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H I G H L I G H T S G R A P H I C A L A B S T R A C T
• Most Arctic mammals are at low/no risk
from mercury exposure.

• Terrestrial mammals are low and marine
mammals high inmercury concentrations.

• Of 3500 marine mammal individuals, 6%
are at high/severe risk from mercury.

• Knowledge gaps include improved effect
thresholds and more recent data.

• High trophic biota hotspots in Canadian
High Arctic seems linked to seawater
MeHg.
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There has been a considerable number of reports on Hg concentrations in Arctic mammals since the last Arctic
Monitoring and Assessment Programme (AMAP) effort to review biological effects of the exposure to mercury
(Hg) in Arctic biota in 2010 and 2018. Here, we provide an update on the state of the knowledge of health
risk associated with Hg concentrations in Arctic marine and terrestrial mammal species. Using available
population-specific data post-2000, our ultimate goal is to provide an updated evidence-based estimate of the
risk for adverse health effects from Hg exposure in Arctic mammal species at the individual and population
level. Tissue residues of Hg in 13 species across the Arctic were classified into five risk categories (from No
risk to Severe risk) based on critical tissue concentrations derived from experimental studies on harp seals and
mink. Exposure to Hg lead to low or no risk for health effects in most populations of marine and terrestrial mam-
mals, however, subpopulations of polar bears, pilot whales, narwhals, beluga and hooded seals are highly ex-
posed in geographic hotspots raising concern for Hg-induced toxicological effects. About 6% of a total of 3500
individuals, across different marine mammal species, age groups and regions, are at high or severe risk of health
effects from Hg exposure. The corresponding figure for the 12 terrestrial species, regions and age groups was as
low as 0.3% of a total of 731 individuals analyzed for their Hg loads. Temporal analyses indicated that the pro-
portion of polar bears at low or moderate risk has increased in East/West Greenland and Western Hudson Bay,
respectively. However, there remain numerous knowledge gaps to improve risk assessments of Hg exposure in
Arctic mammalian species, including the establishment of improved concentration thresholds and upscaling to
the assessment of population-level effects.
Keywords:
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Circumpolar Arctic
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Marine mammals
Terrestrial mammals
1. Introduction

The circumpolar Arctic has been subject to minimal direct produc-
tion, use and emission of industrial contaminants such as mercury
(Hg). Hg is long-range transported to the Arctic by atmospheric and
sea-currents (AMAP/UNEP, 2008, AMAP/UN Environment, 2019;
AMAP, 2011). Methylmercury (MeHg) is readily bioavailable and
biomagnifies in lipid-rich Arctic marine food webs, and thus raises
heighted concern for the health of exposed wildlife and Indigenous
human populations that largely depend on marine wildlife for their tra-
ditional diet (AMAP, 2011). Although Hg is a naturally occurring ele-
ment, human activities and climate change have led to an average of
13.2-fold increase in Hg concentrations in the Arctic Inuit hair and se-
lected Arctic marine mammal hard tissue samples. These include polar
bear (Ursus maritimus) and ringed seal (Pusa hispida) hair, beluga
(Delphinapterus leucas) and walrus (Odobenus rosmarus) teeth, and gyr-
falcon (Falco rusticulus) and peregrine falcon (Falco peregrinus) feathers
compared to preindustrial times (Dietz et al., 2009, 2011). As a result,
an international treaty, UNEP's Minamata Convention on Mercury,
was enacted in 2017 (Evers et al., 2016).

Here, we review the exposure risks of mercury (Hg) in Arctic biota as
part of the AMAP (Arctic Monitoring and Assessment Programme) as-
sessments on long-range transported contaminants in Arctic biota
(AMAP, 2018, 2021; Dietz et al., 2013, 2019a, 2021a; AMAP, 1998,
2

2004, 2011, 2016; Letcher et al., 2010). It includes new information
on the biological effects of Hg since 2018 and new data on Hg levels
in Arctic mammals covering the period 2010 to 2020. Unlike the last
AMAP assessment on combined effects of Hg and persistent organic pol-
lutants (POPs), which provided a detailed literature review on adverse
health effects across a range of physiological systems, this current
study is more focused on predictive risk assessment. We address knowl-
edge gaps identified in previous AMAP assessments, including sample
size limitations and geographical data gaps in the Russian Arctic, to pro-
vide the most up-to-date risk assessment for health effects potentially
resulting from Hg exposure in Arctic mammals, covering a plethora of
species, tissues, and regions. The current work targets Arctic mammals
only, whereas the assessments on seabirds and birds of prey and shore-
birds are reported by Chastel et al. (2022/this issue) and results on fish
are reported by Barst et al. (2022/this issue) as well as in a combined As-
sessment (AMAP, 2021/in press).

To our knowledge, there has been little effort to quantify popula-
tion level effects of Hg exposure despite multiple health effects that
have been reported in field studies of Arctic species (Dietz et al.,
2019a; Routti et al., 2019). Establishing links between contaminant
exposure and health outcomes is a difficult task (Rodríguez-Estival
and Mateo, 2019). Such information is however extremely important
to manage and conserve wildlife populations and provide evidence
for regulation of contaminant emissions. It is critical to measure
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individual exposure impacts in order to estimate population-level ef-
fects using various modelling approaches, which consider physiologi-
cal effects on reproduction, immune and endocrine functioning as
well as energy demands (Svensson et al., 2011). This also requires a
combination of controlled mechanistic studies (e.g. in vitro dose-
response) and when possible in vivo studies on key species, as has
been reported from hotspot areas like the Baltic primarily on POPs,
which can be transferred to other pristine areas, including the Arctic.
(Desforges et al., 2016, 2017, 2018a, 2018b, 2018c; Nyman et al.,
2003; Routti et al., 2010). The approach taken here to address this
issue is data-driven and combines toxicity data from relevant mamma-
lian studies with an established risk modelling framework. We follow
the methods of Ackerman et al. (2016) developed for North American
birds, in which contaminant levels in tissues are used for Arctic spe-
cies in a circumpolar risk analysis using critical body burdens and
risk quotient analysis. In the present assessment, we have increased
the liver data coverage from marine mammal species, regions and
age groups from 70 to 112 groups (increase of 60%), increased the
number of individuals from 2371 to 3772 (increase of 51%), and
added polar bear hair data from 685 individuals from 22 regions and
age groups compared to the Dietz et al. (2019a) risk analyses. The
data from terrestrial mammals, although with much lower coverage,
also increased from 8 to 16 species (100% increase), regions and age
groups and the number of individuals increased from 211 to 814 (in-
crease of 386%). We combined species and areas at risk to the ob-
served temporal trends, which is reported in more detail for all
available Arctic data series by Morris et al. (2022/this issue). Finally,
we created heat maps from a generalized additive model (GAM) ap-
proach to examine the linkage between seawater MeHg concentra-
tions in the upper 400 m water column with tissue concentrations of
ringed seal (Pusa hispida) and polar bear liver and hair concentrations
(see details in Section 2.4. Hotspot area detections for details on
method and references).

2. Material and methods

2.1. Literature and data search

We did a search on PubMed, ScienceDirect, Google, Google
Scholar, EBSCO, ProQuest, ScienceDirect, MEDLINE and grey litera-
ture combing the terms “Arctic” and/or “mercury” and/or “Hg”
and/or “effects” and/or “marine mammals” and/or “terrestrial mam-
mals” by ultimo 2020. In addition, Hg data from work in preparation
from the appointed Key National Experts of the eight Arctic countries
as well as from other scientific groups working in the Arctic was
included. Only Hg data from accredited laboratories participating in
the international QA/QC programs were used. All laboratories
involved in the general AMAP monitoring participate in inter-
calibration exercises and QA in the Quasimeme Program (Europe)
and the Northern Contaminants Program (North America) and sev-
eral of these are also accredited ISO 9000 laboratories. The study de-
sign is based on a review of the existing literature for post-2000
articles as well as unpublished data of Hg exposure in marine and ter-
restrial mammals from the Arctic and, where possible, the raw data
were extracted. In addition, Hg data from Baltic marine mammals
Table 1
Estimated risk (i.e., Risk Categories, RC) to total mercury (THg) exposure on the health

No risk Low risk Moderate risk High risk S

Species Matrix NRC LRC MRC HRC S

Marine mammals Liver (μg/g WW) <16.0 16.0–64.0 64.0–83.0 83.0–123.0 ≥
Hair (μg/g DW) <6.1 6.1–24.4 24.4–31.7 31.7–48.1 ≥

Terrestrial mammals Liver (μg/g WW) <4.2 4.2–7.3 7.3–22.7 22.7–30.5 ≥
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were obtained from the projects BONUS BALTHEALTH for compara-
tive purposes.

2.2. Risk analysis

The risk analysis in the present assessment for potential Hg-associated
health effects was based on no risk (NRC), low risk (LRC), moderate risk
(MRC), high risk (HRC) and severe risk (SRC) categories (Table 1). These
risk category thresholds reflect effects on reproduction and adverse ef-
fects on body condition and behavior. For marine mammals, the he-
patic Hg threshold values were estimated using data from Ronald
et al. (1977), Dietz et al. (2019a, 2021a) and AMAP (in press). As in
Ronald et al. (1977), based on the measured liver THg concentrations
in harp seal (Pagophilus groenlandicus) exposed to methylmercuric chlo-
ride, we assigned 5 risk categories where no risk refers to average con-
centrations in the control group (Dietz et al., 2021b,a); AMAP, in
press). For terrestrial mammals, hepatic Hg threshold values were
taken from studies in mink (Mustela vison) (Wobeser et al., 1976;
Wren et al., 1987). To estimate health risks using Hg data in hair, it
was necessary to convert liver threshold values to hair equivalents.
This conversion was based on significant linear regression analyses (p
< 0.01; R2 = 0.2824; SE = 0.0592; n = 174) between East Greenland
polar bear livers (HgH) and hair (HgL) according to AMAP (2022/in
press).

ln HgHð Þ ¼ ln HgLð Þ− 1:18748ð Þ=0:79941

All liver data reported in the present assessment is provided on wet
weight (ww) basis, whereas the hair concentrations are on dry weight
(dw) basis.

2.3. Time trend analyses

For species and regions where Hg concentrations of concern fell
undo the HRC and SRC (Table 1), time trend analysis was used to
identify increasing or decreasing trends. The temporal trend analysis
followed the methods of AMAP (in press) and Morris et al. (2022/this
issue). In brief, the biota time series of Hg concentrations were
assessed as changes in the log-transformed concentrations over
time using linear mixed models. The type of temporal change consid-
ered was dependent on the number of years of data; for time-series
including seven or more years of data the non-linearity of the trend
was evaluated by use of smoothers (Fryer and Nicholson, 1999).
For additional temporal trend data please see Morris et al. (2022/
this issue).

2.4. Hotspot area detections

Since the last assessment, the Arctic Ocean has become one of the best
observed oceans (Dastoor et al., in review). The new seawater Hg species
observations cover the Irminger and Labrador Sea (Cossa et al., 2017,
2018), the Canadian Arctic Archipelago (Wang et al., 2018), the East Sibe-
rian Sea (Kim et al., 2020), the East Greenland Shelf, the FramStrait and the
Barents Sea (Petrova et al., 2020b) and the central Arctic Ocean (Agather
et al., 2019, Charette et al., 2020, Heimbürger et al., 2015, Tesán Onrubia
effects in marine and terrestrial mammals. WW: wet weight, DW: dry weight.

evere risk

RC Reference

123.0 Ronald et al., 1977
48.1 Risk intervals established from polar bear liver to hair correlation, this study
30.5 Wobeser et al., 1976; Wren et al., 1987
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et al., 2020). We combined MeHg seawater measurements from both the
Arctic GEOTRACES programme and newly collected data from “Arven
etter Nansen Seasonal Cruise Q1 2021” (Kohler et al. in prep) to produce
heat maps from a GAM model. These maps cover the upper 400 m of the
water column from the Barents Sea to the Canadian Archipelago, a region
accessible to the seals and where the highest MeHg concentrations are usu-
ally detected in the Arctic Ocean (see Section 7). Comparable heat maps
were produced for ringed seal liver and polar bear liver and hair (Rigét
et al., 2005; Routti et al., 2011) to illustrate the patterns with the MeHg
hotspot areas of the upper 400 m of the water column. The predicted
GAM heat MeHg concentrations based on 68 water column station mea-
surements were correlated with the biota concentrations for the respective
sampling areas to estimate the linkage between the two variables.

3. Marine mammals

3.1. Risk effects extrapolated from liver Hg concentrations in marine mammals

Overall, 30% of individuals from the 29 species, regions and age groups
were within the two highest risk categories, of which 18 of the 112
Fig. 1. The risk of Hg-mediated health effects in polar bear subpopulations and, based o
threshold categories observed for harp seals (Ronald et al., 1977). SI Table 1 presents the
and SI Fig. 1 presents ranked histograms of bears together with the other marine mamm
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presented region/age/sex-groups) had 19% individuals in the SRC (>126
μg/g ww) and an additional 11 groups (12% of the individuals) in the
HRC (83–126 μg/g ww (Fig. S1; Table S1). Individuals from the 29 species,
regions and age groups from the two highest risk categories, however, ac-
counted only for 200 individuals representing only 5.8% of a total of
3445 individuals analyzed for their Hg loads. As for the SRC, this accounted
for approximately 102 individuals (3.0%) and the HRC accounted for the
remaining 98 individuals (2.8%) (Fig. S1, Table S1). The highest exposed
animal groups (evaluated by percentages in the SRC) are in the following
decreasing order: 1) adult hooded seals (Cystophora cristata) from the
Denmark Strait (57%), 2) adult male hooded seals from Greenland Sea/
Denmark Strait (45%), 3) adult polar bears from the Northern Beaufort
Sea (41%), 4) juvenile polar bears from Qaanaaq North West (NW) Green-
land (33%) (Fig. 1), 5) adult killer whales (Orcinus orca) from East (E.)
Greenland, Iceland and Faroe Islands (33%), 6) adult long-finned pilot
whales from the Faroe Islands (27%), 7) juvenile polar bears from Lancas-
ter/Jones Sound (20%), 8) subadult long-finned pilot whale from the
Faroe Islands (20%), 9) adult female ringed seals from Sachs Harbor
(12%; Fig. 2) and 10) adult male ringed seals from Sachs Harbor (7.8%).
Surprisingly, the hooded seals are the highest exposed group, however,
n post-2000 liver Hg concentration. The five risk categories are defined using effect
detailed information as well as references uponwhich this summary graphic is based
als.



Fig. 2. The risk of Hg-mediated health effects in Arctic ringed seal subpopulations based on post-2000 monitoring data. The five risk categories are defined using effect
threshold categories observed for harp seals (Ronald et al., 1977). Table S1 presents the detailed information upon which this summary graphic is based and Fig. S1 and
S2 presents ranked histograms of the ringed seals together with the other marine mammals.
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hooded seals have previously shown high Hg concentrations (Nielsen and
Dietz, 1990; AMAP, 1998) due to their consumption of redfish. As for top
predators such as polar bears from hot spot areas in northern Canada and
Northwest Greenland (see Supplementary Information), previous studies
report similar high concentrations in these areas (Braune et al., 1991;
Dietz et al., 1998, 2000; Routti et al., 2011; Wang et al., 2018). The high
concentrations of Hg in toothed whales such as killer whales, narwhals
and pilot whales from the North Atlantic, is due to their lack of ability to
excrete these substances as well as their high trophic position in the
food chain (Sonne et al., 2010a, 2013, 2018a, 2018b; Dietz et al.,
2019b).

The least exposed animal groups (in liver and μg/g on a wet weight
basis; Fig. S1, Table S1) in the Arctic regions (i.e. groups with all 100% of
the individuals in theNRCare in the following increasing order: 1) yearling
harp seals (Pagophilus groenlandicus) from the Greenland Sea (in ww
0.17 μg/g), 2) foetus killer whales from E. Greenland, Iceland and
Faroe Islands (0.18 μg/g), 3) subadult harbor porpoises from the
Barents Sea (0.49 μg/g), 4) adult male harbor porpoises from the
Barents Sea (0.58 μg/g), 5) subadult harbor porpoises from the
Norwegian Coast (0.69 μg/g), 6) subadult harp seals from the Greenland
5

Sea/Denmark Strait (0.69 μg/g), 7) adult female harp seals from the
Greenland Sea/Denmark Strait (0.76 μg/g), 8) adult harp seals from
Ittoqqortoormiit (0.78 μg/g), 9) juvenile ringed seals from Qeqertar-
suaq (0.92 μg/g); 10) juvenile ringed seals from Kangiqsujuaq (0.92
μg/g). Additional information from the other risk categories Fig. S1
and Table S1. In the present review regions outside the Arctic
(North Atlantic, North Sea, Inner Danish Waters and Baltic) were in-
clude for comparative purpose for ringed seal and harbor porpoise
(Phocoena phocoena).

There exists sufficient liver data for polar bears and ringed seals to
provide an overview of the regional differences and consistencies in
their Hg exposure and the related risks. Six of the 20 polar bear groups
(regions, age and sex) fromwhich we presented data had concentrations
in the SRC. Of these adult polar bears from the Northern Beaufort Sea
were the highest exposed group with 41% in the SRC (Fig. 1; Table S1;
Fig. S1). Juvenile bears fromQaanaaq and juvenile bears from Lancaster
Sound had 33 and 20%, respectively, in the SRC although these sample
sizes were small (n = 6 and 5, respectively). All three exposure risk
groups in Ittoqqortoormiit had between 1.0 and 2.5% percent of the
populations in the SRC based on sample sizes from 40 to 96 individuals.
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In four out of six groups, individuals were also in the HRC ranging from
36 to 2.5%. As for groups with the highest exposed individuals in the
HRC, from 33 to 17% had individuals in this category. This included
four groups, including adult bears from Baffin Bay and Lancaster
Sound as well as juveniles from Northern Beaufort Sea and all age
groups from the Davis Strait. Only two groups had individuals in the
MRC, and with the highest exposed groups being for the overall popula-
tion from Gulf of Boothia and juveniles from Baffin Bay. In the remain-
ing eight groups, all individuals were in the two lowest risk categories,
of which 100% of the juvenile and adult groups from the Chuckhi Sea
were in the NEC. Information on polar bears from the Russian Arctic is
lacking.

Four out of the 41 presented ringed seals region, age and sex groups had
individuals in the SRC. Adult female and male ringed seals from Sachs Har-
bor were the highest exposed group with 11.5 and 7.8% of the individuals
in the SRC, respectively (Fig. 2; Table S1; Fig. S1). Adult female ringed seals
from Resolute and Arviat W. Hudson Bay were the other two groups with
3.9 and 1.4% of the individuals in the SRC respectively. Most og these
four groups also had individuals in the HRC and MRC with 9.6 to 1.4%
and 9.6 to 2.0% respectively. In addition, three groups including
Fig. 3. The risk of Hg-mediated health effects in polar bear subpopulations based on pre-
threshold categories observed for harp seals (Ronald et al., 1977) converted into hair Hg
Table S2 for the detailed information upon which this summary graphic is based.

6

subadult ringed seals from Sachs harbor, adults from Grise Fjord, and
adult males from Resolute had 3.4 to 2.1% of the individuals in the
HRC. Additionally two groups, juvenile ringed seals from Pond Inlet
and adult males from Arviat, had 3.4 and 2.3% of the individuals in
the MRC respectively, and five out of seven of the two highest risk cat-
egories also had 9.6 to 2.0% of the individuals in the MRC. For 28
groups of 37 groups of Arctic ringed seals, all individuals ranged in
the two lowest risk categories. As for the polar bears livers, information
on ringed seals from the Russian Arctic is lacking. For comparative pur-
pose, data from Baltic ringed seals are included in Fig. 2 (see Fig. S1 and
Table S1).

3.2. Risk effects extrapolated from hair Hg concentrations in polar bears

Hair samples are often used to evaluate human exposure and risk to
Hg (Wang et al., 2021; Petrova et al., 2020a). Similarly, here we con-
ducted an assessment of the regional risk of polar bears based on polar
bear hair samples collected from hunting as well as hair sampled from
polar bears that were routinely collected during tagging studies. We
use hair samples collected before 2000 to obtain a better spatial
and post-2000monitoring hair data. The five risk categories are defined using effect
concentrations by the East Greenland correlation between these two matrices. See
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coverage. The analyses revealed that some bears from three populations
in the central and northeastern Canadian Arctic, had concentrations in
the SRC, namely Viscount Melville Sound (30%), Norwegian Bay
(8.0%), and Lancaster Sound (3.6%) (Fig. 3; Fig. S2; Table S2). The cor-
responding percentages of bears from these three populations in the
HRC were 0.0, 20 and 7.4%, respectively, and only a low percentage
(0.7%) of bears from East Greenland had individuals in the HRC. As
eight of the Canadian populations were sampled before year 2000, the
present day risk patterns are uncertain. Unfortunately, the few time se-
ries from Morris et al. (2022/this issue), of which none is based on hair,
allow us to update the data obtained from samples collected prior to
2000 Overall, the combined risk assessment using hair and liver Hg con-
centrations raises concern for polar bears in the Canadian High Arctic
andg Northwestern Greenland. In contrast, hair Hg concentrations in
Barents, Kara, Laptev and Chukchi Sea all fell within the NEC, which
indicated that there are no Hg effect implications for polar bears in the
regions of Svalbard and northern Russia (Lippold et al., 2020;
resubmitted).

4. Terrestrial mammals

Themajority of Hg concentrations in terrestrialmammals fell within the
two lowest risk categories for Hg-mediated health effects (NRC and LRC,
see Fig. 3). Individuals from the 12 species, regions and age groups from
the two highest risk categories, however, accounted only for 2 individuals
representing only 0.3% of a total of 731 individuals analyzed for their Hg
loads. Arctic fox (Vulpes lagopus) from Iceland however, had 9.0% of the
adult population being at HRC, 35% in the MRC, 22% in the LRC and
35% in the NEC. Juvenile Arctic foxes were, however, exposed to lower
levels, as the majority of the foxes (67%) in this age group fell in the
NEC. Juvenile Arctic foxes from Arviat and Svalbard had 98% and 100%
in the NRC respectively, which raises the question on whether some local
Hg sources are present on Iceland to cause elevated risk for the species
there (Fig. 4 and Table S3). For sheep (Ovis aries) on the Faroe Islands,
as much as 15% were found in the MRC, which is higher than expected
and could be attributed to agricultural fertilization by fish remains or
eutrophication by bird droppings (from the extensive seabird colonies
on the islands) as suggested by AMAP (2018) and Dietz et al. (2019b).
The remaining 85% of the sheep fell in the NRC. All (100%) seven Car-
ibou/reindeer (Rangifer tarandus) populations and age groups were in
the NRC with median Hg concentrations ranging from 0.12 to 1.24
μg/g ww (Fig. 4, Table S3). It should be noted that the risk categories
are based on liver Hg threshold values from studies in mink, which is
a carnivore (Wobeser et al., 1976; Wren et al., 1987; Dietz et al.,
2019b; AMAP, in press). Sheep and caribou/reindeer are herbivores/
Fig. 4. The proportion of individuals ranked from highest to lowest of specific Arctic terr
Based on liver Hg concentrations from 2000 to 2015, assignments were made to five risk
et al., 1976; Wren et al., 1987). See Table S3 for the detailed information upon which t
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ungulates, and it is possible that the threshold level of Hg may differ
from that used for the carnivores herein.

5. Temporal trends and risk for the highest Hg exposed species
and regions

5.1. Polar bears

Twenty region, age and sex groups from 10 polar bear management
areas were assessed for trends in Hg risk based on their long-term liver
concentration data (Figs. 1 and 3; Fig. S1; Table S1). Four polar bear
management areas (Western Hudson Bay, Ittoqqortoormiit and Sval-
bard) and four out of 13 analyzed groups showed significant increas-
ing Hg temporal trends, but no groups showed declining Hg loads
(Fig. 5). For the regions with the highest Hg risks, namely Lancaster
Sound/Jones Sound (SRC: 0–25%; HRC: 20–25%) as well as Northern
Beaufort Sea (SRC: 0–41%; HRC: 22–35%) and Qaanaaq region (SRC:
33%), unfortunately no time trend information was available. How-
ever, yearly significant Hg increases of 1.6–1.7% (p < 0.0001) per
year from 1892 to 2008 have previously been reported for polar bear
hair from the Qaanaaq, NW Greenland (Fig. 5; Dietz et al., 2011). In
Western Hudson Bay a significant increasing trend of 6.0% per year
was likewise detected in the liver of adult males, whereas no trend
was observed in juveniles and or adult females. Despite lower Hg con-
centrations in polar bears from Ittoqqortoormiit, CE Greenland (SRC:
1.0–33%; HRC: 3.0%), significant temporal increases in hair Hg levels
for juveniles and adults suggest that a larger percentage of the popula-
tion is likely to appear in the higher risk categories in the future. The
hair risk analyses for polar bears were quite similar to the liver risk
results (Figs. 1 and 3; Tables S1 and S2) as both Lancaster Sound,
Norwegian Bay, Viscount Melville Sound, Northwest Greenland and
East Greenland had animals in the SRC and in the HRC (SRC:
4.0–33%; HRC: 1.0–20%).

5.2. Ringed seals

Thirty-seven groups from 18 Arctic regions were assessed for trends in
Hg risk based on their long-term liver concentration data (Fig. 2; Fig. S1;
Table S1). Only one of seven ringed seal regions (Labrador Sea) and
one out of 22 analyzed groups (4.5%) showed significant increasing
temporal trends of THg (Morris et al. (2022/this issue)). However,
four (Eastern Beaufort Sea, Lancaster Sound (Resolute Passage), Labra-
dor Sea and Western Hudson Bay) out of the seven ringed seal regions
and six out of 22 analyzed groups (27%) showed significant annual de-
clining Hg trends (−2.4% to −8.0%) in muscle tissue, which was
estrial mammal populations according to the risk of total Hg-mediated health effects.
categories and based upon effect threshold categories observed for mink (Wobeser

his summary graphic is based.



Fig. 5. Examples of significant Hg increases in polar bear hair and liver from Canadian and Greenlandic waters plotted on top of risk intervals (No risk (green),
Low risk (yellow). Moderate risk (orange), High risk (red) and severe risk (dark red)) defined in Table 1. Panel A modified from Dietz et al. (2011) and panels
BD from Morris et al., (2022/this issue). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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documented to have a higher power than liver (Morris et al., 2022/this
issue). Only adult seals (males and females) from the Labrador Sea
showed significant increases in their livers. Overall, we conclude that
ringed seals are not at significant risk with respect to increases in Hg ex-
posure over time.

5.3. Belugas

Of the 10 recent (1999-present) temporal trend analyses conducted for
epidermis, muscle and liver tissues of belugas from Southern Beaufort Sea
and Southern Hudson Bay, three significant declines (30%; −2.5% to
−8.6%) were detected and no significant increases. With the rather low
percentages of belugas having individuals in the SRC and HRC it is encour-
aging that a large proportion of these whales are showing significant de-
clines in their Hg loads.

5.4. Pilot whales

One (33%; 1.7%; muscle of juvenile males) out of the three pilot
whale groups showed significant increasing trends and none showed
significant declines (Morris et al., 2022/this issue). With the high per-
centage of pilot whales having individuals in the SRC, it is the juvenile
pilot whales that showed significant increases in muscle Hg. With re-
spect to human health exposure, it is encouraging that there is a decline
in the human consumption of pilot whales (i.e. the meat) at the Faroe
Islands due to the health advice from the Faroe Health Authorities
(AMAP, 2015).
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5.5. Other marine mammals

As no time trend analyses were available from other marine mammal
groups, no overall evaluation can be made with respect to temporal pat-
terns of these risks.

5.6. Terrestrial mammals

Except from one group of adult Arctic fox from Iceland, none of the ter-
restrial mammals had individuals in the SRC and HRC. Of the two caribou
population time trends from Canada and one arctic fox from Svalbard no
significant trends in Hg were detected, thus risk is likely to remain low
for these animals in the near future.

6. Estimating population effects frommercury loads inhighly exposed
wildlife

It is challenging to assess the impact of Hg exposure and accumulation
at the population-level for any species, however, especially so for species
living in remote areas like the Arctic. These assessments require long
term population monitoring on tissue Hg levels and relevant long-term in-
dividual fitness and populationmetrics such as adult survival, reproductive
success and recruitment (i.e. offspring survival to reproductive age), and ul-
timately population growth rates. Actually the toxicity data derived from
harp seals (Ronald et al., 1977) used to generate the risk categories used
in our study documented the death of two harp seals out of six, exposed
to 0.25 mg methylmercuric chloride/kg body weight/day. The two seals
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died on day 20 and 26 of exposure and blood parameters indicated toxic
hepatitis, uremia and renal failure (Ronald et al., 1977). As the experiment
was run for less than 90 days andmainly on immature animals no informa-
tion on reproduction effects was generated. Also, there is a severe lack re-
cent effect experiments on several Arctic marine mammal species relevant
for the present assessment. We are confident that a permission such an ex-
periment similar to the harp seal study would not be granted by Animal
Care Committees today for seals, whales or polar bears and hence there
are no data on effect concentrations targeted specifically these and other
high trophic predatory marine mammals. The lack of effect studies has pre-
viously been concluded and further investigations recommended (e.g.
AMAP/UN Environment, 2019, Dietz et al., 2019b, 2020). The closest re-
cent example was POP effect studies using minke whale (Balaenoptera
acutorostrata) blubber to expose sledge dogs (Canis familiaris) and Arctic
fox (Alopex lagopus) as sentinels for the polar bear, which are better that
seal data, but unfortunately this was never carried out with a focus on Hg
(e.g. Bradley et al., 2018; Kirkegaard et al., 2010a, 2010b, 2011; Pedersen
et al., 2015; Rogstad et al., 2017; Sonne, 2010; Sonne et al., 2005, 2006a,
2006b, 2006c, 2007a, 2007b, 2007c, 2008a, 2008b, 2008c, 2008d, 2008e,
2009a, 2009b, 2010b, 2014a, 2014b, 2017; Verreault et al., 2008). Other ex-
amples effect evaluation is the use of Risk Quotients comparing body burden
and critical body residues estimated from PBPK modelling from rats and
mice relative to immunologic, reproductive and carcinogenic effects, but
such studies does not provide a better and more relevant picture relative
to population effect of Arctic species in focus of this assessment (Sonne
et al., 2009c, 2015, 2016; Dietz et al., 2015, 2018a). Observed effects in
the HRC included potential for organ lesions (kidney, liver), anorexia, and
reduced growth, while effects in the SRC included severe impacts on organ
function (i.e. kidney failure), weight loss, and ultimately increased mortal-
ity. For toxicity in mink (i.e. terrestrial mammal assessment), observed ef-
fects in the HRC included reduced litter size and offspring growth rate,
and SRC included brain lesions, reduced growth, anorexia, and increased
adultmortality. Given the direct consequences on reproduction and survival
for the HRC and SRC, two endpoints of key concern for potential popula-
tion impacts, concern is warranted for select populations of hooded
seals, killer whales, and pilot whales, as well as for Lancaster Sound
and Northern Beaufort Sea polar bears. Here, >20% of sampled individ-
uals within these populations (and up to 60–90%) had concerning tissue
Hg levels; impacts in such a large proportion of the population has the
potential to have a meaningful affect demographic rates and overall
population fitness. For polar bears in highly exposed regions such as
the Lancaster Sound and Jones Sound, the population size trends are
data deficient (Vongraven and York, 2014; Dietz et al., 2015), making
it difficult to track potential effects of Hg exposure. From areas like
the S. Beaufort Sea and the Baffin Bay, populations of marine wildlife
are declining, but the effects of climate change are likely to play a
major role in these areas (Vongraven and York, 2014; Dietz et al.,
2015). If the mink toxicity data translates to Arctic foxes, our assess-
ment suggests that a large portion of the Arctic fox population in
Iceland is at high risk for potential population relevant impacts from
Hg exposure.

It is important to note that the above population assessment is based
on toxicity data from only one relevant species for each group (e.g. harp
seal and mink). Care must be taken to extrapolate effects across species
because of potential inter-species differences in Hg toxicokinetics (e.g.
uptake and distribution) and toxicodynamics (e.g. species sensitivity
to effects). Because such differences, including differences between car-
nivores and herbivores, are unknown at this time and difficult to assess,
the current risk exercise provides the best available evidence-based as-
sessment of potential impacts across Arctic species. Furthermore, Arctic
species may also be impacted at the population-level through similar ef-
fects on reproduction and adult survival due to exposure to other con-
taminants (POPs including PFASs) and stress related to climate change
and hunting (e.g. Laidre et al., 2015; Dietz et al., 2015, 2019a). Teasing
out the effects of Hg from other concurrent stressors remains a chal-
lenge, though it is expected that these stressors act in concert to increase
9

the overall stress of individuals and populations. Overall, more work on
exact risk benchmark values for different species and regions is recom-
mended as well as population effect studies in relation to Hg and other
contaminant loads as conducted for killer whales by Desforges et al.
(2018c).

7. Geographical hotspot areas in water and wildlife

Previous publications have considered geographical hotspots with re-
spect to Hg biomagnification and adverse biological effects in mammals
such as ringed seals and polar bears (e.g. AMAP, 1998; Brown et al.,
2016; Dietz et al., 1998, 2000, 2013, Rigét et al., 2005; Routti et al.,
2011, 2012).Most of these surveys have shown that the Canadian Arctic Ar-
chipelago and northwestern Greenland are hotspots for Hg exposure in
biota. Heimbürger et al. (2015) put the idea forth that the shallow seawater
MeHg maximum in the Arctic Ocean, typically found near 200 m depth (vs
other oceans 500–1000 m, Bowman et al., 2020), may be responsible for
the high Hg levels of arctic biota. Wang et al. (2018) recently reported
high-resolution vertical profiles of total Hg and MeHg in seawater during
GEOTRACES ship transect surveys conducted in 2015 from the Labrador
Sea and across Baffin Bay to the Canadian Arctic Archipelago and Canada
Basin. They showed the highest Hg concentrations in the Beaufort with a
distinctive subsurface maximum of MeHg in seawater in the upper 400 m
depths peak concentration decrease from Canada Basin eastwards
(Fig. 6). It was hypothesized that Hg concentration in seawater was linked
to Hg exposure in biota. The reason for focusing on MeHg is that this frac-
tion of the food ismore readily taken up by biota (ca. 95%)whereas the cor-
responding proportion for inorganic Hg is thought to be lower than 15%
(Berlin, 1986;WHO, 1993; Mori et al., 2012; Dietz et al., 2013). In addition
MeHg, not inorganic Hg, is the main fraction of which accumulates and
biomagnifies in marine biota (AMAP, 2011). Therefore, we produced a
heat map from a generalized additive model (GAM) approach covering
the upper 400 m of the water column for available seawater with the
2016 GEOTRACES GRIFF transect data obtained betweenNortheast Green-
land and Svalbard (Petrova et al., 2020b). Similar heatmapswere produced
for ringed seals liver and polar bear liver and hair based on data from Rigét
et al. (2005), Routti et al. (2011) and Dietz et al. (this study) to illustrate the
relative geographical high trophic biota hotspots as well as. Hotspot areas
in the water column and biota was detected in the Beaufort Sea and central
Canadian Arctic Archipelago In addition high concentrations in Northwest
Greenland was detected for biota but not in the sea water and the high con-
centration in sea water in Northeast Greenland was not reflected in biota.
The ringed seal and polar bear concentrations along Svalbard are somehow
lower in concordance with lower concentrations of MeHg in the water col-
umns towards Svalbard compared to Northeast Greenland. The predicted
GAM heat MeHg concentrations based on 68 water station column mea-
surements showed as expected only limited significant correlations and
only for the ringed seal (p = 0.024; r2 = 0.66750; f = 10.037; n = 11)
liver Hg concentrations, whereas the correlation with the polar bear hair
Hg concentrations (p = 0.132; r2 = 0.23288; f = 2.732; n = 16) and
polar bear liver Hg concentrations (p = 0.142; r2 = 0.37793; f = 3.038;
n = 10) were not significant. To further elucidate these relations more
modelling work from larger parts of the Arctic with more transects, more
species, corresponding years and seasons, as well as adjustment for age,
feeding proxy adjustments and the right tissues. Here muscle tissue would
during summer timewould be preferable as the ship based transects are car-
ried out during open water seasons. It may however be complicated to get
such samples as Polar bears quotas following the calendar year has been ob-
tain before the summer and ringed seal are seldom hunted during the open
water season from June to August as the seals are thinner and tend to sink if
hunted Seabirds were included in a similar modelling exercise in the AMAP
Mercury Assessment (2022/in press) and showed corresponding hotspots
in the Canadian High Arctic. Further details on the MeHg entrance into
the food chain and trophic transport between phytoplankton, zooplankton
and higher trophic levels is provided by Wang et al. (2018). In addition,
Wang et al. (2018) concludes that detailed investigations will be required



Fig. 6. Heat maps based on a generalized additive model (GAM) of geographical patterns of mercury. From the bottom: MeHg in the upper 400 m of the ocean, mercury in
juvenile ringed seal liver, mercury in polar bear liver and polar bear hair (Cossa et al., 2018; Petrova et al., 2020b; Rigét et al., 2005; Routti et al., 2011; Wang et al., 2018;
Dietz et al., this article).

R. Dietz et al. Science of the Total Environment 829 (2022) 154445
to identify processes controlling the production and loss of MeHg associ-
ated with the upper halocline waters of the western Arctic Ocean as well
as how these processes respond to the changing climate. As these processes
are not known in detail it is also a challenge to understand to what extent
the geographical differences are driven by anthropogenic or natural pro-
cesses. It is hence at present uncertain whether the hotpot areas are linked
to natural or anthropogenic processes and these preliminary comparisons
needs further work.
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8. Conclusions

In general, based on the most recently published information, most ma-
rine and terrestrial mammal species are at low risk of health effects fromHg
exposure. Nonetheless, Hg continues to pose a justifiable concern for some
long-lived and high-trophic level Arctic marine mammals, such as polar
bear, pilot whale, narwhal, beluga and hooded seal. For these keystone spe-
cies, a notable proportion of the population is at high or severe risk of



R. Dietz et al. Science of the Total Environment 829 (2022) 154445
health effects from Hg exposure. Terrestrial mammals, with the exception
of Arctic fox on Iceland, were not at risk for Hg exposure mediated health
effects assessed based on the limited recent Hg data available. Hotspot
areas of Hg have been detected in Northwestern Arctic Canada and
Northwest Greenland. These hotspots are likely to be driven by MeHg in
the epipelagic layer. There is a need for an increased understanding of the
adverse effects of Hg exposure on Arctic wildlife, and particularly in the
face of a changing climate and how such changes are altering abiotic and
biotic exposure pathways and exposure-effect relationships. We recom-
mend more basic and applied research efforts to focus on defining and re-
fining risk threshold values. There may also be a need for advances in
multidisciplinary studies to further identify cumulative and interactive ef-
fects of Hg and other environmental stressors (e.g., other chemical contam-
inants, climate change, food-web structure, pathogens) on Arctic biota. For
most Arctic species where their Hg concentrations indicate potential effects
included in this report, little to no studies have been conducted to verify Hg
impacts. Overall, we recommend more research efforts on linking relevant
Arctic Hg hotspot species and regions to potential effects and even studies
on population effects.
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