible regions are much closer to the nominal coverage probabili-
ties compared to their frequentist counterparts. Additional statistical
power could therefore be extracted if the credible regions could be
tuned to sufficiently cover the groundtruth at a given nominal coverage
probability.

receiver operating characteristic We now directly probe
the correctness of the approximated likelihood-to-evidence ratios.
Every ratio estimator is evaluated on 10 uniformly sampled test-
hypotheses. 10,000 observables are drawn from every test-hypothesis.
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Figure 4.4: Summary of the receiver operating curve diagnostic. (Top)
Area Under Curve (AUC) for all test-hypotheses. A baseline mea-
surement, indicated by the black line, does not reweigh the marginal
model. Although the ratio estimators perform significantly better com-
pared to the baseline, the diagnostic indicates that all ratio estimators
do not perfectly approximate the likelihood-to-evidence ratio (since
AUC ̸= 0.5). This is not necessarily an issue, because the coverage
diagnostic demonstrates that the confidence intervals are conservative.
(Bottom) Average AUC of the test-hypotheses under consideration.
Larger values of mwdm are associated with a degraded quality of the
ratio estimates.
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For every test-hypothesis, we repeat the computation of the area under
curve 10 times to account for the stochastic training of the classifier
tasked to distinguish between samples from the reweighted marginal
model and samples from the test-hypothesis. Figure 4.4 summarizes
the results. In general, we find that all ratio estimators are unable to
perfectly approximate r(x | ϑ). This result is not unexpected, because
the coverage diagnostic indicates that the confidence intervals are
conservative, which implies that our estimates of the true likelihood-
to-evidence ratio must be wrong. Incorrect, but conservative estimates
of the posterior are not a significant issue because we mainly seek to
constrain mwdm.

We additionally find that the quality of the ratio estimates degrades
for larger values of mwdm across all architectures. Several strategies
could be applied to address this. First, more expressive architectures
could be explored which potentially make more efficient use of the
available data. Second, by using additional observables could be sim-
ulated to aid the approximation of the underlying densities. In our
specific case, a straightforward application of this strategy would be
to simulate additional observables for ϑ ⪆ 20 keV. We would like to
emphasize that increasing the size of the training dataset by simulat-
ing additional observables at specific target parameters ϑ should not
be done, because this implicitly changes the prior and therefore the
underlying marginal model. Instead, additional observables should
only be simulated by sampling from the joint p(ϑ, x).

4.4.3 Evaluation

The performance of both methods is assessed on various randomly
sampled GD-1 mock simulations with distinct nominal target param-
eters. A compact overview of the computed posteriors is shown in
Figure 4.5. A full overview is shown in Figures 4.7 and 4.8. We find
the proposed methodology to be preferable over the ABC analysis
regarding the reconstruction of the nominal target parameters, and
with respect to our stronger, statistically tested, confidence intervals.

In conjunction with the foregoing statistical validation of the ratio
estimators, these results highlight the fact that ABC requires a carefully
crafted summary statistic; a problem that is absent, or effectively
automatised, in the proposed method. As mentioned earlier, an ABC
posterior is only exact whenever the summary statistic is sufficient and
the acceptance threshold tends to 0. If these conditions are not met, the
posterior is possibly inaccurate or biased. The necessity of a sufficient
summary statistic underlines an important issue with ABC in practice;
the assumed sufficiency. Determining the statistical validity of an ABC
analysis is computationally demanding and often not feasible. Our
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Figure 4.5: Compact summary of comparisons against ABC. Every
column relates to a single mock simulation. The rows show, from top
to bottom, the observable, the approximate posterior ABC, and our
method respectively. The red cross indicates the groundtruth. ABC
and our method are in agreement for most mock simulations.
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Figure 4.7: Direct comparison of ABC against the proposed method.
The top row shows the observable. The second row the marginal-
ized posteriors for both methods. Finally, row 3 and 4 show the joint
posterior for our method and ABC respectively. The nominal tar-
get parameter is indicated by the red line. It is visually apparent
that the proposed methodology produces stronger constraints of the
groundtruth compared to ABC.
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Figure 4.8: Direct comparison of ABC against the proposed method.
Refer to Figure 4.7 for the initial results.
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method does not suffer from this issue, because the estimation of the
posterior density is amortized.

4.4.4 Towards constraining mWDM with GD-1

We now apply our methodology to obtain a preliminary constraint on
mwdm, based on the observed stellar density along the GD-1 stream.
The posteriors in this section are computed using the previously
trained and statistically validated resnet-50 ratio estimator. We would
like to remind the reader that the coverage diagnostic indicates that
the derived confidence intervals are slightly conservative. Our results
suggest a strong preference for CDM over WDM. The posteriors and
credible intervals at various confidence levels are shown in Figure 4.6.
We find the integrated area under the approximated posterior to be
(0.96± 0.011 ). After marginalizing the stream age, the proposed
methodology yields mwdm ≥ 17.5 keV (95% CR) and mwdm ≥ 10.5
keV (99.7% CR). No significant constraints can be put on the age of
GD-1, although an older stream is preferred. A frequentist perspective
based on likelihood ratio limits finds mwdm ≥ 13.15 keV (95% CL)
and mwdm ≥ 7.85 keV (99.7% CL) after marginalizing the stream
age. Assuming the posterior approximated by ABC is exact, we find
mwdm ≥ 10.8 keV (95% CL) and mwdm ≥ 3.5 keV (99.7% CL). We
emphasize that our simulation model does not account for baryonic effects,
disturbances caused by massive (≳ 109 M⊙) subhaloes, and effects induced
by variations in the Milky Way potential.

However, our results are promising. We expect that the proposed
method will enable an optimal discrimination between dark matter
and baryonic effects (provided the latter can be convincingly modeled).
It thus constitutes a powerful probe for constraining the mass of
thermal or sterile neutrino dark matter [134, 189–192] (although a
discrimination between such WDM models might be challenging).

4.5 summary and discussion

This work proposes a general recipe for the usage of neural simulation-
based inference in the natural sciences. Although the procedure gen-
eralizes to many domains, we apply our methodology in the stellar
stream framework to determine the nature of the dark matter particle.
We summarize our findings as follows:

• Bayesian inference based on Amortized Approximate Likelihood
Ratios (aalr) is a powerful and convenient analysis framework
to study the statistical properties of density variations of stellar
streams. In Figure 4.5 we demonstrate that (at least in the absence

 https://github.com/JoeriHermans/phd-thesis/blob/master/https://github.com/JoeriHermans/constraining-dark-matter-with-stellar-streams-and-ml/blob/master/experiments/experiment-inference/out/summary-gd1-inference.ipynb
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of the uncertainties from the baryonic effects), GD-1-like streams
could be used to simultaneously constrain the mass of thermal
relic dark matter and the age of the stream.

• aalr, in contrast to ABC, does not require handcrafted summary
statistics and tuned acceptance thresholds. Our out-of-the-box
aalr analysis are expected to be at least as good as any ABC
implementation, and to often significantly outperform ABC, as
evident in Figure 4.6.

• The amortized posterior estimation in aalr allows for a variety
of diagnostics, including coverage and bias tests, which are
computationally demanding and often infeasible for ABC. We
explicitly demonstrate that posteriors approximated by aalr are
unbiased and that the corresponding confidence intervals have
coverage, as show in in see Figure 4.2 and Table 4.1 respectively.

• aalr provides a convenient and robust simulation-based infer-
ence without painfully hand-crafting summary statistics and
tuning inference algorithms.

Finally, our preliminary results for GD-1 are promising as they
indicate that aalr is an excellent and versatile method to probe the
nature of dark matter with stellar streams. At face value, we can probe
WDM masses up to 17.5 keV (95% credible lower limit for a GD-1-like
stream). We emphasize however that our simulation codes do not account
for baryonic effects, which are expected to significantly impact the results.
In upcoming analyses we plan to use the improved statistical power
achieved through aalr to obtain more statistically robust and tighter
constraints on the particle mass of dark matter. However, we do expect
some loss in sensitivity when including baryonic effects, because we
expect the task of discriminating between CDM and WDM impacted
streams to be harder for aalr.





Part II

R E L I A B L E S I M U L AT I O N - B A S E D I N F E R E N C E





5
Averting A Potential Crisis in

Simulation-Based Inference

The contents of this chapter are based on Hermans et al. [12].

We present extensive empirical evidence showing that current
Bayesian simulation-based inference algorithms are inadequate for the
falsificationist methodology of scientific inquiry. Our results collected
through months of experimental computations show that all bench-
marked algorithms – (s)npe, (s)nre, snl and variants of abc – may
produce overconfident posterior approximations, which makes them
demonstrably unreliable and dangerous if one’s scientific goal is to
constrain parameters of interest. We believe that failing to address
this issue will lead to a well-founded trust crisis in simulation-based
inference. For this reason, we argue that research efforts should now
consider theoretical and methodological developments of conservative
approximate inference algorithms and present promising research
directions towards this objective. In this regard, we show empirical
evidence that ensembles are consistently more reliable.

5.1 introduction

While simulation-based inference targets domain sciences, advances
in the field are mainly driven from a machine learning perspective.
The field, therefore, inherits the quality assessments [193] custom-
ary to the machine learning literature, such as the minimization of
classical divergence criteria. Despite recent developments of post hoc
diagnostics to inspect the quality of likelihood-free approximations
[55, 176, 193–197], assessing whether approximate inference results are
sufficiently reliable for scientific inquiry remains largely unanswered
whenever fitting criteria are not globally optimized or whenever the
data is limited. In fact, domain sciences, and more specifically the
physical sciences, are not necessarily interested in the exactness of an
approximation. Instead, in the tradition of Popperian falsification, they
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often seek to constrain parameters of interest as much as possible at a
given confidence level. Scientific examples include frequentist confi-
dence intervals on the mass of the Higgs boson [198], Bayesian credible
regions on cosmological parameters [199, 200], or constraints on the
intrinsic parameters of binary black hole coalescences [201]. From a
Bayesian perspective, this implies that statistical approximations in
simulation-based inference should ideally come with conservative guar-
antees to not produce credible regions smaller than they should be,
even if it would incur a loss in statistical power. Wrongly constraining
model parameters would otherwise impede scientific inquiry.

In this chapter, we measure the quality of the credible regions
computed through various Bayesian techniques in simulation-based
inference. We frame our main contribution as the collection of exten-
sive empirical evidence that required months of computation. Our
results demonstrate that all benchmarked techniques can produce
non-conservative credible regions, highlighting the need for a new
class of conservative approximate inference algorithms. The structure
of the paper is outlined as follows. Section 5.2 describes the statistical
formalism, necessary background and includes a thorough motiva-
tion for coverage. Section 5.3 highlights our main results. Section 5.4
presents several avenues of future research to enable drawing reli-
able scientific conclusions with simulation-based inference. All code
related to this manuscript is available at

github.com/montefiore-ai/averting-a-crisis-in-sbi.

5.2 background

5.2.1 Statistical formalism

We evaluate posterior estimators that produce approximations p̂(ϑ | x)
with the following semantics.

Target parameters ϑ denote the parameters of interest of a simulation
model, and are sometimes referred to as free or model parameters. The
precise definition of ϑ depends on the problem setting. We make the
reasonable assumption that the prior p(ϑ) is tractable.

An observable x denotes a synthetic realization of the simulator.
Observed data xo is the observable we would like to do inference on,
under the assumption that the simulation model is correctly specified.

The likelihood model p(x | ϑ) implicitly defined by the simulator’s
computer code. While we cannot evaluate the density p(x | ϑ), we can
simulate samples.

https://github.com/montefiore-ai/averting-a-crisis-in-sbi
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The ground truth ϑ∗ specified to the simulation model whose forward
evaluation produced the observable xo, i.e., xo ∼ p(x | ϑ = ϑ∗).

A credible region is a space Θ within the target parameter domain
that satisfies ∫

Θ
p(ϑ | x = xo)d ϑ = 1− α (5.1)

for some observable xo and confidence level 1− α. Because many such
regions exist, we compute the credible region with the smallest volume.
In the literature this credible region is known as the highest posterior
density region [202, 203].

5.2.2 Statistical quality assessment

Common metrics for evaluating the quality of a posterior surrogate
include the Classifier Two-sample Test [204, 205] and Maximum Mean
Discrepancy [206–208]. The main problem with these metrics is that
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Figure 5.1: A classifier-based metric measures the divergence between
posterior approximations and a ground truth by means of evaluating
the classifier’s discriminative performance through Area Under the Re-
ceiver Operating Characteristics curve (auroc). In this case, the metric
argues that both the conservative and overconfident approximations
are equally accurate as it yields auroc = 0.7 for both approximations.
From an inference perspective however, the conservative approxima-
tion is more suitable because it produces credible regions larger than
they should be.
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they assess exactness of an approximation through a divergence with
respect to a posterior that is intractable in practice. Even if such
evaluations would hypothetically be possible, there are no criteria to
what constitutes an acceptable estimator. Moreover, it is not possible
to be certain whether the classifier or kernel used to measure the
divergence are expressive enough to differentiate between the true
posterior and its approximation.

To clarify these points, consider the demonstration in Figure 5.1.
A binary classifier is trained to discriminate between samples from
a posterior approximation and the true posterior. The discriminative
performance of the classifier is expressed through Area Under the
Receiver Operating Characteristics curve (auroc) and serves as a mea-
sure for divergence between both densities. An auroc = 0.5 suggests
an approximation that is indistinguishable from the true posterior,
while auroc = 1.0 implies that both distributions do not overlap. Al-
though both approximations in our demonstration are equally accurate
according to the auroc, the overconfident approximation illustrates the
potential trust crisis in simulation-based inference: producing credible
regions that are biased or smaller than they should be, potentially
leading to erroneous scientific conclusions. For this reason, we take
the position that posterior approximations should, irrespective of the
available simulation budget, produce inflated credible regions and
do not have to closely match the true posterior to draw meaningful
inferences.

Instead of measuring exactness of approximations with respect to an
intractable posterior, this work directly probes the quality of credible
regions through the notion of expected coverage, which determines
whether posterior approximations are well-calibrated with respect to
the specified prior. It is a quantity that can be estimated in practice
and has a threshold to determine whether a posterior estimator is
acceptable.

Definition 1. The expected coverage probability of the 1− α highest
posterior density regions derived from the posterior estimator p̂(ϑ | x) is

Ep(ϑ,x)

[
1
[
ϑ ∈ Θ p̂(ϑ | x)(1− α)

]]
, (5.2)

where the function Θ p̂(ϑ | x)(1− α) yields the 1− α highest posterior density
region of p̂(ϑ | x).

Note that Equation 5.2 can be expressed as either

Ep(ϑ)Ep(x | ϑ)
[
1
[
ϑ ∈ Θ p̂(ϑ | x)(1− α)

]]
, (5.3)

which is the expected frequentist coverage probability, or alternatively
as the expected Bayesian credibility

Ep(x)Ep(ϑ | x)
[
1
[
ϑ ∈ Θ p̂(ϑ | x)(1− α)

]]
, (5.4)
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whose inner expectation reduces to 1 − α whenever the posterior
estimator p̂(ϑ | x) is well-calibrated.

Definition 2. The empirical expected coverage probability of the 1− α

highest posterior density regions derived from the posterior estimator p̂(ϑ | x)
given a set of n i.i.d. samples (ϑ∗i , xi) ∼ p(ϑ, x) is

1
n

n

∑
i=1
1
[
ϑ∗i ∈ Θ p̂(ϑ | xi)(1− α)

]
. (5.5)

Definition 3. The nominal expected coverage probability is the expected
coverage probability of the true posterior and is equal to the confidence level.

Definition 4. A posterior estimator is deemed acceptable if it has cover-
age at the confidence level of interest, i.e., whenever the empirical expected
coverage probability is larger or equal to the nominal expected coverage
probability.

Definition 5. A conservative posterior estimator has coverage for all
confidence levels.

While coverage is a necessary metric to assess conservativeness,
it is limited in its ability to determine the information gain a poste-
rior (approximation) has over its prior. To clarify this point, consider
an estimator whose posteriors are identical to the prior. In this case,
there is no gain in information and the empirical expected coverage
probability is equal to the nominal expected coverage probability.
For this reason, a complete analysis should be complemented with
measures such as the mutual information or expected information
gain Ep(ϑ,x) [log p(ϑ | x)− log p(ϑ)]. This work is however concerned
with conservative inference and will therefore limit the analysis to
the evaluation of expected coverage. Finally, it should be noted that
expected coverage is a statement about the credible regions in expec-
tation and therefore does not make any statement about the quality of
an individual posterior.

5.3 experimental observations

This section covers our main contribution: the collection of empiri-
cal evidence to determine whether approaches in simulation-based
inference are conservative by nature. We are particularly interested
in determining if certain approaches should be favoured over others.
We do so by measuring the coverage of estimators attained by these
approaches across a broad range of hyperparameters and benchmarks
of varied complexity, including two real problems from the field of
astronomy. As in real use-cases, the true posteriors associated with
these benchmarks are unknown.
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We make the distinction between two paradigms. Non-amortized
approaches are designed to approximate a single posterior, while
amortized methods aim to learn a general purpose estimator that
attempts to approximate all posteriors supported by the prior.

5.3.0.1 Amortized

neural posterior estimation (npe) is concerned with directly
learning an amortized posterior estimator p̂ψ(ϑ | x) with normalizing
flows. Normalizing flows define a class of probability distributions
pψ(·) built from neural network based bijective transformations [209,
210] parameterized by ψ and are usually optimized via

arg min
ψ

Ep(x)
[
kl(p(ϑ | x) || p̂ψ(ϑ | x)

]
, (5.6)

which is equivalent to arg maxψ Ep(ϑ,x)
[
log p̂ψ(ϑ | x)

]
. Once trained,

the density of the modeled distribution can be evaluated and sampled
from.

neural ratio estimation (nre) is an established approach
in the simulation-based inference literature both from a frequentist
[55] and Bayesian [147, 211] perspective. In a Bayesian analysis, an
amortized estimator r̂(x | ϑ) of the intractable likelihood-to-evidence
ratio r(x | ϑ) can be learned by training a binary discriminator d̂(ϑ, x)
to distinguish between samples of the joint p(ϑ, x) with class label
1 and samples of the product of marginals p(ϑ)p(x) with class label
0 using a criterion such as the binary cross entropy. Similar to the
density-ratio trick [55, 81, 147, 212], the Bayes optimal discriminator
d(ϑ, x) models

p(ϑ, x)
p(ϑ, x) + p(ϑ)p(x)

= σ

(
log

p(ϑ, x)
p(ϑ)p(x)

)
, (5.7)

where σ(·) is the sigmoid function. Given a target parameter ϑ and
observable x supported by p(ϑ) and p(x) respectively, the learned
discriminator d̂(ϑ, x) approximates the log likelihood-to-evidence ratio
log r(x | ϑ) through the logit function because

log r̂(x | ϑ) = logit
(

d̂(ϑ, x)
)
≈ log

p(ϑ, x)
p(ϑ)p(x)

. (5.8)

The log posterior density function is approximated as log p̂(ϑ | x) =
log p(ϑ) + log r̂(x | ϑ).
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ensembles of models constitute a standard method to improve pre-
dictive performance. In this work, we consider an ensemble model that
averages the approximated posteriors of n independently trained pos-
terior estimators. While this formulation is natural for npe, averaging
likelihood-to-evidence ratios is equivalent, as p(ϑ) 1

n ∑n
i=1 r̂i(x | ϑ) =

1
n ∑n

i=1 p̂i(ϑ | x).

5.3.0.2 Non-amortized

approximate bayesian computation (abc) [213, 214] numer-
ically estimates a single posterior by collecting samples ϑ ∼ p(ϑ)
whenever x ∼ p(x | ϑ) is similar to xo. Similarity is expressed by means
of a distance function ρ. For high-dimensional observables, the probabil-
ity density of simulating an observable x such that x = xo is extremely
small. For this reason, abc uses a summary statistic s and an acceptance
threshold ϵ. Using these components, abc accepts samples into the ap-
proximate posterior whenever ρ(s(x), s(xo)) ≤ ϵ. In our experiments
we use the identity function as a sufficient summary statistic. Finally,
we emphasize that abc approximations are only exact whenever the
summary statistic is sufficient and the acceptance threshold ϵ tends to
0 [215].

Sequential methods aim to approximate a single posterior by itera-
tively improving a posterior approximation. These methods alternate
between a simulation and exploitation phase. The latter being de-
signed to take current knowledge into account such that subsequent
simulations can be focused on parameters that are more likely to
produce observables x similar to xo.

sequential monte-carlo abc (smc-abc) [216–218] iteratively
updates a set of proposal states to match the posterior distribution.
At each iteration, accepted proposals are ranked by distance. The
rankings determine whether a proposal is propagated to the next
iteration. New candidate proposals are generated by perturbing the
selected ranked proposals.

sequential neural posterior estimation (snpe) [219–221]
directly models the posterior. Our evaluations will specifically use the
snpe-c [221] variant.

sequential neural likelihood (snl) [222] models the likeli-
hood p(x | ϑ). A numerical approximation of the posterior is obtained
by plugging the learned likelihood estimator into a Markov Chain
Monte Carlo (mcmc) sampler as a surrogate likelihood.
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sequential neural ratio estimation (snre) [147, 223] itera-
tively improves the modelled likelihood-to-evidence ratio.

5.3.1 Benchmarks

Our evaluations consider 7 benchmarks, ranging from toy problems
to real applications in astrophysics.

The SLCP simulator models a fictive problem with 5 parameters.
The observable x is composed of 8 scalars which represent the 2D-
coordinates of 4 points. The coordinate of each point is sampled from
the same multivariate Gaussian whose mean and covariance matrix are
parametrized by ϑ. We consider an alternative version of the original
task [222] by inferring the marginal posterior density of 2 of those
parameters. In contrast to its original formulation, the likelihood is
not tractable due to the marginalization.

The Weinberg problem [224] concerns a simulation of high energy
particle collisions e+e− → µ+µ−. The angular distributions of the
particles can be used to measure the Weinberg angle x in the standard
model of particle physics. From the scattering angle, we are interested
in inferring Fermi’s constant ϑ.

The Spatial SIR model generates a grid-world x of susceptible, in-
fected, and recovered individuals. This information is encoded in 3

channels. Based on the initial state of x and the infection and recovery
rate ϑ, the model describes the evolution of an infection through this
grid-like world. The disease spreads spatially.

M/G/1, originally introduced by Papamakarios, Sterratt, and Murray
[222], models a processing and arrival queue. The problem is described
by 3 parameters ϑ that influence the time it takes to serve a customer,
and the time between their arrivals. The observable x is composed of
5 equally spaced quantiles of inter-departure times.

The Lotka-Volterra population model [119, 225] describes a process
of interactions between a predator and a prey species. The model is
conditioned by 4 parameters ϑ which influence the reproduction and
mortality rate of the predator and prey species. We infer the marginal
posterior of the 2 predator’s parameters. Our implementation, de-
scribed by a Markov process, generates 2 time-series of 1001 samples
representing the evolution of the prey and predator populations over
time.

Stellar Streams form due to the disruption of spherically packed
clusters of stars by the Milky Way. Because of their distance from
the galactic center and other visible matter, distant stellar streams are
considered to be ideal probes to detect gravitational interactions with
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dark matter. The simulation model [145, 148, 196] evolves the stellar
density x of a stream over several billion years, while perturbing the
stream over its evolution through gravitational interactions with dark
matter subhaloes parameterized through the dark matter mass ϑ.

Gravitational Waves (GW) are ripples in space-time emitted during
events such as the collision of two black-holes. They can be detected
through interferometry measurements x and convey information about
celestial bodies, unlocking new ways to study the universe. We con-
sider inferring the masses ϑ of two black-holes colliding through the
observation of the gravitational wave as measured by ligo’s dual
detectors [226, 227].

5.3.2 Setup

Our evaluations consider simulation budgets ranging from 210 up to
217 samples and confidence levels from 0.05 up to 0.95. Within the
amortized setting we train, for every simulation budget, 5 posterior
estimators for 100 epochs. The empirical coverage probability is com-
puted on at least 5,000 unseen samples from the joint p(ϑ, x) and for
all confidence levels under consideration. In addition, we repeat the
coverage evaluation for ensembles of 5 estimators as well.

Special care for non-amortized approaches is necessary because they
only approximate a single posterior and can therefore not evaluate
coverage. Our experiments estimate coverage of these methods by
proxy by repeating the inference procedure on 300 distinct observables
for a given simulation budget (2100 times per method per benchmark).
The empirical coverage probabilities are estimated using the 300 ap-
proximated posteriors. Our experiments with npe, snpe, snl, snre,
rej-abc and smc-abc rely on the implementation in the sbi package
[228], while we use a custom implementation for nre.

computational cost We would like to emphasize the compu-
tational requirements necessary to generate our main contribution:
the experimental observations, whose generation took months. The
bulk of the cost was associated with the repeated optimization pro-
cedure of non-amortized methods and the constant resampling of
the simulator. Totalling in the order of 3000 CPU days to compute
the results, simulations included (200 days amortized vs. 2800 days
non-amortized).
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5.3.3 Results

Observation 1 All benchmarked algorithms produce non-
conservative posterior approximations. This pathology tends to
be accentuated when using a small simulation-budget in both amor-
tized and non-amortized approaches.

Observation 2 For a given simulation budget, amortized approaches
have the tendency to be more conservative than non-amortized
approaches.

Observation 3 The empirical coverage probability of an ensemble
model is larger than the expected individual model. The ensemble
size positively affects the empirical coverage probability as well.

Observation 4 Amortized methods are not subordinate with respect
to the simulation-efficiency of non-amortized sequential methods,
especially when taking hyper-parameter tuning and the evaluation
of the coverage diagnostic into account.

Figures 5.2 and 5.3 highlight our main results. Through these plots
we can directly assess the conservativeness at a given confidence level
and simulation budget. The figures should be interpreted as follows: a
perfectly calibrated posterior has an empirical coverage probability equal
to the nominal coverage probability. Plotting this relation produces
a diagonal line. Conservative estimators on the other hand produce
curves above the diagonal and overconfident models underneath. The
plots highlight an unsettling observation: all benchmarked approaches
produce non-conservative posterior approximations. In general, this
pathology is especially prominent in non-amortized approaches with a
small simulation budget; a regime they have been specifically designed
for. A large simulation budget does not guarantee conservativeness
either.

In sequential approaches, this behaviour could be explained by the
alternating exploitation and simulation phase. One potential failure
mode is that a non-conservative posterior approximation at a previous
iteration forces the next simulation phase to not produce observables
that should be associated with a higher posterior density, causing the
estimator to increase its non-conservativeness at each iteration.

Despite all abc approaches use a sufficient summary statistic (the
identity function), our results demonstrate that this alone is no guaran-
tee for conservative posterior approximations. In fact, using a sufficient
summary statistic with ϵ > 0 does not always correspond to conserva-
tive approximations. In such cases, abc accepts samples with larger
distances, permitting the procedure to shift the mass of the approxi-
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Figure 5.4: Evolution of the empirical coverage probability with respect
to ensemble size for various confidence levels. The results are obtained
by training 100 ratio estimators (nre) on the slcp benchmark. A
positive effect is observed in terms of empirical coverage probability
and ensemble size, i.e., a larger ensemble size correlates with a larger
empirical coverage probability. This is not unsurprising, because a
larger ensemble is expected to capture more of the uncertainty that
stems from the training procedure.
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mated posterior elsewhere. In addition, a limited number of posterior
samples can negatively affect the quality of the credible regions, e.g.,
when approximating the posterior density function with kernel density
estimation. Both cases could cause the observed behaviour. Scientific
applications should therefore be cautious. Even though a handcrafted,
albeit sufficient, summary statistic provides some insight into the ap-
proximated posterior, it does not imply that abc approximations are
conservative whenever ϵ > 0.

In Figure 5.3 we observe that the empirical coverage probability of
ensemble models is consistently larger than the empirical coverage
probability of the expected individual posterior estimator. Current
applications of simulation-based inference can therefore rely on en-
sembling to build more conservative posterior estimators. However,
the ensemble model can still be non-conservative. We hypothesize that
the increase in coverage is linked to the added uncertainty captured by
the ensemble model, leading to inflated credible regions. In fact, indi-
vidual estimators only captures aleatoric uncertainty, i.e., uncertainty
that is linked to stochasticity of the data generation procedure, while
an ensemble is expected to capture part of the epistemic uncertainty as
well, i.e., uncertainty issued by the lack of knowledge. Surprisingly, we
find that ensembles built using bagging do not always produce higher
coverage than individual models while they should also capture part
of the epistemic uncertainty. Although a deeper understanding of this
effect is required, this behaviour could be explained by the fact that
bagging reduces the effective dataset size used to train each member
of the ensemble. Additionally, Figure 5.4 illustrates a positive effect
with respect to ensemble size.

Not evident from Figures 5.2 and 5.3 are the computational conse-
quences of a coverage analysis on non-amortized methods. Although
the figures mention a certain simulation budget, the total number of
simulations for non-amortized methods should be multiplied by the
number of approximated posteriors (300) to estimate coverage, high-
lighting the simulation cost associated with diagnosing non-amortized
approaches. This issue is not limited to coverage. Simulation-Based
Calibration (sbc) [176] relies on samples of arbitrary posterior approx-
imations. Diagnosing non-amortized estimators with sbc therefore
requires a similar approach as we have taken in our coverage analyses.
In fact, Lueckmann et al. [193] also mention that sbc is computation-
ally prohibitive for non-amortized approaches and therefore restrain
from evaluating it.

Our results illustrate a clear distinction between the amortized
and non-amortized paradigms. Amortized methods do not require
retraining or new simulations to determine the empirical coverage
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probability of a posterior estimator, while non-amortized methods
do. Moreover, a coverage analysis of non-amortized approaches only
measures the quality of the training procedure. In contrast to amor-
tized approaches, where the posterior estimator is diagnosed. This has
severe implications on the applicability of non-amortized methods,
because their reliability cannot be practically determined. In addition,
non-amortized approaches have to repeat the approximation proce-
dure whenever architectural or hyperparameter changes are made,
while amortized methods reuse previously simulated datasets. In
particular, sequential methods cannot do this as new simulations de-
pend on the posterior approximation at a previous state. This is often
overlooked in studies on simulation efficiency and raises questions
about whether sequential approaches should still be considered simu-
lation efficient over their amortized counterparts. Especially because
our results indicate that for a given simulation budget, amortized
approaches produce trustworthier posterior approximations in expec-
tation. Moreover, estimators obtained through amortized methods can
be calibrated [55, 194, 196] after training, while such procedures are
impossible with non-amortized approaches.

All of the above leads us to conclude that currently, amortization
should be favoured over non-amortized approaches because their
reliability cannot practically be determined. Moreover, our results
suggest that even for small simulation budgets amortized methods,
on average, produce more conservative estimators compared to non-
amortized methods; a striking result, given that non-amortized, and
sequential methods in particular, dedicate the available simulation
budget to accurately approximate a single posterior.

5.4 discussion

As demonstrated empirically, simulation-based inference can be unre-
liable, especially when its approximations cannot be diagnosed. The
problem of determining whether a posterior approximation is correct
is in fact not restricted to simulation-based inference specifically, the
concern occurs in all of approximate Bayesian inference. The mcmc

literature deals with this exact same problem in the form of determin-
ing whether a set of Markov chain samples have converged to the
target distribution [229, 230]. In this regard, empirical diagnostic tools
have been proposed over the years [176, 231–234] and have helped
practitioners using mcmc properly. Nonetheless, there is currently no
clear solution to determine convergence with absolute certainty [235,
236], even if the likelihood function is here tractable.

We are of the opinion that theoretical and methodological advances
within the field of simulation-based inference will strengthen its re-
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liability and promote its applicability in sciences. First, although all
benchmarked algorithms recover the true posterior under specific
optimal conditions, it is generally not possible to know whether those
conditions are satisfied in practice. Therefore, the study of new ob-
jective functions that would force posterior estimators to always be
conservative, regardless of their optimal conditions, is worth investi-
gating. From a Bayesian perspective, Rozet and Louppe [237] propose
using the focal and the peripheral losses to weigh down easily classi-
fied samples as a means to tune the conservativeness of a posterior
estimator. Dalmasso et al. [238] consider the frequentist setting and
introduce a theoretically-grounded algorithm for the construction of
confidence intervals that are guaranteed to have perfect coverage, re-
gardless of the quality of the used statistic. Second, in light of our
results that ensembles produce more conservative posteriors, model
averaging constitutes another promising direction of study, as a simple
and efficient method to produce reliable posterior estimators. However,
a deeper understanding of the behaviour we observe is certainly first
required to further develop these methods. Third, post-training cali-
bration can be used to improve the reliability of posterior estimators
and should certainly be considered as a way towards more conser-
vative inference. To some extent, this has already been considered
for amortized methods [55, 194, 196] and would be worth exploring
further, especially for non-amortized approaches.

In summary, we show that current algorithms for simulation-based
inference may all produce overconfident posterior approximations,
making them demonstrably unreliable if one’s scientific goal is to
constrain parameters of interest or reject theoretical models. Never-
theless, we remain confident and optimistic and advocate that this
result is only a stepping stone towards more reliable simulation-based
inference, its wider adoption, and eventually better science.



6
Towards Reliable Simulation-Based
Inference with Binary Classification

The contents of this chapter are based on unpublished and incomplete work.

Our study focuses on a specific family of likelihood-free techniques
whose surrogate can be parameterized through a binary classifier
or discriminator. Although our technique generalizes to any binary
classification problem, we mainly consider the Bayesian likelihood-free
paradigm to contain the scope of the discussion. In particular, we focus
on nre, introduced in Chapter 3.

The results of Chapter 5 demonstrate that likelihood-free approx-
imations can produce non-conservative or overconfident posteriors,
regardless of the problem setting or available simulation budget. De-
termining the reliability of the learned posterior estimators through
the evaluation of diagnostics such as expected coverage or Simulation-
Based Calibration (sbc) [176] is therefore critical for scientific appli-
cations. Unfortunately, computing these diagnostics is infeasible for
non-amortized inference protocols due to their intrinsic computational
requirements. Although amortized protocols can in fact be diagnosed,
they are still susceptible to the same issue. More importantly, as the
general reliability of likelihood-free approximations cannot be deter-
mined and theoretical guarantees are lacking, it leaves practicioners
uncertain about the applicability of the learned estimators.

If we are to gather scientific knowledge with simulation-based infer-
ence, reliability of its approximations are key. Contrary to the current
school of thought which is mainly interested in exact or accurate ap-
proximations, domain sciences such as physics rather seek to constrain
parameters ϑ through frequentist confidence intervals or Bayesian
credible regions (constraints) at a given confidence or credibility level
respectively. Exactness of an approximation is not a primary objec-
tive. In these fields it is of the upmost importance that approximated
constraints pass the (expected) coverage diagnostic, while at the same
producing constraints for the target parameters ϑ that are as strong
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Figure 6.1: In this scenario, the posterior approximation p̂(ϑ | x) is
said to be shifted with respect to the true posterior p(ϑ | x). A posterior
approximation that assigns a larger uncertainty to a parameter with
respect to the true posterior is not necessarily conservative!

as possible. An overconfident estimator could potentially impede sci-
entific inquiry by steering research to abandon plausible models. It
is for this reason alarming that various simulation-based inference
protocols can produce constraints that are smaller than they should
be [12], despite exactness guarantees these algorithms carry whenever
their fitting criteria are globally optimized.

Given that the expected coverage diagnostic measures the reliabil-
ity of an estimator, a conservative approximation should have two
properties to pass this test. First, the estimated constraints should
not be smaller than they should be. Second, the distribution shift, as
illustrated in Figure 6.1, of the approximated posterior with respect
to the true posterior and by transitivity their constraints, should not
be significant. Meaning, it is be possible to have constraints that are
larger than they should be, which is good, but whose approximated
posteriors are in fact shifted with respect to the true posterior. This
particular effect translates to an estimator that could fail the expected
coverage diagnostic, even though its constraints are larger than they
should be. Jointly, these two conditions contribute to a conservative
approximation.

Motivated by these issues, this chapter seeks to increase the reliabil-
ity of simulation-based inference in practice by proposing a technique
that (i) establishes a premise for conservative approximations (ii)
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comes with theoretical guarantees and (iii) is directly applicable, inde-
pendent of the problem setting or hyperparameters such as simulation
budget. These properties provide an answer to the question: how can
we learn reliable approximations whenever fitting criteria are not
globally optimized?

Remark

Due to the incomplete state of this work, we will not consider a study
on the potential distribution shift of the posterior.

6.1 an initial attempt

Because the size of estimated constraints are mainly driven by the un-
certainty related to the target parameter ϑ, it is natural to assume that
the differential entropy of the (approximated) posterior contributes
to their size. Assuming there is no distribution shift with respect to
the true posterior, this would imply that for an approximate posterior
p̂(ϑ | x) ≜ p(ϑ)r̂(x | ϑ) to be conservative for a specific observable x,
the differential posterior entropy would need to be smaller or equal to
the posterior entropy of the approximation, or

−Ep(ϑ | x) [log p(ϑ | x)] ≤ −Ep̂(ϑ | x) [log p̂(ϑ | x)] . (6.1)

Ideally, this should be true for every observable x. However, we can
relax this constraint slightly and target this requirement in expectation.

Ep(x)

[
−Ep(ϑ | x) [log p(ϑ | x)]

]
≤ Ep(x)

[
−Ep̂(ϑ | x) [log p̂(ϑ | x)]

]
. (6.2)

Note that these quantities are actually the conditional entropy H(ϑ | x)
of the true posterior p(ϑ | x) and the conditional entropy Ĥ(ϑ | x) of
the posterior approximation p̂(ϑ | x) respectively;

−Ep(ϑ,x) [log p(ϑ | x)] ≤ −Ep̂(ϑ | x)p(x) [log p̂(ϑ | x)] , (6.3)

H(ϑ | x) ≤ Ĥ(ϑ | x). (6.4)

Where the conditional entropy can be expressed as

H(ϑ | x) = H(ϑ)− I(ϑ, x), (6.5)

where H(ϑ) is the differential entropy of the prior p(ϑ) and I(ϑ, x)
the mutual information. Because H(ϑ) appears in both H(ϑ | x) and
Ĥ(ϑ | x), we have

H(ϑ)− I(ϑ, x) ≤ H(ϑ)− Î(ϑ, x), (6.6)

−I(ϑ, x) ≤ − Î(ϑ, x), (6.7)

I(ϑ, x) ≥ Î(ϑ, x), (6.8)



102 towards reliable simulation-based inference with binary classification

where the mutual information as computed through p̂(ϑ | x)p(x) is

Î(ϑ, x) =
∫ ∫

d ϑ d x p̂(ϑ | x)p(x) log r̂(x | ϑ), (6.9)

= Ep(ϑ)p(x) [r̂(x | ϑ) log r̂(x | ϑ)] . (6.10)

The above directly implies that for posterior approximations to be con-
servative, we have to enforce Î(ϑ, x) to be upper-bounded by I(ϑ, x).
While this seems we could rely on techniques such as mine [239], there
are however a few issues. First, there are currently no guarantees that
p̂(ϑ | x) for any observable x supported by p(x) is a proper probability
density, i.e., ∫

d ϑ p̂(ϑ | x) = 1. (6.11)

Second, the theoretical arguments presented for the mutual infor-
mation estimator in Belghazi et al. [239] does not hold for Î(ϑ, x),
but instead for the mutual information estimator under the true joint
Ep(ϑ,x) [log r̂(x | ϑ)]. While the intuition sketched above clearly con-
nects with the posterior approximation p̂(ϑ | x), we are not able to
extract any meaningful criteria that we can enforce during training to
ensure H(ϑ | x) ≤ Ĥ(ϑ | x).

Observation

It is worth noting that whenever,

Ep(ϑ)p(x) [r̂(x | ϑ)] ≤ 1, (6.12)

we equivalently have

Ep(ϑ)p(x)r(x | ϑ)

[
r̂(x | ϑ)
r(x | ϑ)

]
≤ 1. (6.13)

Through Jensen’s inequality, we obtain

log Ep(ϑ)p(x)r(x | ϑ)

[
r̂(x | ϑ)
r(x | ϑ)

]
≤ log 1, (6.14)

Ep(ϑ)p(x)r(x | ϑ)

[
log

r̂(x | ϑ)
r(x | ϑ)

]
≤ log Ep(ϑ)p(x)r(x | ϑ)

[
r̂(x | ϑ)
r(x | ϑ)

]
, (6.15)

and therefore

Ep(ϑ)p(x)r(x | ϑ)

[
log

r̂(x | ϑ)
r(x | ϑ)

]
≤ 0, (6.16)

Ep(ϑ,x)

[
log

r̂(x | ϑ)
r(x | ϑ)

]
≤ 0. (6.17)

Proving the inequality Ep(ϑ)p(x) [r̂(x | ϑ)] ≤ 1 implies the estimator
Ep(ϑ,x) [log r̂(x | ϑ)] is a lower-bound to I(ϑ, x). Practically, this means
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that we could enforce Ep(ϑ)p(x) [r̂(x | ϑ)] = 1 during the minimization
of the loss functional. While this formulation leads to conservative
credible regions (at least experimentally), we found that there was a
significant deficit in the ability of the posterior estimator to constrain
the target parameters. We are as of this moment unable to exactly
determine the source of this effect, as the Bayes optimal discriminator
shares the property that Ep(ϑ)p(x) [r(x | ϑ)] = 1, because

Ep(ϑ)p(x) [r(x | ϑ)] = Ep(ϑ)p(x)

[
p(ϑ, x)

p(ϑ)p(x)

]
, (6.18)

=
∫ ∫

d ϑ d x p(ϑ)p(x) = 1. (6.19)

6.2 the balancing condition

Binary classification is the backbone of many likelihood-free protocols,
including nre presented in Chapter 3, due to its ability to effectively
approximate density ratios. Whenever a binary classifier or discrimi-
nator is trained to distinguish between densities p(x) with class-label
1 and q(x) with class-label 0, the Bayes optimal discriminator can be
expressed as

d(x) =
p(x)

p(x) + q(x)
, (6.20)

and consequently, the density-ratio

r(x) =
d(x)

1− d(x)
=

p(x)
q(x)

. (6.21)

The combination of this result and the modern machine learning
toolbox, makes binary classification a powerful candidate to solve
intractable inference problems. However, given that we are interested
in conservative approximations, we have to ask ourselves the question:
what does it mean for a binary classifier to be conservative and how
does this connect to a posterior approximation?

To answer this question we have to look at the decision function
of an arbitrary approximate discriminator with respect to its Bayes
optimal version. First, note that whenever the discriminator output
increases, so does the ratio since

d(x) =
r(x)

r(x) + 1
. (6.22)
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Figure 6.2: Decision functions of the Bayes optimal discriminator d(x)
(in black) and an arbitrary approximate discriminator d̂(x) (in blue).
The dotted lines show their inverses, i.e. 1− d(x) and 1− d̂(x) respec-
tively in the same color scheme. For an approximate discriminator
to be reliable or robust, it means that its discriminator output must
be larger compared to its Bayes optimal version for samples with
class-label 0, and the reverse for samples with class-label 1.

Connecting this with the discriminator d(ϑ, x), where p(ϑ, x) and
p(ϑ)p(x) take the role of p(x) and q(x) respectively,it means that
d(ϑ, x) can be re-expressed as

r(x | ϑ)
r(x | ϑ) + 1

=
p(ϑ)r(x | ϑ)

p(ϑ)r(x | ϑ) + p(ϑ)
=

p(ϑ | x)
p(ϑ | x) + p(ϑ)

. (6.23)

The above shows that the discriminator output d(ϑ, x) is directly tied
to the posterior density function, albeit in a non-linear fashion. The
same holds for any approximate discriminator d̂(ϑ, x).

From this discriminator perspective, we would be able to increase
the differential entropy of the posterior approximation by “smearing“
the decision function of d̂(ϑ, x) with respect to d(ϑ, x), as illustrated
in Figure 6.2. More formally, this would mean that the approximate
discriminator d̂(ϑ, x) should satisfy

Ep(ϑ)p(x)

[
d̂(ϑ, x)

]
≥ Ep(ϑ)p(x) [d(ϑ, x)] (6.24)

for samples with class-label 0 (from p(ϑ)p(x)), but at the same time
for samples with class-label 1 (from p(ϑ, x))

Ep(ϑ,x)

[
d̂(ϑ, x)

]
≤ Ep(ϑ,x) [d(ϑ, x)] . (6.25)

However, these two conditions are not sufficient. Decision functions
could exist, at least in principle, where

Ep(ϑ)p(x)

[
d̂(ϑ, x)

]
≥ Ep(ϑ,x)

[
d̂(ϑ, x)

]
. (6.26)

This inequality would force credible regions away from the joint
p(ϑ, x), because samples from the product of the marginals are at-
tributed with higher posterior density in expectation (after normal-
ization of the posterior approximation). Therefore, the reverse should
actually hold.
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To enforce these conditions, we propose the balancing condition as
an additional term to classical loss functionals for classification such
as the binary cross entropy.

Definition 6. The balancing condition involving two probability densities
p(x) and q(x) is defined as Ep(x)[d̂(x)]+Eq(x)[d̂(x)] = 1 or Ep(x)[d̂(x)] =
Eq(x)[1− d̂(x)] for any binary classifier or discriminator d̂(x).

Definition 7. A binary discriminator d̂ is said to be balanced whenever it
satisfies the balancing condition, i.e., whenever

Ep(x)[d̂(x)] = Eq(x)[1− d̂(x)]. (6.27)

For the binary cross entropy

L
[
d̂(x)

]
≜ −Ep(x)

[
log d̂(x)

]
−Eq(x)

[
log(1− d̂(x))

]
, (6.28)

and given the balancing condition only depends on samples from p(x)
and q(x), the full loss functional with the balancing condition becomes

Lb

[
d̂(x)

]
≜ L

[
d̂(x)

]
+ λ

[
Ep(x)

[
d̂(x)

]
+ Eq(x)

[
d̂(x)

]
− 1

]2
, (6.29)

where λ is a hyperparameter (scalar) controlling the strength of the bal-
ancing condition’s contribution. The balancing condition could thus be
viewed through the lens of regularization. It should be noted however
that the balancing condition differs from traditional regularization
schemes in the sense that the balancing condition needs to be 0 for
a discriminator to be balanced. This means that the hyperparameter
controlling the strength of the balancing condition (here λ) can be set
arbitrarily large, at least in principle. We found λ = 100.0 to work
well across a wide range of problem domains.

Theorem 1. The Bayes optimal discriminator d(x) is balanced.

Proof. Using the Bayes optimal discriminator

d(x) ≜
p(x)

p(x) + q(x)
, (6.30)

and expressing the balancing condition in its integral form,

⇔
∫

d(x) · (p(x) + q(x))d x, (6.31)

⇔
∫ p(x) · (p(x) + q(x))

p(x) + q(x)
d x, (6.32)

⇔
∫

p(x)d x = 1, (6.33)

because p(x) is a proper probability density that integrates to 1.
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Figure 6.3: Weight-decay directly affects the conservativeness of the
posterior estimator on a toy example. Larger values of weight-decay
are associated with more conservative posteriors and credible regions.
Although classical regularization techniques might prove successful
to learn conservative posteriors, there is a lot of tuning involved.
Moreover, there are no guarantees that regularizers such as weight
decay share the same global optimum. In the case of weight decay, this
is because the regularizer implicitly specifies a prior over the weights
of the binary classifier.

This result implies that any balanced discriminator shares the same
global minimum as the Bayes optimal discriminator. It should be
noted this is not necessarily guaranteed with other regularization
techniques such as weight decay, although they might positively affect
the reliability of the binary classifier as well, as shown in Figure 6.3.

Theorem 2. A balanced discriminator d̂(x) satisfies

Ep(x)

[
log

d(x)
d̂(x)

]
≥ 0. (6.34)

Proof. From the balancing condition, we have that
∫

d x (p(x) + q(x)) d̂(x), (6.35)

= Ep(x)

[
d̂(x)

]
+ Eq(x)

[
d̂(x)

]
, (6.36)

= 1. (6.37)
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(p(x) + q(x))d̂(x) is therefore a density that integrates to 1 and there-
fore the kl is defined such that

kl

[
p(x) || (p(x) + q(x))d̂(x)

]
≥ 0, (6.38)

⇔Ep(x)

[
log

p(x)
(p(x) + q(x))d̂(x)

]
≥ 0, (6.39)

⇔Ep(x)

[
log

d(x)
d̂(x)

]
≥ 0. (6.40)

After applying Jensen’s inequality, we obtain

log Ep(x)

[
d(x)
d̂(x)

]
≥ Ep(x)

[
log

d(x)
d̂(x)

]
≥ log 1, (6.41)

log Ep(x)

[
log

d(x)
d̂(x)

]
≥ log 1, (6.42)

and finally after exponentiating both sides

Ep(x)

[
d(x)
d̂(x)

]
≥ 1. (6.43)

However, note that the reverse

Ep(x)

[
d̂(x)
d(x)

]
= 1 (6.44)

holds as a direct result of the balancing condition, because

p(x) = d(x)(p(x) + q(x)). (6.45)

Theorem 3. A balanced discriminator d̂(x) satisfies

Eq(x)

[
log

1− d(x)
1− d̂(x)

]
≥ 0. (6.46)

Proof. From the balancing condition, we have that
∫

d x (p(x) + q(x)) (1− d̂(x)), (6.47)

= Ep(x)

[
1− d̂(x)

]
+ Eq(x)

[
1− d̂(x)

]
, (6.48)

= 2−
∫

d x d̂(x)(p(x) + q(x)), (6.49)

= 1. (6.50)

(p(x) + q(x))(1− d̂(x)) is therefore a density that integrates to 1 and
therefore the kl is defined such that

kl

[
q(x) || (p(x) + q(x))(1− d̂)(x)

]
≥ 0, (6.51)

⇔Eq(x)

[
log

q(x)
(p(x) + q(x))(1− d̂(x))

]
≥ 0, (6.52)

⇔Eq(x)

[
log

1− d(x)
1− d̂(x)

]
≥ 0. (6.53)
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After applying Jensen’s inequality, we obtain

log E1(x)

[
1− d(x)
1− d̂(x)

]
≥ Ep(x)

[
log

1− d(x)
1− d̂(x)

]
≥ log 1, (6.54)

log E1(x)

[
log

1− d(x)
1− d̂(x)

]
≥ log 1, (6.55)

and finally after exponentiating both sides

Eq(x)

[
1− d(x)
1− d̂(x)

]
≥ 1. (6.56)

However, note that the reverse

Eq(x)

[
1− d̂(x)
1− d(x)

]
= 1 (6.57)

holds as a direct result of the balancing condition, because

q(x) = (1− d(x))(p(x) + q(x)). (6.58)

Theorem 4. For a balanced discriminator d̂(x), the following relation be-
tween the loss terms must hold

L
[
d̂(x)

]
≥ L [d(x)] . (6.59)

Proof. Assume the negation, i.e.,

L
[
d̂(x)

]
< L [d(x)] . (6.60)

We obtain the following by expanding the loss-terms into the binary
cross-entropy

−Ep(x)

[
log d̂(x)

]
−Eq(x)

[
log(1− d̂(x))

]
< −Ep(x) [log d(x)]−Eq(x) [log(1− d(x))] ,

(6.61)

⇔ 0 < Ep(x)

[
log

d̂(x)
d(x)

]
+ Eq(x)

[
log

1− d̂(x)
1− d(x)

]
. (6.62)

We have reached a contradiction because we have previously shown
both terms to be negative whenever the approximate discriminator
d̂(x) is balanced.

The minimization of the binary cross-entropy with a balanced
discriminator is thus equivalent to the strict minimization of both
kl

[
p(x) || (p(x) + q(x))d̂(x)

]
and kl

[
q(x) || (p(x) + q(x))(1− d̂(x))

]
.
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The above establishes that any approximate balanced discriminator
will never – in expectation – be overconfident with respect to its Bayes
optimal version for samples of p(x) (class label 1) and q(x) (class label
0).

Algorithm 7 shows how the balancing condition can be used in
simulation-based inference, we refer to this algorithm henceforth as
cnre (conservative nre). In particular, as an improvement for the
previously introduced nre protocol.

Algorithm 7 Optimization procedure of Conservative Neural Ratio
Estimation (cnre).

Inputs: Implicit generative model p(x | ϑ) and prior p(ϑ)

Outputs: Approximate discriminator d̂ψ(ϑ, x)

Hyperparameters: Balancing condition strength λ (default = 100.0)

1: repeat
2: L[d̂ψ(ϑ, x)] = −Ep(ϑ,x)[log d̂(ϑ, x)]−Ep(ϑ)p(x)[log(1− d̂(ϑ, x))]
3: B[d̂ψ(ϑ, x)] = Ep(ϑ,x)[d̂ψ(ϑ, x)] + Ep(ϑ)p(x)[d̂ψ(ϑ, x)].

4: ψ = minimizer

(
ψ, L[d̂ψ(ϑ, x)] + λ(B[d̂ψ(ϑ, x)]− 1)2

)

5: until not converged
6: return d̂ψ(ϑ, x).

6.3 experiments

We explore the effect of the balancing condition on benchmarks from
various fields ranging from toy problems to real applications. Conser-
vativeness is evaluated through the lens of expected coverage with the
intent of demonstrating that the balancing condition leads to more
conservative posteriors and credible regions.

6.3.1 Setup

Our evaluations consider simulation budgets ranging from 210 up to
217 samples and confidence levels from 0.05 up to 0.95. We train, for
every simulation budget, 5 posterior estimators for 100 epochs. The
empirical expected coverage probability is evaluated on at least 5,000

unseen samples from the joint p(ϑ, x) and for all confidence levels
under consideration. In addition, we repeat the expected coverage
evaluation for ensembles of 5 estimators as well. We evaluate the
proposed balancing condition on the same problem domains as in
Chapter 5 and compare against nre and npe.
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ensemble The cnre ensemble is defined as

d̂(ϑ, x) ≜
1
n

n

∑
i=1

d̂i(ϑ, x), (6.63)

to ensure that an ensemble of balanced discriminators is balanced.

6.3.2 Results

Across all problem domains we observe that cnre is conservative.
The proposed technique passes the expected coverage diagnostic for
all settings. We observe the balancing condition enforces the desired
behavior with small simulation budgets, where the uncertainty of the
target parameter ϑ is be expected to be large. A compressed summary
of this result in presented in Figure 6.4 through the notion of area under
expected coverage. The metric quantifies the area under the expected
coverage curve for all credible levels, akin to the classical area under
curve that quantifies the performance of a binary classifier. From this
perspective, the effect of the balancing condition (cnre) on expected
coverage is directly apparent. Figure 6.5 shows all expected coverage
curves.

In addition, we evaluate the value balancing condition

Ep(ϑ,x)

[
d̂(ϑ, x)

]
+ Ep(ϑ)p(x)

[
d̂(ϑ, x)

]
(6.64)

for both nre and cnre. All cnre-based estimators are balanced after
training. We observed that for nre in particular there is a lot of
variability present for small simulation budgets, suggesting that nre

could be overconfident in these regimes. This suspicion is reflected in
Figure 6.4 for both nre and npe. However, npe and nre tend towards
being balanced as the simulation budget increases.

Finally, as our ultimate goal targets conservative credible regions,
we measure the effect of applying the balancing condition on the
size of the estimated credible regions for various credible levels. The
results are summarized in Figure 6.6. We observe the desired effect
with cnre: an increase in uncertainty while at the same time tending
towards the nre approximation for large simulation budgets.

It should be noted however that some efficiency in terms of credible
region size is lost, i.e., the constraints are not as strong as with nre.
This is to be expected, although both nre and cnre share the same
global minimum. The question remains whether this relates to the
training procedure, or if the balancing condition is effectively enforc-
ing more conservative approximations for larger simulation budgets.
Suggesting that either the simulation budget is not sufficiently large to
capture all information, or the trained model is not expressive enough.
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Figure 6.4: Direct comparison between npe, nre and cnre using the
area under expected coverage as a metric. The metric is analogous to
the classical area under curve, as shown on the left. However, in this
case a positive area under curve implies that the learned estimator is
conservative in expectation. Whereas a negative value implies that the
estimator is overconfident. From this figure, we observe a clear trend
between npe and nre. They are especially overconfident for small
simulation budgets – associated with a lot of uncertainty –, while
cnre is not. On these benchmarks, cnre is always conservative and
enforces a significant amount of uncertainty to smaller simulation
budgets while tending towards being a calibrated estimator for large
simulation budgets. This particular behavior is illustrated in Figure
6.6.

Although unlikely, the issue relating to the training procedure might
still hold some merit as enforcing the balancing condition, especially
with large λ, increases the difficulty of the optimization procedure.
More training epochs could thus have been required to achieve the
same efficiency.

6.4 summary

In conclusion, the balancing condition is an effective and easily appli-
cable technique that can be used in any binary classification problem.
Experiments demonstrate that the technique does in fact increases
the reliability of the trained discriminators in practice and their ap-
proximated posteriors. Note however that these experiment do not
consider the effect of distribution shift. It might still be possible that
cnre fails the expected coverage diagnostic due to a distribution
shift with respect to true posterior, even though its credible regions
might be larger than they should be. However, research surrounding
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the balancing condition is not complete. There are still several open
questions that relate to posterior approximations and their credible
regions, i.e., can we connect the balancing condition to differential
posterior entropy?
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Figure 6.5: Full results of the expected coverage diagnostic for several
problem domains and simulation budgets. The results for npe and
nre are in agreement with the results from Chapter 5: these methods
can in fact produce non-conservative approximations. The balancing
condition shows a lot of promise. In fact, cnre employs the same setup
as nre (model architecture, hyperparameters) with the exception of
the balancing condition. Interestingly, on average, cnre seems to be
most conservative for small simulation budgets (darker lines), while
the reverse is mostly true for npe and nre.
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Figure 6.6: Shows the relative size for the credible regions with respect
to the prior for various benchmarks. Meaning, a value of 0.95 corre-
sponds to a spanned area of 95% within the support of the prior p(ϑ).
Figures on the left show cnre, while nre is shown on the right. cnre

shows larger credible regions compared to nre, especially in small
simulation budget regimes, but is eventually on par with nre.
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7
Conclusions

tl ;dr

• Current techniques are not suitable for problem domains with a
large dimensionality of the target parameter space ϑ. Advances
in this area could help specific applications. For instance, poste-
riors over high-resolution depth of field maps, mass sheets (for
gravitational lensing), climate models, and so on. The techniques
presented in this dissertation, at least in their current form, are
not be able to handle these dimensionalities. Further work is
required in this area.

• Density-ratio estimation through binary classification is a power-
ful technique that enables us to approximate statistical quantities
that are otherwise not tractable at training time.

• All vanilla simulation-based inference protocols, despite theo-
retical guarantees at a global optimum, can produce unreliable
(non-conservative) constraints. Diagnostics should be applied
to determine the reliability of the estimator before making any
scientific conclusion.

• Currently, inference protocols that are amortized and thus do
not require retraining or new simulations should be favoured
over their non-amortized counterparts because the reliability
of amortized techniques can be practically determined without
the need of a ground truth (which is never available in practice
anyway).

• We introduce a new criterion, the balancing condition, that en-
forces a binary classifier to be conservative with respect to the
Bayes optimal classifier. The criterion comes with theoretical
guarantees. Experiments show this reliability translates to the
estimated credible regions (Bayesian constraints) in simulation-
based inference.

117
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• The balancing condition is applicable to all binary classification
problems and could improve the reliability of other classification
problems outside the field of simulation-based inference.

7.1 summary and take-away messages

The contributions of this thesis are two-fold. They can be characterized
as novel set of techniques and guidelines to solve intractable statistical
inference problems. Part i introduces novel simulation-based inference
protocols and provides guidelines towards effectively applying these
techniques to scientific problems. We introduced two inference proto-
cols; avo in Chapter 2 and aalr-mcmc (nre with mcmc) in Chapter
3.

avo yields a proposal distribution qψ(ϑ) across target parameters
ϑ such that the Jensen-Shannon divergence between the marginal
qϑ(x) and an empirical dataset of observables pr(x) is minimized.
The technique is recommended whenever a relatively large empirical
dataset of observables is available. However, avo is not suitable for
scenarios where this dataset is small. The reason being that a small
dataset would quickly saturate the learning signal of the discriminator
attempting to optimize adversarial objective. In turn, a saturated
learning signal would affect the gradient used in the optimization
procedure of the proposal distribution. Another problematic aspect
of avo is its constant and costly reliance on the simulation model to
evaluate the gradient with respect to the proposal parameters. Despite
these aspects, the ability to deal with a large empirical dataset of
observables is rather unique. For this reason, avo lends itself easily
to Empirical Bayes. For instance, by enabling population studies to
determine a prior for subsequent deeper analyses.

The major advantage that aalr-mcmc (or nre without mcmc) brings
lies in its ability to approximate posteriors for all observables x sup-
ported by the marginal model p(x). The technique achieves this by
scanning a discretized grid of target parameters, or numerically with
mcmc. Contrary to many existing inference protocols, the technique
does not require new simulations or retraining to achieve this, while
at the same time retaining its data efficiency and ability to probe the
estimator’s statistical quality.

Part ii explores the topic of reliability in simulation-based inference
and more importantly, why reliability is critical to the sciences. We
argue that we should not strive to learn exact approximations, some-
thing which is rarely achieved in practice anyway, but rather seek to
fit conservative approximations. We stress this point by demonstrating
that common (Bayesian) simulation-inference protocols can produce
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non-conservative approximations, despite exactness guarantees these
algorithms carry whenever their fitting criteria are globally optimized.
Interestingly, our experiments showed various other aspects (i) amor-
tization seems to be more conservative compared to non-amortized
inference protocols, (ii) it is computationally inefficient and impractical
to determine the reliability of non-amortized algorithms, limiting their
applicability, and finally (iii) ensembling posterior estimators increases
their joint reliability significantly and should be seen as an easy and
effective method to construct more reliability statistical quantities.

Jointly, these results motivated the development of the balancing
condition; our proposal to increase the theoretical and practical reliability
of simulation-based inference. The technique (i) establishes a premise
for conservative approximations (ii) comes with theoretical guarantees
and (iii) is directly applicable, independent of the problem setting or
hyperparameters such as simulation budget. Jointly, these properties
provide an answer to the question: how can we learn reliable approx-
imations whenever fitting criteria are not globally optimized? More
importantly, the balancing condition is not limited to simulation-based
inference. In fact, the technique and associated theory generalizes to
all binary classification problems. The balancing condition is subject of
further investigation to explore its full potential and fully understand
its properties.

7.2 moving forward

The scientific method is a constant recurrence over the loop “theory,
experiment, conclusion”. By building upon the assumptions made in
the modelling (theory) and experiment step, this thesis contributes to
the automation of the last step: the conclusion. However, our ultimate
goal is to mechanize the complete scientific loop. In the following
sections we give a few promising research directions that could enable
the full automation of science, including the apparent creative process
of modelling.

7.2.1 Optimal Bayesian Experimental Design

The field of Optimal Bayesian Experimental Design in its most basic
setting attempts to answer the question: “What experimental con-
figuration ψ has the potential to maximally reduce the uncertainty
surrounding the target parameter ϑ?”. Formally, it does so by assign-
ing a utility score to an experimental configuration ψ in terms of the
expected information gain

U(ψ) ≜ Ep(x) [H [p(ϑ)]−H [p(ϑ | x, ψ)]] , (7.1)
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which can be re-expressed as

U(ψ) ≜ Ep(ϑ,x)

[
log

p(ϑ | x, ψ)

p(ϑ)

]
. (7.2)

Given this formulation, the objective of Optimal Bayesian Experimental
Design is to find

ψ∗ = arg max
ψ

U(ψ). (7.3)

The issue in Optimal Bayesian Experimental Design is the intractable
utility function U(ψ), akin to the problems we have been dealing
with throughout this dissertation. To solve this in a naive fashion, we
could apply nre to approximate this quantity for a given experimental
configuration ψ through

U(ψ) ≈ Ep(ϑ,x) [log r̂(x | ϑ)] , (7.4)

where r̂(x | ϑ) is a likelihood-to-evidence ratio estimator trained to
differentiate between samples from the conditional joint p(ϑ, x |ψ)
and p(ϑ)p(x |ψ). However, to maximize U(ψ), we would need to be
able to evaluate the utility for different values of ψ. Implying that we
would need to re-apply this procedure and consequently retrain and
resimulate a dataset of observables for every distinct evaluation of the
utility function. Clearly, this greedy approach does not scale.

However, one could in fact amortize the estimation of U(ψ) in the
same way we amortized posterior estimation. To accomplish this, we
only require a single presimulated dataset containing samples from
the joint p(ϑ, x, ψ) and two ratio estimators that are trained in specific
ways. In contrast to the previously outlines approach, both can now
rely on the same presimulated dataset during training. Under the
reasonable assumption that ϑ and ψ are independent, the first ratio
estimator type is trained to approximate

r(x | ϑ, ψ) =
p(ϑ, x, ψ)

p(ϑ)p(x, ψ)
=

p(ϑ | x, ψ)

p(ϑ)
. (7.5)

The second ratio estimator type approximates

r(ϑ, x |ψ) = p(ϑ, x, ψ)

p(ϑ, x)p(ψ)
=

p(ϑ, x |ψ)
p(ϑ, x)

. (7.6)

Jointly, both ratio estimators can be combined to compute

Ep(ϑ,x) [r(ϑ, x |ψ) log r(x | ϑ, ψ)] (7.7)
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for a given experimental configuration ψ. This is equivalent to comput-
ing the expected information gain of an experimental configuration
because

= Ep(ϑ,x) [r(ϑ, x |ψ) log r(x | ϑ, ψ)] , (7.8)

=
∫ ∫

d ϑ d x p(ϑ, x)
p(ϑ, x |ψ)

p(ϑ, x)
log

p(ϑ | x, ψ)

p(ϑ)
, (7.9)

=
∫ ∫

d ϑ d x p(ϑ, x |ψ) log
p(ϑ | x, ψ)

p(ϑ)
, (7.10)

= U(ψ). (7.11)

The above implies that we can reuse previously simulated points and
essentially reweigh them to estimate the expectation for all experimen-
tal configurations supported by p(ψ).

Figure 7.1 demonstrates this approach on a problem concerned a
simulation of high energy particle collisions e+e− → µ+µ−, where
the experimental configuration ψ is the beam energy. The simulator
outputs the Weinberg angle x in the standard model of particle physics.
From the scattering angle, one can directly derive Fermi’s constant ϑ.
Because of this, we analytically know that inference procedures should
be insensitive around ψ =45 GeV, which is reflected in the estimated
information gain.

Figure 7.1: Amortization of the estimated information gain of the
Weinberg problem used through this thesis. The expected information
gain is estimated using the formulation put forward in Equation 7.7.
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While in low-dimensional settings scanning might be a effective
approach to maximize U(ψ), it does not scale to larger dimensions.
However, due to the amortization and the fully differentiable ratio
estimators, we are able to directly compute gradients with respect to ψ

through automatic differentiation. The availability of these gradients
allow us to apply gradient ascent to directly maximize the expected
information gain.

There are of course many nuances to the setup of Optimal Bayesian
Experimental Design. While the above mainly focusses on maximizing
the expected information gain under the assumption that one facili-
tates a single experiment, it does not necessarily mean that this is the
optimal strategy (policy) across a certain budget or number of exper-
iments. Amortizing the expected information gain in these settings
could provide tremendous yields in computational performance for
the estimation of the expected information gain across a horizon of
experiments (utility) and open the door for the effective symbiosis
between experimental design and the reinforcement learning field.

7.2.2 Hypothesis synthesis

The next major milestones in this line of research — of interest to
many domain scientists — is the exploration of the hypothesis space
to search for new physics and rediscover well-established facts. Al-
though this task is inherently intractable, there are connections to be
made with recent advances in AutoML, symbolic regression, neural
program induction, (invertible) generative models, and the research
presented in this dissertation. In particular, potential future work could
investigate how a posterior over (sub)programs should be computed
within existing simulation code. By sampling programs from such a
hypothetical posterior, domain scientists would be able to efficiently
probe the hypothesis space because inadequate programs are not eval-
uated due to their small or zero posterior probability. In addition to
the computational advantages that stem from a constrained search
space, this particular formulation lends itself to a well-defined and
natural optimization criterion to search for and score probabilistic
(sub)programs; the maximization of the likelihood-ratio, or Bayes fac-
tor between hypotheses. Moreover, this formulation could also be used
to probe the validity of the key assumption in simulation-based inference,
i.e., the assumption that simulation model conforms with nature. Test-
ing for model misspecification under this formulation would thus
correspond to testing whether the sampled residual (sub)programs
are empty.

The above sketches a conceptual picture of a potential hypothesis
search, where the representation of a theory is encoded as a com-
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puter program. Ignoring research avenues such as fast conditional
approximate simulation, program representation and sampling, this
conceptual research avenue actually directly integrates within existing
simulation-based inference workflows. With the added problem that
we now consider various distinct versions of a computer simulator.
Although, parameterized by these subprograms and essentially encod-
ing the likelihood model as p(x | z), where z is a (potentially latent)
program description. While it might seem that this formulation brings
additional problems such as the model parameter space not being
static, it does in fact generalize to the general Bayesian simulation-
based inference setting. The only difference being that the marginal
model p(x) is now defined as

p(x) =
∫

d z p(z)p(x |z), (7.12)

where p(z) is a prior across all potential subprograms. Note that,
much like the likelihood model in simulators, this prior does not
necessarily have to be defined explicitly. Rather, it’s definition can be
done implicitly by means of some sampling or program synthesis
procedure. For instance, syntactic constraints of the programming
language.
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