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Summary
The Graph-Based Optimization Modeling Language (GBOML) is a modeling language for
mathematical programming enabling the easy implementation of a broad class of structured
mixed-integer linear programs typically found in applications ranging from energy system
planning to supply chain management. More precisely, the language is particularly well-suited
for representing problems involving the optimization of discrete-time dynamical systems over
a finite time horizon and possessing a block structure that can be encoded by a hierarchical
hypergraph. The language combines elements of both algebraic and object-oriented modeling
languages in order to facilitate problem encoding and model re-use, speed up model generation,
expose problem structure to specialised solvers and simplify post-processing. The GBOML
parser, which is implemented in Python, turns GBOML input files into hierarchical graph data
structures representing optimization models. The associated tool provides both a command-
line interface and a Python API. It also directly interfaces with a variety of open-source and
commercial solvers, including structure-exploiting ones.

Statement of need
Many planning and control problems (e.g., in the field of energy systems) can be formulated
as mathematical programs. Notably, many models of practical interest can be viewed as
collections of smaller models with some form of coupling between them. Such models display
a natural block structure, where each block represents a small model or component.

Broadly speaking, two classes of tools can be used to implement such models, namely algebraic
modeling languages (AMLs) and so-called object-oriented modeling environments (OOMEs). In
short, AMLs typically allow users to compactly encode broad classes of optimization problems
(e.g., mixed-integer nonlinear programs) while decoupling models and solvers. AMLs can be
either stand-alone (e.g., GAMS (Bussieck & Meeraus, 2004) or AMPL (Fourer et al., 1990))
or embedded in general-purpose programming languages, such as JuMP (Dunning et al., 2017)
(in Julia), Pyomo (Hart et al., 2011) and PuLP (Mitchell et al., 2011) (in Python). They may
also be open-source (e.g., JuMP, Pyomo and PuLP). On the other hand, OOMEs usually make
it easy to construct instances of specific problems from pre-defined components. For instance,
in the field of energy systems, established OOMEs include PyPSA (power flow calculations
and capacity expansion planning) (Brown et al., 2018), Calliope (multi-energy carrier capacity
expansion planning) (Pfenninger & Pickering, 2018) or Balmorel (long-term planning and
short-term operational analyses) (Wiese et al., 2018).

Unfortunately, both AMLs and OOMEs suffer from several drawbacks. More precisely, AMLs
rarely provide language constructs to represent the block structure in a model and typically
fail to take advantage of it, although this may be used to simplify problem encoding (e.g.,
by treating blocks as independent objects), enable model re-use (e.g., by allowing the import
of model components), speed up model generation (e.g., by parallelising block generation)

Miftari et al. (2022). GBOML: Graph-Based Optimization Modeling Language. Journal of Open Source Software, 7(72), 4158. https:
//doi.org/10.21105/joss.04158.

1

https://doi.org/10.21105/joss.04158
https://github.com/openjournals/joss-reviews/issues/4158
https://gitlab.uliege.be/smart_grids/public/gboml
https://doi.org/10.5281/zenodo.6470268
https://github.com/odow
https://github.com/leonardgoeke
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.04158
https://doi.org/10.21105/joss.04158


and facilitate the use of structure-exploiting solution algorithms. Extensions to established
AMLs were proposed to address some of these concerns, such as StructJuMP (Huchette &
Developers, 2021), PySP (Watson et al., 2012) and SML (Colombo et al., 2009) (extending
JuMP, Pyomo and AMPL, respectively). However, these extensions were usually designed with
the primary aim of handling very specific problem structures (e.g., dual block angular structures
found in stochastic linear programming models). On the other hand, OOMEs typically lack
expressiveness and adding components is often cumbersome. Furthermore, they very often rely
on established AMLs themselves and thus automatically inherit any shortcomings of the AML
on top of which they are built (e.g., it may not be open-source).

The tools that appear closest in spirit to our own are the recent SMS++ modeling framework
(Frangioni et al., 2021) and Plasmo.jl (Jalving et al., 2020) (an extension of JuMP). The
former makes it possible to implement fairly general block-structured models and aims to
ease the development and deployment of advanced structure-exploiting algorithms. The latter
relies on a graph abstraction of optimization models to enable modular model construction,
partitioning and the use of structure-exploiting algorithms.

Against this backdrop, GBOML was designed to blend and natively support some key features
of AMLs and OOMEs. Notably, it was built with the following goals in mind:

• being open-source and stand-alone
• allowing any mixed-integer linear program to be represented
• enabling any hierarchical block structure to be exposed and exploited
• facilitating the encoding and construction of time-indexed models
• allowing low-level model encoding to be close to mathematical notation
• making it easy to re-use and combine components and models
• interfacing with commercial and open-source solvers, including structure-exploiting ones

An early version of the tool was used in a research article studying the economics of carbon-
neutral fuel production in remote areas where renewable resources are abundant (Berger et al.,
2021). The tool is also used in the context of a research project focusing on the design of the
future Belgian energy system.

Example
Next, we describe a short example illustrating how GBOML works. First, a model must be
encoded in a GBOML input file. An input file implementing a stylised microgrid investment
planning problem is shown below.

#TIMEHORIZON

T = 8760; // planning horizon (hours)

#NODE SOLAR_PV

#PARAMETERS

capex = 600; // annualised capital expenditure per unit capacity

capacity_factor = import ”pv_gen.csv”; // normalised generation profile

#VARIABLES

internal: capacity; // capacity of solar PV plant

external: power[T]; // power output of solar PV plant

#CONSTRAINTS

capacity >= 0;

power[t] >= 0;

power[t] <= capacity_factor[t] * capacity;

#OBJECTIVES

min: capex * capacity;

#NODE BATTERY
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#PARAMETERS

capex = 150; // annualised capital expenditure per unit capacity

#VARIABLES

internal: capacity; // energy capacity of battery storage system

internal: energy[T]; // energy stored in battery storage system

external: power[T]; // power flow in/out of battery storage system

#CONSTRAINTS

capacity >= 0;

energy[t] >= 0;

energy[t] <= capacity;

energy[t+1] == energy[t] + power[t];

#OBJECTIVES

min: capex * capacity;

#HYPEREDGE POWER_BALANCE

#PARAMETERS

electrical_load = import ”electrical_load.csv”;

#CONSTRAINTS

SOLAR_PV.power[t] == electrical_load[t] + BATTERY.power[t];

The optimization horizon is defined at the beginning of the GBOML input file. Two node
blocks then define the solar photovoltaic (PV) and battery storage system models, respectively.
Each node has its own parameters, variables, constraints and objectives. Finally, a hyperedge
block is used to ensure that power flows in the microgrid are balanced and the electricity
demand is satisfied.

Then, the command-line interface or the Python API may be used to generate the model and
solve it. Model generation can be parallelised based on the block structure provided by the
user and models can be passed to open-source or commercial solvers. Direct access to several
solver APIs is provided, allowing users to tune algorithm parameters and query complementary
information (e.g., dual variables, slacks or basis ranges, when available).

Finally, results are retrieved and can be either printed to file or used directly in Python. Two
file formats are supported at the time of writing, namely CSV and JSON.

The full GBOML syntax is described in the online documentation, along with advanced features
such as model imports and hierarchical model construction as well as solver options. The files
required to run the example above are available in the GBOML repository.
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