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Abstract

In medical research, missing data is common. In acute diseases, such as traumatic brain injury (TBI), even well-conducted

prospective studies may suffer from missing data in baseline characteristics and outcomes. Statistical models may simply drop

patients with any missing values, potentially leaving a selected subset of the original cohort. Imputation is widely accepted by

methodologists as an appropriate way to deal with missing data. We aim to provide practical guidance on handling missing data

for prediction modeling. We hereto propose a five-step approach, centered around single and multiple imputation: 1) explore

the missing data patterns; 2) choose a method of imputation; 3) perform imputation; 4) assess diagnostics of the imputation; and

5) analyze the imputed data sets. We illustrate these five steps with the estimation and validation of the IMPACT (International

Mission on Prognosis and Analysis of Clinical Trials in Traumatic Brain Injury) prognostic model in 1375 patients from the

CENTER-TBI database, included in 53 centers across 17 countries, with moderate or severe TBI in the prospective European

CENTER-TBI study. Future prediction modeling studies in acute diseases may benefit from following the suggested five steps

for optimal statistical analysis and interpretation, after maximal effort has been made to minimize missing data.
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Introduction

Missing data is a common problem in medical research.1

Missing data occurs in studies with routinely collected data,

and even if data are prospectively collected with attempts to min-

imize the occurrence of missing data (Box 1).

Prediction modeling is central to many domains of medicine, such

as screening, diagnostics, and therapy. It is a growing research area.2,3

Predictions are based on the combination of characteristics for a

diagnostic outcome (e.g., presence of abnormalities at computed

tomography [CT] scan) or prognostic outcome (e.g., Glasgow Out-

come Scale [GOS] at 6 months).3 Potential predictors commonly

relate to the characteristics of the patient, disease, or treatment.4

Statistical models typically drop patients with any missing values

from analyses. Prediction research is particularly sensitive to the

occurrence of missing data, because it relies on the statistical com-

bination of multiple variables, which may each have missing values.

Analyzing only the available data (often referred to as a ‘‘complete

case analysis’’) is the most basic approach to deal with missing data.

It decreases the available information for statistical analyses. More-

over, it could potentially introduce selection bias given that patients

with observed characteristics may be systematically different from

patients with missing values.2,5,6 For example, patients with missing

baseline characteristics may be a selected subgroup, because labo-

ratory tests or imaging might not be ordered for less-severe cases.

Although the problem of missing data is complex, some meth-

odological standards to deal with missing data are available.

General recommendations to handle missing data have been sug-

gested.7 One generic recommendation is that multiple imputation is

the method of choice in many areas of medical research.8 Im-

putation exploits the availability of information from non-missing

predictors for partly complete patients rather than discarding these

Box 1: Exemplary Causes of Missing Data

Missing data occurs for example when there is no response to

surveys or follow-up appointments; or if laboratory tests or im-

aging were not ordered for all patients; or when a score or test was

simplified instead of properly executed to save time at a busy

emergency department. For example, the Glasgow Coma Scale

(GCS) may be noted as 13 instead of the detailed score (e.g.,

E5M6V2); or ‘‘Pupils Equal And Reactive to Light’’ instead of the

exact diameters of the pupils with and without exposure to light.
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patients. A recent systematic review showed that missing data is

reported inconsistently and often handled suboptimally, under-

scoring the importance of a practical framework.9

We aim to provide guidance to deal with missing data in pre-

diction research. Some nuances and methodological considerations

are provided in text boxes. We first address various general issues in

prediction modeling and handling of missing data, specifically with

imputation procedures. We then propose a five-step approach to

perform imputation as a way to deal with missing data, illustrated

with a case study in a multi-national, prospective cohort study for

traumatic brain injury (TBI): CENTER-TBI.10,11

Principles of prediction modeling

Prediction modeling entails the prediction of a clinically relevant

outcome based on the combination of multiple predictors’ effects.12

Prediction models typically provide estimates of the relative effect

of predictors in the model and absolute risk predictions for indi-

vidual patients. The CRASH (Corticosteroid Randomisation After

Significant Head Injury) and IMPACT (International Mission on

Prognosis and Analysis of Clinical Trials in Traumatic Brain In-

jury) models are examples of such prediction models in TBI.13,14

These models predict mortality and 6 months’ unfavorable out-

come according to the GOS.13,15,16

The performance of such models is ideally assessed in external

validation studies, where predictions of an existing model are

compared to observed outcomes in a new setting. For binary out-

comes, the performance is commonly assessed using discrimina-

tion and calibration.8 Discrimination refers to the ability of a

prediction model to discriminate between patients with and without

the outcome of interest. It is commonly assessed by the area under

the receiver operating characteristic curve (AUC; or c-statistic).

Calibration refers to the agreement of predicted probabilities of a

model and observed outcomes (e.g., ‘‘if the risk of death is x%, do

x% of the patients with this prediction actually die?’’). Calibration

can be assessed graphically and can be summarized according to

calibration-in-the-large (measuring under- or overestimation of the

average predicted risk) and calibration slope (measuring the aver-

age strength of overall predictor effects).17

The current tutorial gives guidance on how to deal with missing

data to use all available information in a data set to develop a

prediction model and validate an existing model. Effectively, this

boils down to correct estimation of the parameters in the model at

model development. At validation, we apply the model to new data

and compare the observed outcome to the predicted risk.

Mechanisms of missing data

To describe missing data, a paradigm of three distinctive mech-

anisms for missing data has been established (Table 1).5 First,

Missing Completely At Random (MCAR) arises when missingness

is not associated with observed or unobserved variables. For ex-

ample, this missingness arises when administrative errors or acci-

dents occur. Second, Missing At Random (MAR) is defined as

missingness that is associated with observed variables. For example,

patients with lower injury severity scores may have more missing

CT scans. Finally, Missing Not At Random (MNAR) arises when

the missingness is associated with unobserved variables or the value

of the variable itself. For example, patients may be less likely to fill

in their income in a survey if their income is substantially higher

than average. Both missingness in the predictors and the outcome

can be categorized according to these missing data mechanisms. An

example for MNAR in the outcome is that patients may not return

for follow-up visits if they are doing very poorly or very well.

Methods for imputation

The most basic method for dealing with missing data is a complete

case analysis. This leads to loss of statistical power18 and, potentially,

to bias in risk predictions.18 The most problematic consequence of less

statistical power is a higher risk of overfitting of a prediction model.

The model performs much better in the original data set (too ‘‘opti-

mistic’’) than the model will perform when it is used to calculate risk

for new patients. Bias in risk prediction as a result of a complete case

analysis may also result in a systematically over- or underestimated

risk (poor calibration-in-the-large). Therefore, many methodologists

and journal editors currently recommend to statistically impute

missing data.8,19 For such imputation, we have to assume that the

mechanism of missingness is MCAR or MAR, not MNAR. Further,

we assume that the imputation model, which only includes observed

variables, is valid. We will discuss variants of single imputation and

multiple imputation (Table 2). Multiple imputation, because of its

theoretical attractiveness, has become a methodological standard. But

as every method has its limitations,20 an educated and balanced choice

based on the research aim should be made.

Single imputation. Replacing the missing value by a different

value is referred to as single imputation. We describe two distinct

methods for replacing this value: average imputation and single im-

putation using conditional estimates. The theoretical disadvantage of

single imputation in general is that the uncertainty in imputation is not

incorporated in the final analysis (Box 2).

Imputing the value by the average value as the best estimate for

the missing value may translate to taking the mean for normally

distributed variables, median for non-normally distributed vari-

ables, and mode for categorical variables. This method typically

results in biased estimates of parameters under any missing data

mechanism at model development (Box 3).

Table 1. Missing Data Mechanisms for Predictors with Examples
2

Label Missing mechanism Description Clinical example

MCAR Missing completely at
random

Administrative errors, accidents A batch of blood samples got lost.

MAR Missing at random Missingness related to known patient
characteristics

Older patients have more difficulty to come to follow-up
visits.

MNAR Missing not at random Missingness related to 1) the value of
the predictor, or 2) to variables not
available in the analysis.

1) Self-report of income in a survey: lower incomes are less
likely to be reported.

2) Patients with impaired cognition (not measured) cannot
understand to fill in a neuropsychological test.
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Single imputation by conditional estimates translates into using

predictions of the most likely value of the missing observation from

a regression model. Both categorical and continuous predictors

may be estimated by a variety of regression models (see step 3:

performing imputation). Such conditional imputation provides

better point estimates of the prediction model than average impu-

tation. We may also draw imputed values from a distribution of

likely values.1 Different imputed data sets then yield different es-

timates in the statistical analysis. Although the random drawing of

values now incorporates some uncertainty, the final analysis still

treats these imputed values as observed. Because this technique

incorporates existing correlations in observed data, it is not only

valid under MCAR, but also under MAR.

Multiple imputation. Multiple imputation is an extension of

single imputation using conditional estimates and is valid under the

same missing data mechanisms (MCAR, MAR).1 Instead of im-

puting one value per patient per missing value, multiple values are

drawn with models fitted on the observed variables and stored in

multiple completed data sets. The statistical analysis is then per-

formed on each imputed data set separately, and the results can be

pooled using specific rules (‘‘Rubin’s rules’’; Box 4).22

Methods: Case Study

As a case study, we consider updating (or re-estimation) and

external validation of the IMPACT prognostic model in the

CENTER-TBI study. The IMPACT model aims to predict 6-month

mortality and unfavorable outcome in moderate and severe TBI

patients.13 With good discriminatory performance (AUC *0.8013)

and multiple external validation studies,23–26 the IMPACT model

might be considered a rather robust prediction model. The full

model contains 10 predictors, with 18 logistic regression coeffi-

cients (Supplementary Appendix SA, Table SA1).27 It was devel-

oped in the IMPACT data base, a collection of eight trials and three

surveys, with a total of 8509 patients.28

We validated this model in the CENTER-TBI data base, a Eu-

ropean multi-national, prospective cohort study including all se-

verities of TBI.10,11 We selected 1375 patients with moderate (GCS

9–12) and severe (GCS 3–8) TBI (Supplementary Appendix SA,

Table SA1), included in 53 centers across 17 countries.

The analyses described in this article were all performed in the

freely available R software (A language and environment for sta-

tistical computing; R Foundation for Statistical Computing, Vienna,

Austria). The code with explanations is available in Supplementary

Appendix SC.

Results: Five Steps for Missing Values

We consider five steps to deal with missing data in prediction

research (Table 3).

Table 2. Methods of Dealing with Missing Data

Method Description Valida under

Complete case Drop cases with missing values. MCAR
Average imputation Replace the missing values by the average. —
Single imputation by conditional estimation Replace the missing values by the most likely value based on the

observed data.
MCAR, MAR

Multiple imputation Replace the missing values by the most likely values based on the
observed data, multiple times.

MCAR, MAR

Multiple imputation, including the outcome Multiple imputation, also imputing the outcome MCAR, MAR

avalid here is defined as providing unbiased estimates of the final parameters in the model.

Box 3: Average Imputation and Bias toward the Null

Average imputation seems like a non-educated guess for the

missing observation: The distribution can create a non-natural

spike of the mean. This simple imputation approach leads to

bias in the estimated predictor effects. This bias is usually

toward the null, which makes the approach generally conser-

vative. This behavior is similar to shrinkage of regression

coefficients toward the null, as can be achieved with penalized

regression methods.21 Average imputation biases the param-

eters toward the null even when the sample size is large.

Therefore, penalized regression models are preferred to ad-

dress overfitting rather than average imputation.

Box 4: Rubin’s Rules for Prediction Research

Estimates of regression coefficients and performance mea-

sures are simply averaged. For the standard error, the between-

imputation variance of the coefficients and performance

measures is added to the average variance within imputation

sets. Therefore, multiple imputation leads to a better estimation

of variability in the parameters than single imputation.5,6,22

Modern software makes it relatively easy to implement multiple

imputation for prediction models based on regression tech-

niques.22 The situation is more complex for machine learning

algorithms, where pooling across data sets is usually not so easy.

For example, classification trees will differ between imputed

data sets and cannot be combined directly.

Box 2: Single Imputation and Uncertainty

The main theoretical disadvantage of single imputation is that

the uncertainty of the imputed values is not fully taken into ac-

count in the estimation of the final model at development: The

imputed values are used as observed values in the final analysis.

The result is that the standard errors (a measure of uncertainty) are

too low. However, it can be argued that this disadvantage is not

relevant. If our main aim is to predict the most likely risk for a

new patient, the reliability of that prediction is more important

than the uncertainty in the estimated parameters. Notably, ma-

chine learning algorithms do not incorporate uncertainty into their

parameter estimates and are only compatible with single data sets.

Single imputation may also be considered when working with

very large sample sizes to reduce the computational time.
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D
ow

nl
oa

de
d 

by
 L

ie
ge

 U
ni

ve
rs

ity
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

2/
24

/2
2.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



Step 1: Explore missingness

The first step in handling missing data is inspecting the data set

and exploring missingness of variables (Table 3). Recommended

steps are to assess:

1. The quantity of missingness: the proportion of missing ob-

servations in each variable

2. Patterns of missingness: the frequency of specific missing

data patterns per patient

3. Correlation between variables

4. Associations between missingness in one variable and other

variables

One of the main considerations for missing data is what pro-

portion of missingness in a predictor is still acceptable when im-

puting missing data. The stability of imputation declines with

higher proportions of missingness.29 A general advice is that the

researcher should decide what proportion can be accepted based on

their research question and their context (Box 5).

The quantity and pattern of missingness can be visualized (Fig. 1).

If a particular pattern per patient arises more frequently than other

patterns, a reason should be hypothesized. In our example, glucose

and hemoglobin are often missing together in our case study. This

might be MCAR: If no blood sample was taken (perhaps by mistake),

both glucose and hemoglobin are missing. Similarly, imaging char-

acteristics are also missing together frequently: If the patient did not

undergo CT scanning, all these variables are missing together. This

could be considered as MAR: Less-severe patients (higher GCS

scores) are less likely to undergo a CT scan. Missing data mechanisms

should always be assessed critically. Evaluating specific combina-

tions of missingness may help to do so.

Imputation is more efficient if variables are correlated. A corre-

lation plot can be useful (Fig. 2). When highly correlated variables

are identified (r close to 1, e.g., hemoglobin and hematocrit), only

one of the highly collinear variables is sufficient to use, preferably

the variable with the lowest proportion of missingness.

Associations between missingness in one variable and other

variables can be investigated to test the MCAR assumption. This

can be done by logistic regression analysis with missingness of a

variable as the dependent variable. All other variables are the

predictors. For example, we observe that the variable ‘‘pupils’’ is

more often missing in patients with higher motor GCS (Supple-

mentary Appendix SA, Fig. SA1). Although MCAR versus non-

MCAR can be tested, the practical value remains unclear: There is

no consequence for the consecutive strategy. What would be useful

instead is testing MAR versus MNAR. However, this is impossible,

because the information to test MAR versus MNAR is missing.

Therefore, we still need to make the assumption that the data are

MAR, not MNAR, when performing imputation.

To increase the likelihood for the MAR assumption to hold,

auxiliary variables may be added to the imputation model. Aux-

iliary variables should meet two criteria. First, they should be fre-

quently observed: If the auxiliary variable is often missing together

with the variables of interest, there is no information gained by

adding this variable. Second, the auxiliary variable should contain

statistical information about the variables of interest: Variables that

are not associated with the predictor variables do not add infor-

mation to the imputation model. An example of a potential auxil-

iary in our data set is Injury Severity Score (ISS): It was present for

1365 of 1375 patients (99.3%) in our data set and was correlated

with some of the IMPACT predictors (Fig. 2). Moreover, the

analysis of variance test of ISS across motor GCS or pupil cate-

gories was statistically significant (both, p < 0.001). Additionally,

adding variables which correlate with other variables might in-

crease the adequacy of the imputation model.31,32

In conclusion, exploring missing data should at least assess the

quantity and patterns of missingness. This exploration should as-

sess all variables that will be added to the imputation model: all

Table 3. A Five-Step Approach to Deal with Missing Data in Prediction Research

Step Action Main objective

1 Explore missingness Assess the quantity and pattern of missingness.
2 Choose imputation method Balance the benefits and harms of alternative imputation methods in relation to the prediction

question.
3 Perform imputation To produce one or multiple imputed data sets
4 Diagnostics Assess the convergence of the iteration process, and compare the imputed data with the original

data set.
5 Analyze Estimate the regression coefficients in a prediction model, or assess performance for an existing

prediction model.

Box 5: Maximum Proportion
of Missingness to Impute

No consensus has been reached about a maximum limit of

missingness per variable or per patient. Limits may depend on

the specific research question and context.2 For example,

when we are interested in the diagnostic value of a specific

biomarker, we would probably not impute missing values for

the biomarker and be liberal in imputing missing values for

other covariates that may potentially act as confounders. In

contrast, when we consider prediction based on the combi-

nation of predictors, we may focus on including strong pre-

dictors with few missings (which are imputed). Depending

on what assumption the researcher is willing to make, multi-

ple imputation can be used for different situations: If MCAR

or MAR is plausible, multiply imputing *10–20% missing

values per variable is generally acceptable, whereas under

MCAR perhaps 50% missing values can be imputed without

much instability in predicted values.2 The larger the propor-

tion of missing values, the more important that you specified

the imputation model correctly, or else the final parameters

might be biased.29 Nevertheless, when the model is correctly

specified, multiple imputation still reduces bias compared to a

complete case analysis.30 Multiple imputation accounts for

the uncertainty of the imputed values in the standard errors of

the final model, but relies on the validity of the imputation

model. Higher proportions of missingness motivate a higher

number of imputation rounds.1
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predictors and the outcome. Additionally, we should identify

highly correlated variables and select the one that is most relevant

and most frequently observed to add to the imputation and pre-

diction model. Moreover, we can test MCAR versus non-MCAR.

For imputation of predictors, the result of this test may not impact

the strategy to deal with missing values, because we still need to

assume that the data are MAR. Imputing the outcome might be

especially beneficial when the outcome is non-MCAR (Box 6).

Finally, we should focus on adding auxiliary variables in the im-

putation model, such as ISS in this case study. Adding these vari-

ables increases the likelihood of the MAR assumption to hold.

Step 2: Choose method of imputation

The approach to deal with missing data may depend on the size

of the data set and the proportion of missing values (Table 4).

With smaller data sets (say total n < 1000, or <100 events), mul-

tiple imputation is the default method of choice to estimate the rel-

ative effects of predictors, with the appropriate associated standard

error. However, we might also consider single imputation for pre-

diction of absolute risk, especially if the sample size is large (Box 1).

Variability between imputations may be substantial, especially

with a large proportion of missing values. Some researchers might

find average imputation attractive, which may be defendable in

situations with a very small proportion of missingness.

Step 3: Performing imputation

Single and multiple imputation. For single and multiple

imputation, flexible imputation using chained equations is the

current standard, for example with the MICE package in R1 or the

mi impute chained command in Stata. The procedure uses an iter-

ative imputation method, to arrive at stable estimates of imputa-

tions for unobserved variables. There are various models within the

MICE framework to impute with, the most standard options are

Bayesian linear regression (‘‘norm’’) for normal distributed vari-

ables, predictive mean matching (‘‘pmm’’ or ‘‘midastouch’’) for

non-normally distributed continuous variables, logistic regression

(‘‘logreg’’) for binary categorical, polytomous regression (‘‘poly-

reg’’) for categorical variables with more than 2 categories, and

proportional odds logistic regression (‘‘polr’’) for when a catego-

rical variable is ordered.

We draw one imputed value for a single completed data set (single

imputation), or create multiple copies of the data set (multiple im-

putation). Although Rubin famously claimed that three copies were

enough for stability,22 five data sets are now seen as the minimum.

Creating even more imputed data sets often might be more benefi-

cial, for example when instability is expected because of substantial

proportions of missing values,1 for example 20 imputed sets if 20%

of the values of a predictor are missing.

Finally, it is important to include the outcome in the imputation

model. Not including the outcome in the imputation model can

result in biased coefficients of the prediction model (Box 6).33FIG. 1. Quantity and pattern of missingness for each variable
in the Center-TBI data base (n = 1375). On the top of the graph,
the proportion of missingness is shown. In the table, the patterns
of missingness are shown, with cell size proportional to number
of patients. Each row represents a patient group, and the dark
blocks indicate combinations of variables that are missing.
A total of 589 of 1375 (43%) had fully complete data. CTClass,
Marshall CT class; EDH, epidural hematoma; Hb, hemoglobin;
mGCS, modified Glasgow Coma Scale; TSAH, traumatic sub-
arachnoid hemorrhage.

Box 6: Imputation for Predictors and/or Outcome

A distinction should be made for imputation of missing

values of predictors versus outcomes. It is generally accepted

that it is important to include the outcome when imputing pre-

dictor values. More controversial is the possibility to impute the

outcome. A recent article discusses handling missing outcome

data in TBI studies in general.9 From a predictive modeling

perspective, imputation seems counterintuitive: We aim to

predict the outcome; how could imputation help in this case?

First and foremost, the average risk estimate might be biased

if we exclude patients with missing outcomes: If those patients

had on expectation worse outcomes, the prediction model will

underestimate the average risk. An exemplary study is the ex-

ternal validation of various CT-decision rules by Foks and

colleagues,34 where the outcome (intracranial abnormality) was

imputed to arrive at unbiased estimates of sensitivity and

specificity. Excluding patients without CT scans, which are

likely less-severe patients, led to a higher estimated sensitivity

and lower specificity of the decision rules.

A second reason for imputation of the outcome is that there is

more information available to accurately predict the outcome.

This may be the case when there are variables measured after

baseline that are related to the outcome, or when the outcome is

measured repeatedly. For example, we may have assessed quality

of life at 3, 6, and 12 months. If quality of life score is 50% at 3 and

12 months, it is likely 50% at 6 months as well. We note that

repeated assessments of outcomes can also be assessed with

mixed-effects models or state transition models.35

Patients with imputed outcomes can be excluded from the

final analysis, while they were included in the imputation pro-

cess. This has been labeled multiple-impute-and-delete (MID).36

The final analysis is performed only on the set of patients with

observed outcomes. The advantages of MID over multiple im-

putation may be debated.2,37,38

In conclusion, it is important to include the outcome as

predictor in the imputation model. It is also statistically possible

to impute the outcome. Whether or not to include patients with

imputed outcomes in the final analysis depends on the research

question: At model development, regression coefficients may

generally be similar. But imputation of outcome may be bene-

ficial for better estimation and assessment of average risk, when

the outcome is non-MCAR.

1846 GRAVESTEIJN ET AL.
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Table 4. Attractiveness of Imputation Method in Prediction Research for Scenarios with Small

or Large Data Sets with Small or Large Proportions of Missing Data

Method

Small data set,
large proportion
of missingness

Small data set,
small proportion
of missingness

Large data set,
large proportion
of missingness

Large data set,
small proportion
of missingness

Complete case – – – +/–
Average imputation – +/– – +/–
Single imputation – +/– +/– +
Multiple imputation + + + +/-

FIG. 2. Correlation plot between continuous variables, with Spearman’s rank-correlation coefficients (numbers with p values: *<0.05,
** <0.01, *** <0.001). A strong correlation is observed between Hb and Ht (r = 0.88), whereas glucose increases somewhat with age
(r = 0.31). Hb, hemoglobin; Ht, hematocrit; ISS, Injury Severity Score.
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Step 4: Diagnostics

After imputation, the adequacy of the imputation procedure needs

to be checked. For any imputation method, it is advised to compare

the distribution of imputations with the distribution of the observed

values data set (Fig. 3). If distributions do not match, the question is

what causes this difference. The distributions of average imputed

values are different when compared to the original distribution in

our case study. Distribution of multiple imputed data corresponds

well with distribution of the observed variables. Moreover, conver-

gence of the algorithm may be checked (Box 7).

Step 5: Analysis

The final step is to use the (imputed) data set for the analysis. As

stated before, we consider model development and model validation.

At model development, we fit the model of interest (Box 8) for

complete case analysis, average imputation, and single imputation

by conditional estimates. For multiple imputed data sets, the ana-

lyses are performed on each of the separate imputed data sets, and

the results are pooled using Rubin’s rules22 (see Supplementary

Appendix SD).

When we re-estimated the IMPACT model, we found that most

imputation methods led to similar estimates of the regression co-

efficients (Fig. 4). The only imputation method with markedly

different estimates was the complete case analysis. Indeed, rela-

tively few patients were in the complete case data set (n = 589)

compared to the total cohort (n = 1375). Estimation of predictor

effects suffers from small numbers in the complete case analysis.

Interestingly, the refitted coefficients were generally more extreme

(further away from 0) compared to the estimates from the IMPACT

data sets.

The estimated prediction model should be validated to ensure

reliable risk prediction for new patients.42 At the developmental

stage, one should at least perform some form of internal validation.

A recommended method is a bootstrap procedure (Box 9).43

A more rigorous test for model performance is external valida-

tion: The model is applied to a new data set of patients not used at

model development. The previously fitted model (with one set of

coefficients) can be applied to predict the outcome in each imputed

data set. In each data set, the performance of the model can be tested

and consecutively pooled. For pooling of the calibration intercept

and calibration slope, Rubin’s rules (Supplementary Appendix D)

can be used to estimate the mean performance and the variance. For

the c-statistic, the approach described above (pooling the bootstrap

replicate results) can be used. These approaches were performed

for validation of the IMPACT model in CENTER-TBI: It was

confirmed that the complete case strategy results in different esti-

mates for discrimination and calibration (Fig. 6). The model cali-

bration was worse in this small subset. In contrast, discrimination

Box 7: Convergence of Imputation
with Chained Equations

Single and multiple imputation using the mice algorithm is an

iterative process where missing values in multiple predictors are

imputed sequentially and multiple times. This iterative process

starts with a ‘‘best guess’’ of a missing value and refines this in

subsequent iterations. This iterative process is finished when the

algorithm that imputes missing values is converged. Whether or

not convergence is reached can be studied using diagnostic plots

(Supplementary Appendix SB). If these diagnostic plots show

non-convergence of the algorithm, the number of iterations can

be increased or the imputation model can be refined. Con-

vergence problems can occur especially when imputing missing

values for variables that are functionally dependent on each

other; for instance, when imputing missing values for weight

using the body mass index and, subsequently, imputing missing

values for body mass index using weight.1

Box 9: Bootstrap Procedure for Internal Validation

The possible bootstrap validation procedure is visually dis-

played in Figure 5: After sampling patients with replacement,

the model is fitted on that sample (the bootstrap sample) and its

performance assessed in the bootstrap sample and the original

data. The difference indicates the optimism in performance.

This procedure is repeated many times (e.g., 200 times), and the

average is taken.44 This procedure is less straightforward after

multiple imputation, given that we have multiple data sets on

which we can perform bootstrapping and different approaches

to pool results. Simply taking the average of the optimism to

correct the average of the apparent performance over multiple

imputed data sets may be reasonable. Simulation studies show

that this approach produces quite valid estimates.45
Box 8: Model Selection and Multiple Imputation

Model selection often precedes model estimation. Two

strategies are common. First, step-wise selection may be per-

formed with a forward selection strategy. The computer selects

predictors based on a significant contribution over a smaller

model. If step-wise selection is used, backward elimination is

preferable. Predictors are dropped from a full model if this does

not result in a significantly worse model fit. The second strategy

bases selection on subject knowledge, from earlier studies and

or from medical experts. This may be the most advantageous in

terms of external validity39,40: By selecting a model with well-

known predictors, the predictions become is less dependent on

the specifics of the current data set at hand.

For complete case analysis and single imputation, these se-

lection strategies can be implemented directly. For multiple

imputed data sets, the last strategy (fitting a model based on

earlier knowledge) can be directly implemented.

For model selection using multiple imputed data, there are

several potential approaches41:

1. Majority: Select variables that are included in the ma-

jority of the methods.

2. Stack: Stack the imputed data sets into a single data set

and use weighting to adjust for multiple occurrences of

the same patient and apply the usual variable selection

methods.

3. Pool and test: Perform step-wise selection based on the

pooled regression coefficients and associated standard

errors using the Wald test (‘‘D1’’ function in mice) or a

likelihood ratio test (‘‘D3’’ function in mice).
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FIG. 3. Distribution of variables before and after imputation (panel A: average imputation; panel B: multiple imputation). For
categorical variables, the proportion of the total number of observed values is shown, and for continuous variables, the median and
interquartile range are shown. Pupils indicates pupillary reactivity. CTClass, Marshall CT class; EDH, epidural hematoma; Freq,
frequency; Hb, hemoglobin; Hypot, hypotension; IQR, interquartile range; TSAH, traumatic subarachnoid hemorrhage.
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FIG. 3. (Continued).
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was better and more uncertain. Interestingly, the multiple imputed

data sets with imputed outcome (MI+y) had slightly worse calibra-

tion than the data sets where the patients with missing outcome were

excluded. Interestingly, most imputations of the outcome resulted

in a positive outcome (Supplementary Appendix SA, Fig. SA2).

Finally, when calibration is poor, the model can be recalibrated

by re-estimating the model parameters in the new data set, and

again validated. This iterative process is inherent to prediction re-

search to ensure applicability and reliability of a prediction model.3

Discussion

This tutorial considered the role of imputation approaches to

alleviate the problem of missing data in prediction research in acute

medicine. There has been much debate about the reliability and

applicability of prediction model studies, even when published in

high-impact journals, because of their non-adherence to method-

ological principles.46 In this context, we recommend multiple im-

putation, because it is a readily implementable procedure and

generally superior to simple approaches, such as a complete case

analysis. However, simpler imputation methods (single imputation

by conditional estimates, average imputation) can be considered

when the proportion of missing data is small and the database large

(Table 4). Technically, it is important to include the outcome in the

imputation model. For prediction of absolute risk, it may even be

considered to also impute missing outcomes. Although this ap-

proach is counterintuitive, it can increase statistical efficiency and

avoid biased average risk estimates. It should be noted that the

guidance provided in our tutorial needs further underpinning.

Specifically, more evidence from simulation studies is needed.

FIG. 4. Re-estimation of the IMPACT model for mortality in the completed Center-TBI data sets. The IMPACT square represents the
point estimate of the IMPACT model in the original data set (18). The complete case data set includes 589 patients, the MI + y data set
contains 1375 patients, whereas the other imputed data sets contain 1077 patients. CC, complete case; CTClass, Marshall CT class;
EDH, epidural hematoma; IMPACT, International Mission on Prognosis and Analysis of Clinical Trials in Traumatic Brain Injury; MI,
multiple imputation; MI+y, multiple imputation, also the outcome; SI, single imputation by conditional estimates; TSAH, traumatic
subarachnoid hemorrhage.
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Other approaches

Next to imputation, there are other relevant approaches to deal

with missing data. We will discuss two of these approaches.

A promising strategy to deal with missing data at external val-

idation relies on pattern submodels.47 Models are fitted in a de-

velopment setting for each pattern of missingness. For example,

one submodel might fit all predictors except for age in patients with

non-observed age values, one submodel might fit all predictors

except for sex and age in patients with non-observed age and sex

values, and so forth. These models might be more robust, given that

in contrast to imputation, they do not assume MAR.47 Further, these

models are practical in the real-world scenario: When a prediction

needs to be made for a new patient, but not all predictors are

measured, these submodels can still be applied. When imputation is

used to develop a model, as we have advocated, either all predictors

need to be collected or imputed again at validation. The sample

sizes needed for validation with pattern submodels are larger than

with imputation, given that a reasonable number of patients are

needed for each missing data pattern.

The second other strategy to deal with missing data is inverse

probability weighting.48 In this approach, only complete cases are

used, but weighted with the inverse of the probability of being a

complete case. The more likely all variables are observed in a

patient, the less they contribute: They are already represented well

in the data set. This approach aims to mitigate selection bias as-

sociated with complete case analysis. However, because it uses

only a subset of all patients, it may be less efficient than multiple

imputation, which exploits the availability of information on non-

missing predictors for partly complete patients.49

When imputation is the strategy of choice, the suggested five-

step approach emphasizes key considerations and pitfalls which

might be encountered. Additionally, the online vignette provides

directly implementable code in the freely available R software

(Supplementary Appendix C), such that the discussed approaches

can easily be applied for prediction modeling in acute medicine.

The CENTER-TBI Collaborators

Cecilia Åkerlund,1 Krisztina Amrein,2 Nada Andelic,3 Lasse

Andreassen,4 Audny Anke,5 Anna Antoni,6 Gérard Audibert,7

FIG. 5. Diagram showing the recommended technique for internal validation, bootstrapping. First, the model is fitted on the original
data and the performance is determined in this data set. Step 2 is the bootstrap procedure: patients are drawn with replacement from the
original data set to arrive at the bootstrapped data set. The model is again fitted on the bootstrapped data set. Finally, the performance in
the bootstrapped data set and the original data set is obtained. The difference between performance is the optimism. Step 2 is repeated a
number of times (e.g., 1000) to obtain multiple estimates of the optimism. Step 3 is to correct the originally obtained performance by the
mean of the optimism obtained in step 2. IMPACT, International Mission on Prognosis and Analysis of Clinical Trials in Traumatic
Brain Injury.
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