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  Abstract

Word count: 154

 

Being one of the most dynamic entities in the human body, glycosylation of proteins fine-tunes the activity of organismal
machinery, including the immune system, and mediates interaction with the human microbial consortium, typically represented by
the gut microbiome. Using data from 194 healthy people, we conducted an associational study to uncover potential relations
between gut microbiome and blood plasma N-glycome, including N-glycome of immunoglobulin G. While lacking strong linkages on
the multivariate level, we were able to identify associations between alpha and beta microbiome diversity and blood plasma
N-glycome profile. Moreover, for two bacterial genera, Bilophila and Clostridium innocuum group, significant associations with
specific glycans were also shown. Our results suggest a non-trivial, possibly weak link between total plasma N-glycome and gut
microbiome, predominantly involving glycans related to the immune system proteins, including immunoglobulin G. Lager studies of
glycans linked to microbiome-related proteins in well-selected patient groups are required to conclusively establish specific
associations.

   

  Contribution to the field

Assemblages of host glycans play a role of an additional line of defense, protecting the host cells from the binding of pathogens and
giving benefits to symbiotic bacteria. However, the glycome profile isn’t stable - some microorganisms, mostly pathogenic, could
recognize host glycans and invade the cell leading to masking/modification of own glycans by the host. This dynamic process could
be orchestrated by the gut microbiome, potentially allowing intervention by modification of microbiota. The significance of our
research is in the identification of links between microbiome and glycome and discussing the opportunity of potential glycome-
modifying probiotics invention.
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Abstract 25 

Being one of the most dynamic entities in the human body, glycosylation of proteins fine-tunes the 26 

activity of organismal machinery, including the immune system, and mediates interaction with the 27 

human microbial consortium, typically represented by the gut microbiome. Using data from 194 28 

healthy people, we conducted an associational study to uncover potential relations between gut 29 

microbiome and blood plasma N-glycome, including N-glycome of immunoglobulin G. While lacking 30 

strong linkages on the multivariate level, we were able to identify associations between alpha and beta 31 

microbiome diversity and blood plasma N-glycome profile. Moreover, for two bacterial genera, 32 

Bilophila and Clostridium innocuum group, significant associations with specific glycans were also 33 
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shown. Our results suggest a non-trivial, possibly weak link between total plasma N-glycome and gut 34 

microbiome, predominantly involving glycans related to the immune system proteins, including 35 

immunoglobulin G. Lager studies of glycans linked to microbiome-related proteins in well-selected 36 

patient groups are required to conclusively establish specific associations. 37 

 38 

1 Introduction 39 

Protein glycosylation is a post-translational modification that consists of the binding of 40 

carbohydrate chains, or glycans, to the polypeptide backbone. Such modifications regulate protein 41 

activity, their half-life, and even serve as a form of cellular memory, reflecting the past and current 42 

processes in a cell, in both physiological and pathological conditions (Lauc et al. 2016). Changes in 43 

the plasma glycome profile are evident for a number of diseases, including congenital and 44 

multifactorial (Dotz and Wuhrer 2019). By affecting the activity of immunoglobulins and immune 45 

receptors(Cambay et al. 2020; Wolfert and Boons 2013), glycosylation potentially exerts influence on 46 

the interaction between the host organism and its microbiome. It was shown that the gut microbial 47 

community can itself manipulate the glycosylation profile of the enteral epithelium, co-regulating the 48 

gut homeostasis along with the host, but whether these effects remain local or extend organismal-wide 49 

is unknown (see (Kudelka et al. 2020) for a review). The present work aims to study for the first time 50 

potential links between total plasma N-glycome profile and gut mucosal microbiome composition. For 51 

that, we performed analysis of association between the gut microbiome and relative abundance of 52 

different glycans attached to blood plasma proteins (including immunoglobulin G) in a group of 53 

individuals from the CEDAR (Correlated Expression and Disease Association Research) cohort 54 

consisting in 323 well-characterized healthy individuals with intestinal biopsies (ileum, transverse 55 

colon, rectum) available (Momozawa et al. 2018).  56 

2 Material and methods 57 

3.1 Studied population 58 

The analyzed population sample included 194 healthy Europeans visiting the Academic 59 

Hospital of the University of Liège as part of a national screening campaign for colon cancer. Enrolled 60 

individuals were not suffering from any autoimmune or inflammatory disease and were not taking 61 

corticosteroids or non-steroid anti-inflammatory drugs with the exception of low doses of aspirin to 62 

prevent thrombosis (Momozawa et al. 2018).  63 
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3.2 16S rRNA gene sequencing 64 

DNA was extracted from intestinal biopsies of the ileum, transverse colon, and rectum using 65 

QIAamp DNA Stool Mini Kit (QIAgen, Germany). Three fragments of the 16S rRNA gene 66 

representing variable regions V1-V2, V3-V4, and V5-V6 were amplified independently (primer 67 

sequences are shown in Supplementary Table 4). For library preparation, a protocol of two PCR 68 

strategies for locus-specific deep sequencing was used (Jervis-Bardy et al. 2015). Sequencing of the 69 

paired-end libraries was performed on the Illumina MiSeq instrument with a 2×300bp read length. 70 

3.3 Microbiome data processing 71 

The reads were QV 20 trimmed from 3’ end, demultiplexed, primer sequences were removed, 72 

then reads mapping to the human genome were eliminated using the BBTools suite (Bushnell B. 2014). 73 

The pipeline was constructed using Snakemake (Köster and Rahmann 2012). Further analysis was 74 

performed by QIIME 2 2018.11 (Bolyen et al. 2019). As a result, 180.5 mln paired-end reads were 75 

produced, and 156.8 mln reads were retained after a quality check. The paired-end reads were denoised 76 

and joined by the DADA2 plugin (Callahan et al. 2016) using batch-specific trimming length 77 

parameters yielding 9.1±2.0K amplicon sequence variants (ASVs) per run for V1V2, 4.5±1.6K for 78 

V3V4, and 6.8±0.67K for V5V6 amplicon. Taxonomy was assigned at a genus level to all ASVs using 79 

the q2‐feature‐classifier (Bokulich et al. 2018) classify‐sklearn naïve Bayes taxonomy classifier against 80 

the SILVA ribosomal RNA database release 132 (Quast et al. 2013). Accordingly, we obtained 3 81 

microbiota profiles for each of the intestinal locations. 82 

Further analysis was performed in R language, version 3.6.1 (R Core Team 2019). Given the 83 

fact that the contamination from reagents can significantly distort the observed taxa abundance 84 

distributions as described elsewhere (de Goffau et al. 2018; Eisenhofer et al. 2019; Salter et al. 2014), 85 

we aimed to identify taxa that demonstrate abnormal behavior characteristics for contaminants. The 86 

list of taxa determined in negative controls is shown in Supplementary Table 5. We modeled taxa 87 

abundance to reveal genera that behave as contaminants taking advantage of (i) presence of biological 88 

replicates for 25 sample-location combinations, (ii) dependence of taxon abundance on sample 89 

coverage depth for some taxa, and (iii) batch effects traceable due to the presence of 9 sequencing 90 

batches. On central log-ratio transformed data (zero read counts were imputed by a minimal fraction 91 

of the taxon across all samples and locations), we revealed genera that match either of the conditions: 92 

(i) have a significant (p<0.05 after Benjamini-Hochberg correction) negative correlation with coverage 93 

depth, (ii) have low consistency across biological replicates (Spearman correlation r <0.3), (iii) have 94 
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relatively low consistency across biological replicates (r <0.4) and are not characteristic for human gut 95 

microbiota, (iv) have significant run discordance (p<0.05 after Benjamini-Hochberg correction) and 96 

are not characteristic for human gut microbiota. Run discordance and correlation with coverage depth 97 

were calculated using ANOVA of a linear model with the following explanatory variables: patient age, 98 

sex, BMI, smoking status, sample collection batch, intestinal location as well as sequencer run batch 99 

crossed with 16S rRNA amplicon nested into location. On average across locations and amplicons, 100 

2.5% of sequencing reads were mapped to contaminant taxa revealed above that were removed from 101 

further analysis.  102 

Only the samples with at least 10,000x (for V1-V2 and V5-V6) or 5,000x (for V3-V4) coverage 103 

were subjected to further analysis. Taxa that had <0.01% average abundance in any location/amplicon 104 

combination were eliminated. For other taxa, zero read counts were imputed by a minimal fraction of 105 

the taxon across all samples and locations. After performing a centered log-ratio (CLR) transformation, 106 

the data were corrected for technical batch effects (sequencing batch effect, amplicon, and location) 107 

using a linear mixed model implemented in the lme4 package (Bates et al. 2015): 108 

taxon abundance ~ (Run:Amplicon)%in%Location + (1|Date.collection) + Location + Amplicon 109 

Then, the 9 available taxa abundance distributions per sample were averaged to get one more 110 

precise measurement for each individual. Patients’ age, sex, age, body mass index, and smoking status, 111 

were treated as possible covariates. To additionally refine the data, we performed PCA (ade4 package 112 

(Bougeard and Dray 2018)) and added the values of the first 4 principal components (jointly explained 113 

24.2% of the total variance) to the covariates list. 114 

3.4 Plasma N-glycome quantification 115 

Plasma N-glycome quantification of CEDAR samples was performed at Genos (https://genos-116 

glyco.com) by applying the following protocol. Plasma N-glycans were enzymatically released from 117 

proteins by PNGase F, fluorescently labeled with 2-aminobenzamide, and cleaned up from the excess 118 

of reagents by hydrophilic interaction liquid chromatography solid phase extraction (HILIC-SPE), as 119 

previously described (Akmačić et al. 2015). Fluorescently labeled and purified N-glycans were 120 

separated by HILIC on a Waters BEH Glycan chromatography column, 150 × 2.1 mm, 1.7 μm BEH 121 

particles, installed on an Acquity UPLC instrument (Waters, Milford, MA, USA) consisting of a 122 

quaternary solvent manager, sample manager and a fluorescence detector set with excitation and 123 

emission wavelengths of 250 and 428 nm, respectively. Following chromatography conditions 124 

previously described in detail (Akmačić et al. 2015), total plasma N-glycans were separated into 39 125 
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peaks. The amount of N-glycans in each chromatographic peak was expressed as a percentage of the 126 

total integrated area. Glycan peaks (GPs) — quantitative measurements of glycan levels — were 127 

defined by the automatic integration of intensity peaks on a chromatogram. The composition of major 128 

N-glycan structures in chromatographic peaks has been assigned previously (Zaytseva et al. 2020). 129 

3.5 IgG N-glycome quantification 130 

IgG was isolated from 10 ul of human plasma per sample using a 96-well CIM® Protein G 131 

monolithic plate (BIA Separations, Ajdovščina, Slovenia). Subsequently, IgG N-glycans were 132 

enzymatically released by incubation with PNGase F, fluorescently labeled with 2-aminobenzamide, 133 

and cleaned up by HILIC-SPE as previously described (Trbojević-Akmačić, Ugrina, and Lauc 2017). 134 

Following previously established chromatographic parameters, fluorescently labeled and purified IgG 135 

N-glycans were separated into 24 glycan peaks by HILIC on a Waters BEH Glycan chromatography 136 

column (100 × 2.1 mm, 1.7 μm BEH particles), installed on an Acquity UPLC instrument (Waters, 137 

Milford, MA, USA) (Trbojević-Akmačić, Ugrina, and Lauc 2017). The amount of N-glycans in each 138 

chromatographic peak was expressed as a percentage of the total integrated area, and their N-glycan 139 

composition had been assigned previously (Pučić et al. 2011). 140 

3.6 Harmonization of glycan peaks 141 

It is known that the order of the glycan peaks (GPs) on a UPLC chromatogram is similar among 142 

studies (Sharapov et al. 2019). However, depending on the cohort some peaks located near one another 143 

might be indistinguishable. In order to make the protocol of our study applicable to other cohorts and 144 

promote replicational studies, we performed harmonization of total plasma N-glycome samples using 145 

a recently developed protocol (Sharapov et al. 2019). In brief, according to the major glycostructures 146 

within the GPs we manually created the table of correspondence between different GPs (or sets of GPs) 147 

аcross several cohorts, where plasma glycome was measured using UPLC technology. Then, based on 148 

this table of correspondence, we defined the list of 36 harmonized GPs (listed in Supplementary Table 149 

6) and the harmonization algorithm for each cohort, including CEDAR. Using this algorithm, the total 150 

plasma N-glycome profile of each CEDAR sample was harmonized into 36 GPs. 151 

3.7 Normalization, batch correction of GPs, and derived trait calculation. 152 

Normalization and batch correction was performed on harmonized UPLC glycan data. We used 153 

total area normalization (the area of each GP was divided by the total area of the corresponding 154 

chromatogram). From the 36 directly measured glycan traits, 81 derived traits were calculated (see 155 
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Supplementary Table 6). These derived traits average glycosylation features such as branching, 156 

galactosylation, and sialylation across different individual glycan structures, and consequently, they 157 

may be more closely related to individual enzymatic activity. For the original traits, CLR 158 

transformation from the “compositions'' R package (van den Boogaart and Tolosana-Delgado 2008) 159 

was implemented to account for the compositional nature of the data (Galligan et al. 2013). For the 160 

derived traits, different approaches of compositional transformations were used depending on the type 161 

of the features (Supplementary Table 6). Briefly, if a derived trait represented a relative concentration 162 

of the sum of some original traits (e.g. the sum of PGP1, PGP2, and PGP3 in all of 117 traits) in the 163 

whole composition, then the derived trait was computed as the sum of these original traits followed by 164 

CLR transformation (CLR(sum(PGP1..PGP3), other traits)). If a derived trait represented the sum of 165 

original traits in some repertoire of glycans (e.g. the sum of PGP1, PGP2, and PGP3 in the first 10 166 

traits), then at the first stage the subcomposition of this repertoire was obtained 167 

(PGP1..PGP10/sum(PGP1..PGP10)), and the second stage is similar to the previous case. Finally, if a 168 

derived trait represents the ratio between two parts of the composition, the isometric log-ratio 169 

transformation was used (Greenacre 2018).  170 

3.8 Polygenic score derivation and Mendelian randomization 171 

A polygenic risk score, or PRS, aggregates the effects of many genetic variants into a single 172 

number which predicts genetic predisposition for the phenotype. In the standard approach, a PRS is a 173 

linear combination of linear regression effect size estimates and allele counts at single-nucleotide 174 

polymorphisms (SNPs).  175 

We developed PRS models using the SBayesR (Lloyd-Jones et al. 2019) method that utilized 176 

summary statistics from a genome-wide association study (GWAS). This tool reweights the effect of 177 

each variant according to the marginal estimate of its effect size, statistical strength of association, the 178 

degree of correlation between the variant and other variants nearby, and tuning parameters. Also, the 179 

SBayesR method requires a GCTB (Lloyd-Jones et al. 2019) – compatible LD matrix file computed 180 

using individual-level data from a reference population. For these analyses, we used publicly available 181 

shrunk sparse GCTB LD matrix computed from a random set of 50,000 individuals of European 182 

ancestry from the UK Biobank data set (Bycroft et al. 2018; Lloyd-Jones et al. 2019). The models were 183 

validated in CEDAR dataset, which was not part of the samples used for GWAS. The prediction 184 

accuracy was defined as the proportion of the variance of a phenotype that is explained by PRS values 185 

(R2). To calculate PRS based on the PRS model we used PLINK2 software (Chang et al. 2015), where 186 

PRS values were calculated as a weighted sum of allele counts. 187 

In review



Running Title 

  PAGE  \* Arabic  \* 

MERGEFORMAT 3 

Association between PRS values, acting as an instrumental variable, and microbial genera 188 

abundance were checked in linear regression (Richardson et al. 2019). 189 

3.9 Statistical analysis 190 

 Statistical analysis was conducted in R language, version 3.6.1 (R Core Team 2019). Principal 191 

component analysis of glycome data was conducted via standard prcomp function of stats R package. 192 

Associations were examined in a linear regression model. We separately tested associations between 193 

(i) total plasma N-glycome and gut microbiome composition; (ii) beta-diversity and total plasma N-194 

glycome; alpha-diversity and total plasma N-glycome - both (iii) the glycan traits and (iv) the first ten 195 

microbial principal components. Patients’ age, gender, body mass index (BMI), smoking status were 196 

used as covariates. For the first model, the values of the first four microbial principal components were 197 

used as additional covariates. Before regression modeling, bacterial abundances were quantile-198 

normalized via qqnorm R function. 199 

P-values were adjusted to multiple hypothesis testing with the Sidak correction procedure. 200 

Taking into consideration possible correlations between hypotheses, the number of effective tests for 201 

Sidak correction was computed both for glycome and microbiome data. For the estimation of the 202 

number of effective tests, the approach of Galwey (Galwey 2009) implemented in the poolR package 203 

(Cinar and Viechtbauer 2020) was used. Visualization was performed with the ggplot2 package 204 

(Wickham 2009). 205 

3 Results 206 

To access the gut mucosal microbiome composition, biopsies were collected from consented 207 

donors who attended the department of gastroenterology of Liege University hospital in the framework 208 

of the Belgian colon cancer prevention programme. Biopsies were collected from three different 209 

locations of the gut: ileum, transverse colon, and rectum. Study participants were selected based on 210 

their health records. Exclusion criteria included autoimmune diseases and any type of inflammatory 211 

bowel diseases, cancer or polyps found during colonoscopy, antibiotics and anti-inflammatory uptake 212 

at least three weeks prior to the biopsies collection, and absence of diarrhea. Biopsies were snap-frozen 213 

and kept at -80°C until DNA extraction. The three amplicons, V1-V2, V3-V4, and V5-V6, were used 214 

to amplify microbial 16S rRNA genes. In total, nine Illumina MiSeq runs (3 amplicons x 3 gut 215 

locations) were performed on 2012 samples collected from 336 patients and 40 negative controls for 216 

sequencing. DADA2 amplicon sequence variants were analyzed by the q2‐feature‐classifier trained on 217 

the Silva database to assign taxonomy at the genus level. Furthermore, we measured total plasma N-218 
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glycome for 234 CEDAR samples and 15 standard samples. From these, 230 samples passed quality 219 

control. Chromatograms for each sample were separated into 39 peaks and harmonized into 36 glycome 220 

peaks for easier comparison with other published research. Additionally, based on shared structural 221 

features, 81 derived traits were calculated. Hereafter we use “PGP_number” to refer to the originally 222 

measured and derived glycan traits, but also provide description of the glycan structures along with 223 

their Oxford notation (Harvey et al. 2009). 224 

Metagenomic and glycomic data were simultaneously available for 194 individuals (Table. 1), 225 

thus, allowing to investigate inter-omics relationships on different levels of detalization from diversity 226 

and multivariate associations to individual linkages. 227 

The analysis was conducted on the level of genera. After the removing of contaminants and 228 

low-abundant microorganisms 145 microbial genera were retained and used for further analyses. 229 

Among them, Bacteroides (ileum 34.6 (standard deviation 17.5)%, transversum 33.7 (19.0)%, rectum 230 

31.6 (17.3)%), Prevotella 9 (ileum 8.3 (13.0)%, transversum 9.9 (14.8)%, rectum 8.6 (12.8)%), and 231 

Faecalibacterium (ileum 6.0 (3.5)%, transversum 5.0 (4.3)%, rectum 5.4 (3.3)%) dominated in the 232 

microbiome of studied individuals irrespective of localization. According to the results of 233 

permutational multivariate analysis of variance interindividual variation explains beta-diversity of 234 

microbiome better than the bioptate localization (p = 0.0001, Fig. 1), which motivates averaging of the 235 

microbiome to obtain more precise measurement for each individual. 236 

Univariate associations between levels of individual glycan traits and microbial genera were 237 

studied using a linear model. Before the regression analysis, the number of effective statistical tests for 238 

total plasma N-glycome and gut microbiome data were calculated. According to the effective statistical 239 

tests estimation, there were 24 effective tests in the glycome data and 87 in the microbiome data, which 240 

gives a product of 2088 independent tests. Genera abundances were normalized, adjusted for technical 241 

batch effects, known covariates as age, sex, body mass index, smoking status, and the first four 242 

microbial PC were added to the model. 243 

 Microbiome alpha-diversity was calculated with the Shannon index (Shannon, 1948). 244 

Regression analysis was performed to identify possible links between plasma glycome profile and gut 245 

microbiome diversity. Significant negative associations were found between alpha-diversity and the 246 

percentage of sialylation of core-fucosylated galactosylated structures without bisecting GlcNAc 247 

(derived trait PGP37, FGS/(FG+FGS), p=0.041) and the percentage of disialylation of core-fucosylated 248 

digalactosylated structures without bisecting GlcNAc (derived trait PGP43, 249 

FG2S2/(FG2+FG2S1+FG2S2), p=0.044) (Table. 2).  250 
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We then computed the first ten glycan PCs on 117 traits. An association between alpha-251 

diversity and the value of the fifth glycan principal component was identified (Table. 2). This principal 252 

component had a positive correlation with the abundance of FA2B (mostly linked to immunoglobulin 253 

G (Vučković et al. 2016)) and A2G2 (mostly linked to serotransferrin (Clerc et al. 2016)) 254 

(Supplementary Table. 1). At the same time, this component was negatively correlated with glycan 255 

traits representing abundances of FA2BG2S2 (mostly attached to immunoglobulins M and A, 256 

respectively) (Clerc et al. 2016) and FA2G2S2 (attached to various N-glycoproteins, mostly secreted 257 

to the bloodstream by the liver) (Supplementary Table. 1).  258 

 To check the interplay between microbial communities and plasma glycome profile, Mantel 259 

correlation and Procrustes analysis with 9999 permutations were used. The result did not support a 260 

strong interrelation between studied omics (Mantel R=-0.014, p=0.63; Procrustes correlation=0.22, 261 

p=0.16). However, individual glycan traits associated with the microbiome of studied individuals: traits 262 

PGP43 and PGP37 were positively correlated with the microbiome-derived sixth principal component 263 

(Table. 3, Supplementary Table. 2). 264 

 In regression analysis, 981 bacterial-glycan pairs out of 16965 pairs tested, including all glycan 265 

traits and 117 out of 145 bacterial genera, had a nominal p-value below the 0.05 threshold 266 

(Supplementary Table. 3). This indicates an enrichment (p-value of binomial test = 0.0047) of the p-267 

value distribution for significant p-values. Three bacterial-glycan pairs remained significant after 268 

adjustment for multiple testing. Specifically, we identified an association between the abundance of 269 

Bilophila genus and the level of FA2[3]G1 in total neutral plasma glycans (PGP62 trait, beta = 1.600 270 

(0.278), nominal p = 4.24e-08, Sidak-corrected p = 0.00009, Fig. 2A) as well as the level of FA2[3]G1 271 

in total plasma glycans (PGP5 trait, beta = 1.164 (0.246), nominal p = 4.44e-06, Sidak-corrected p = 272 

0.009, Fig. 2B). The abundance of Clostridium innocuum group (an ASV defined on genus level) 273 

demonstrated a negative association with the ratio of disialylated and trisialylated trigalactosylated 274 

structures in total plasma N-glycans (PGP109, G3S2/G3S3, beta = -1.460 (0.331), nominal p = 1.74e-275 

05, Sidak-corrected p = 0.036, Fig. 2C). 276 

 Additionally, univariate association analysis was performed on levels of microbial phyla and 277 

families. We estimated the number of effective statistical tests as 11 at the phylum level and 69 at the 278 

family level, which, together with the genus-level, resulted in 167 tests for microbiome data. Given 24 279 

effective tests for the glycomic data provides an estimate of 4008 of independent tests in total. In this 280 

additional analysis, we did not identify significant associations on phylum level. However, abundance 281 

of bacterial family Tannerellaceae was shown to be negatively associated with the levels of FA2[3]G1 282 

in total plasma glycans, percentage of neutral glycan structures and monogalactosylated structures in 283 
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total plasma glycome (Supplementary Table. 7, Supplementary Fig. 1). Identified genus-level 284 

associations remains significant after correction for additional statistical tests. 285 

 Validation of univariate findings on genus level was performed in two steps. First, as N-286 

glycosylation of immunoglobulin G (IgG) is the main source of FA2[3]G1 in total plasma N-glycome 287 

(Clerc et al. 2016), we measured plasma IgG-glycome profiles for 192 out of 194 individuals for the 288 

technical validation of association with FA2[3]G1. Using this data, we were able to validate the 289 

association between the abundance of FA2[3]G1 in IgG-glycome and the abundance of Bilophila genus 290 

(beta = 1.899 (0.306), nominal p = 3.62e-09, Fig. 2D).  291 

As an external validation dataset, microbiome and total plasma N-glycome profiles from 292 

McHardy et al. were used (McHardy et al. 2013). Given the differences in taxonomical databases used, 293 

metadata availability, and protocols of glycome and microbiome analysis between studies, it was 294 

possible to only study the association between the level of FA2[3]G1 in total plasma N-glycome and 295 

abundance of the Bilophila. The 47 samples for which microbiome and total plasma N-glycome were 296 

available had an expected 56% power to replicate the results. We were unable to validate this 297 

association (beta = -109.192 (174.668), nominal p = 0.53), although the sign of association was 298 

consistent.  299 

The fact that strong and robust genetic instruments are becoming available both for total plasma 300 

(Sharapov et al. 2019; 2021) as well as for IgG (Klarić et al. 2020) N-glycomic traits open up an 301 

opportunity to investigate causal relations between plasma N-glycans and microbiome using 302 

Mendelian randomization. As instrumental variables for Mendelian randomization, we used polygenic 303 

scores computed for glycans traits that showed significant association with individual genera 304 

abundances. As a result, we found that the abundance of Bilophila genus was associated with polygenic 305 

score for FA2[3]G1 in total plasma glycans (PGP5 trait, beta = 0.987 (0.429), nominal p = 0.0226) as 306 

well as suggestively associated with the polygenic score for FA2[3]G1 in total neutral plasma glycans 307 

(PGP5 trait, beta = 0.025 (0.137), nominal p = 0.0663). This suggests a potentially causative link 308 

between FA2[3]G1 and the abundance of Bilophila genus. 309 

4 Discussion 310 

Overall, while our results suggest presence of association between the gut microbiota and total 311 

plasma N-glycome, this interrelation seems to be relatively weak, with the largest proportion of 312 

variance explained equal to 14.7%. The strongest associations we showed were predominantly for N-313 

glycans (FA2B, FA2[3]G1, and FA2BG2S2) linked to immunoglobulins. Both FA2G1 and Bilophila 314 

abundances showed a negative correlation with the risk of UC (Hirano et al. 2018; Trbojević Akmačić 315 
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et al. 2015), which is consistent with the observed positive correlation between FA2[3]G1 glycan and 316 

Bilophilia.  317 

Clostridium innocuum group showed an inverse association with the ratio of disialylated and 318 

trisialylated trigalactosylated structures in total plasma glycans. This ratio was reported to be negatively 319 

correlated with the blood level of C reactive protein - a known biomarker of inflammation (Suhre et al. 320 

2019). Clostridium innocuum, the type species of the genus, treated as an unusual nosocomial agent 321 

mainly caused infections in immunodeficient patients (Crum-Cianflone 2009). It is shown that this 322 

microorganism could be linked with antibiotic-associated diarrhea and may cause colitis (Chia et al. 323 

2018). 324 

In conclusion, in this study of 194 healthy people, we observed several associations between 325 

plasma N-glycome and the gut microbiome. We were able to perform technical validation of our 326 

strongest finding. However, we were not able to replicate our finding in an independent dataset, perhaps 327 

due to its limited sample size (n=47, expected power 56%). Taken together, our results suggest the 328 

weak link between the gut microbiome and composition of total plasma N-glycome. Obtained results 329 

may suggest that a study of glycosylation of specific proteins, potentially connected with the 330 

microbiome, could be a more fruitful approach than an untargeted analysis performed here. One could 331 

also consider taking into account additional covariates – such as blood groups status, – that may 332 

influence both microbiome and glycome. 333 
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Figures and tables 511 

 512 

Figure 1 – non-metric multidimensional scaling of microbial abundances on genera level in Euclidean 513 

distance, the first two principal coordinates were shown. Color of dots represents microbiome samples 514 

from ileum (red), transversum (blue) and rectum (green) mucosa. 515 
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 516 

Figure 2 - univariate associations between microbial genera and glycan traits. On the plot, dots 517 

represent samples, a regression line shown in black. Panel A - association between the abundance of 518 

Bilophila genus and the level of FA2[3]G1 in total neutral plasma N-glycans; panel B - association 519 

between the abundance of Bilophila genus and the level of FA2[3]G1 in total plasma N-glycans; panel 520 

C - association between the abundance of Clostridium innocuum group genus and the ratio of 521 

disialylated and trisialylated trigalactosylated structures in total plasma N-glycans; panel D - technical 522 

validation of an association between IgG FA2[3]G1 glycan level and the abundance of Bilophila genus. 523 
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Table 1 - Demographic information of the cohort studied           524 

Characteristic Overall 

Sample size 194 

Age, mean (SD) 55.66 (13.05) 

Body Mass Index, mean (SD) 26.37 (4.64) 

Ethnicity, absolute n (%)  

    Caucasian 159 (82.0) 

    Mediterranean 23 (11.9) 

    Mixed 12 ( 6.2) 

Sex (males), absolute n (%) 82 (42.3) 

Smoking status (smokers), absolute n (%) 45 (23.2) 

 525 
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Table 2 - Association between microbiome alpha-diversity (Shannon index) and plasma total N-543 

glycome profile 544 

N-glycan trait regressio

n beta 

coefficie

nt 

beta 

standard 

error 

nominal 

p-value 

Sidak-corrected 

p-value 

PGP43 

(FG2S2/(FG2+FG2S1+FG2S2)) 

 

 

-1.213 0.385 0.0019* 0.0440 

PGP37 

(FGS/(FG+FGS)) 

 

 

-1.270 0.400 0.0018* 0.0410 

Glycomic principal component 5 0.275 0.096 0.0045# 0.0440 

* corrected for 24 tests that reflects the effective number of glycomic traits 545 
#  corrected for 10 tests (the number of glycomic PCs tested) 546 

 547 

 548 
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 552 
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Table 3 - Association between microbiome beta-diversity (Principal Component 6) and total plasma 556 

N-glycome profile 557 

N-glycan trait regression 

beta 

coefficient 

beta 

standard 

error 

nominal 

p-value 

Sidak-

corrected p-

value* 

PGP43 

(FG2S2/(FG2+FG2S1+FG2S2)) 

 

 

2.992 0.734 6.8E-05 0.0161 

PGP37 

(FGS/(FG+FGS)) 

 

 

3.013 0.766 0.0001 0.0280 

* The multiple testing correction was made accounting for 240 tests (24 x 10 where 24 is the effective 558 

number of glycomic traits and 10 is the number of Microbiome PCs) 559 

 560 
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