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Abstract. Among all positional numeration systems, the widely studied
Bertrand numeration systems are defined by a simple criterion in terms
of their numeration languages. In 1989, Bertrand-Mathis characterized
them via representations in a real base β. However, the given condition
turns out to be not necessary. Hence, the goal of this paper is to provide
a correction of Bertrand-Mathis’ result. The main difference arises when
β is a Parry number, in which case two associated Bertrand numeration
systems are derived. Along the way, we define a non-canonical β-shift
and study its properties analogously to those of the usual canonical one.
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1 Introduction

In 1957, Rényi [14] introduced representations of real numbers in a real base
β > 1. A β-representation of a nonnegative real number x is an infinite sequence
a1a2 · · · over N such that x =

∑∞
i=1

ai
βi . The most commonly used algorithm

in order to obtain such digits ai is the greedy algorithm. The corresponding
distinguished β-representation of a given x ∈ [0, 1] is called the β-expansion of
x and is obtained as follows: set r0 = x and for all i ≥ 1, let ti = bβ ri−1c
and ri = β ri−1 − ti. The β-expansion of x is the infinite word dβ(x) = t1t2 · · ·
written over the alphabet {0, . . . , bβc}. In this theory, the β-expansion of 1 and
the quasi-greedy β-expansion of 1 given by d∗β(1) = limx→1− dβ(x) play crucial
roles, as well as the β-shift

Sβ = {w ∈ {0, . . . , dβe − 1}N : ∀i ≥ 0, σi(w) ≤lex d
∗
β(1)}

where σ(w1w2 · · · ) denotes the shifted word w2w3 · · · . Parry [12] showed that
the β-shift Sβ is the topological closure (w.r.t. the prefix distance) of the set
of infinite words that are the β-expansions of some real number in [0, 1) and
Bertrand-Mathis [1] characterized the real bases β for which Sβ is sofic, i.e., its
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factors form a language that is accepted by a finite automaton. Expansions in a
real base are extensively studied under various points of view and we can only
cite a few of the many possible references [1,5,10,12,15].

In parallel, other numeration systems are also widely studied, this time to
represent nonnegative integers. A positional numeration system is given by an
increasing integer sequence U = (U(i))i≥0 such that U(0) = 1 and the quotients
U(i+1)
U(i) are bounded. The greedy U -representation of n ∈ N, denoted repU (n), is

the unique word a1 · · · a` over N such that n =
∑`
i=1 aiU(`−i), a1 6= 0 and for all

j ∈ {1, . . . , `},
∑`
i=j aiU(`− i) < U(`− j+ 1). These representations are written

over the finite alphabet AU = {0, . . . , supi≥0
⌈U(i+1)

U(i)

⌉
− 1}. The numeration

language is the set NU = 0∗repU (N). Similarly, the literature about positional
numeration systems is vast; see [2,3,4,9,11,13,16] for the most topic-related ones.

There exists an intimate link between β-expansions and greedy U -representa-
tions. Its study goes back to the work [2] of Bertrand-Mathis. A positional nu-
meration system U is called Bertrand if the corresponding numeration language
NU is both prefix-closed and prolongable, i.e., if for all words w in NU , the word
w0 also belongs to NU . These two conditions can be summarized as

∀w ∈ A∗U , w ∈ NU ⇐⇒ w0 ∈ NU . (1)

The usual integer base numeration systems are Bertrand, as well the Zeckendorf
numeration system [19]. This form of the definition of Bertrand numeration sys-
tems, as well as their names after Bertrand-Mathis, was first given in [3], and then
used in [4,11,13,17]. Bertrand numeration systems were also reconsidered in [9].
Moreover, the normalization in base β > 1 in [3,7] deals with these Bertrand
numeration systems.

In [2], Bertrand-Mathis stated that a positional numeration system U is
Bertrand if and only if there exists a real number β > 1 such that NU = Fac(Sβ).
In this case, AU = {0, . . . , dβe − 1} and for all i ≥ 0,

U(i) = d1U(i− 1) + d2U(i− 2) + · · ·+ diU(0) + 1 (2)

where (di)i≥1 = d∗β(1). This result has been widely used, see for example [3,4,10].
Note that the condition stated above is trivially sufficient. However, it is not nec-
essary (see Section 3). The mistake that occurs in the proof of [2] is a confusion
between d∗β(1) and dβ(1) while describing the set Fac(Sβ) (which corresponds
to L(θ) in the notation of [2]). This mistake is then repeated in [10, Theorem
7.3.8]. Therefore, in this work, we propose a correction of this famous theorem
by fully characterizing Bertrand numeration systems.

The authors of [11,17] distinguish what they call Parry numeration systems
(which will be our canonical Bertrand systems associated with a Parry number)
among general Bertrand numeration systems. In fact, the only possible Bertrand
systems with a regular numeration language that are not Parry (in their sense)
are very specific and they will be clearly identified within our characterization.

The paper is organized as follows. We first fix some notation in Section 2.
In Section 3, we illustrate the fact that the Bertrand-Mathis theorem stated
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above does not fully characterize Bertrand numeration systems and we correct
it. Then, in Section 4, we investigate Bertand numeration systems based on a
sequence that satisfies a linear recurrence relation. In Section 5, we obtain a
second characterization of Bertrand numeration systems in terms of the lexico-
graphically greatest words of each length in NU . This provides a refinement of
a result of Hollander [8]. Finally, seeing the importance of the newly introduced
non-canonical β-shift, we study its main properties in Section 6.

2 Basic notation

We make use of common notions in formal language theory, such as alphabet,
letter, word, length of a word, prefix distance, convergence of words, language,
code and automaton [10]. In particular, the length of a finite word w is denoted
by |w|. The notation wω means an infinite repetition of the finite word w. The
set of factors of a word w is written Fac(w) and the set of factors of words in a set
L is written Fac(L). Given a finite word w and n ∈ {1, . . . , |w|}, the prefix and
suffix of length n of w are respectively written Prefn(w) and Suffn(w). Similarly,
for an infinite word w and n ≥ 0, we let Prefn(w) denote the prefix of length n
of w. If (A,<) is a totally ordered alphabet, then ≤lex denotes the usual induced
lexicographic order on both A∗ and AN.

3 Characterization of Bertrand numeration systems

The goal of this section is to give a full characterization of Bertrand numeration
systems defined by (1). In doing so, we correct the result of Bertand-Mathis
stated in the introduction.

First, we note that both implications in (1) are relevant. This observation is
illustrated in the following example.

Example 1. Consider the numeration system U defined by (U(0), U(1)) = (1, 3)
and U(i) = U(i− 1) +U(i− 2) for all i ≥ 2. It is not Bertrand as its numeration
language is not prolongable: for instance, 2 ∈ NU but 20 /∈ NU .

Now, consider U defined by (U(0), U(1)) = (1, 2) and U(i) = 5U(i − 1) +
U(i− 2) for all i ≥ 2. It is not Bertrand since the corresponding language NU is
not prefix-closed. Indeed, 50 ∈ repU (N) but 5 /∈ repU (N).

Then, let us show that the condition given in the original Bertrand-Mathis
result characterizing the Bertrand numeration systems is not necessary.

Example 2. Let U be the positional numeration system defined by U(0) = 1 and
U(i) = 3U(i− 1) + 1 for all i ≥ 1. This example was already considered in [11].
It is easy to see that NU = {0, 1, 2}∗ ∪ {0, 1, 2}∗30∗. The minimal automaton of
this language is depicted in Figure 1b. Therefore, U is Bertrand. However, for
all β > 1, we have NU 6= Fac(Sβ), in contradiction to the result from [2] (which
has been transcribed in the introduction). This can be seen by observing that
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0, 1, 2

(a) U(i) = 3i for i ≥ 0.

0, 1, 2 0

3

(b) U(0) = 1 and U(i) = 3U(i − 1) + 1 for
i ≥ 1.

Fig. 1: The minimal automata of the languages NU where U are respectively the
canonical and non-canonical Bertrand numeration systems associated with 3.

0

0

1

(a) (U(0), U(1)) = (1, 2) and
U(i) = U(i−1)+U(i−2) for i ≥ 2.

0

0

1 1

0

(b) (U(0), U(1)) = (1, 2) and U(i) = U(i−1)+
U(i− 2) + 1 for i ≥ 2.

Fig. 2: The minimal automata of the languages NU where U are respectively the

canonical and non-canonical Bertrand numeration systems associated with 1+
√
5

2 .

for all i ≥ 1, the lexicographically maximal word of length i in NU is 30i−1 while
in Fac(Sβ), this word is Prefi(d

∗
β(1)). But we know that d∗β(1) never ends with a

tail of zeroes. Also see [11, Lemma 2.5]. The sequence U satisfies (2) with (di)i≥1
not equal to d∗3(1) = 2ω as prescribed in [2] but equal to d3(1) = 30ω instead.

Another example is the following one. We consider the positional numeration
system U defined by (U(0), U(1)) = (1, 2) and U(i) = U(i− 1) +U(i− 2) + 1 for
all i ≥ 2. This system is Bertrand since the corresponding numeration language
is NU = {0, 10}∗ ∪ {0, 10}∗1 ∪ {0, 10}∗110∗. The minimal automaton of this
language is depicted in Figure 2b. Similarly as in the previous paragraph, we
see that NU 6= Fac(Sβ) for all β > 1. The sequence U satisfies (2) with (di)i≥1

equal to dϕ(1) = 110ω where ϕ is the golden ratio 1+
√
5

2 .

We will show that, up to a single exception, the only possible Bertrand nu-
meration systems are given by the recurrence relation (2) where the sequence of
coefficients (di)i≥1 is either equal to d∗β(1) or to dβ(1), as is the case of the pre-
vious two systems. Before proving our characterization of Bertrand numeration
systems, we need some technical results.

Lemma 1 ([10, Proposition 7.3.6]). The language NU of a positional nu-
meration system U is equal to {a ∈ A∗U : ∀i ≤ |a|, Suffi(a) ≤lex repU (U(i)−1)}.

Lemma 2. The numeration language NU of a Bertrand numeration system U
is factorial, that is, Fac(NU ) = NU .
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Proof. The fact that NU is prefix-closed comes from the definition of a Bertrand
numeration system. Since any positional numeration system has a suffix-closed
numeration language, the conclusion follows.

Lemma 3. A positional numeration system U is Bertrand if and only if there
exists an infinite word a over AU such that repU (U(i) − 1) = Prefi(a) for all
i ≥ 0. In this case, we have σi(a) ≤lex a for all i ≥ 0.

Proof. In order to get the necessary condition, it suffices to show that if U is
a Bertrand numeration system then for all i ≥ 1, repU (U(i) − 1) is a prefix
of repU (U(i + 1) − 1). Let thus i ≥ 1, and write repU (U(i) − 1) = a1 · · · ai
and repU (U(i + 1) − 1) = b1 · · · bi+1. On the one hand, since b1 · · · bi ∈ NU ,
we get b1 · · · bi ≤lex a1 · · · ai. On the other hand, since a1 · · · ai0 ∈ NU , we get
a1 · · · ai0 ≤lex b1 · · · bi+1, hence a1 · · · ai ≤lex b1 · · · bi.

Conversely, suppose that there exists an infinite word a over AU such that
repU (U(i)− 1) = Prefi(a) for all i ≥ 0. It is easily seen that for all w ∈ A∗U and
all i ∈ {0, . . . , |w|}, we have Suffi(w) ≤lex Prefi(a) if and only if Suffi+1(w0) ≤lex

Prefi+1(a). Then we get that U is Bertrand by Lemma 1.
We now turn to the last part of the statement and we prove that σi(a) ≤lex

a for all i ≥ 0. Suppose to the contrary that there exists i ≥ 0 such that
σi(a) >lex a. Then there exists ` ≥ 1 such that ai · · · ai+`−1 >lex a1 · · · a`, where
a = a1a2 · · · . This is impossible since ai · · · ai+`−1 ∈ NU by Lemma 2.

Lemma 4. Let a be an infinite word over N such that σi(a) ≤lex a for all i ≥ 0.
If a is not periodic, then we define d = a; otherwise we let n ≥ 1 be the smallest
integer such that a = (a1 · · · an)ω and we define d = a1 · · · an−1(an + 1)0ω. Then
in both cases, we have σi(d) <lex d for all i ≥ 1.

Proof. The case where a is not periodic is straightforward. Suppose that a is
periodic. If i ≥ n, then σi(d) = 0ω <lex d. For i with 1 ≤ i ≤ n − 1, pro-
ceed by contradiction and suppose that σi(d) ≥lex d, that is, ai+1 · · · an−1(an +
1)0ω ≥lex a1a2 · · · an−1(an + 1)0ω. Then ai+1 · · · an−1(an + 1) >lex a1 · · · an−i.
By hypothesis on a, we also have ai+1 · · · an−1an ≤lex a1 · · · an−i. Thus, we get
ai+1 · · · an−1an = a1 · · · an−i. Moreover, by assumption on a, we have σn(a) =
a ≥lex σ

n−i(a). We then obtain that

σi(a) = ai+1 · · · anσn(a) ≥lex a1 · · · an−iσn−i(a) = a.

Since σi(a) ≤lex a by hypothesis, we get σi(a) = a, which is impossible since
i < n and n was chosen to be minimal for this property.

Lemma 5. Let a be an infinite word over N. We have σi(a) ≤ a for all i ≥ 0 if
and only if either a = 0ω, a = 10ω, a = d∗β(1) for some β > 1 or a = dβ(1) for
some β > 1.

Proof. The sufficient condition follows from [12] (also see [10, Theorem 7.2.9 and
Corollary 7.2.10]). Now, suppose that σi(a) ≤ a for all i ≥ 0 and that a 6= 0ω and
a 6= 10ω. Let d be the sequence defined from a as in Lemma 4. Then σi(d) <lex d
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for all i ≥ 1. In particular, we get di ≤ d1 for all i ≥ 1. Moreover, we have d1 ≥ 1
and d 6= 10ω (for otherwise a would be equal to either 0ω or 10ω). Then there
exists a unique β > 1 such that d = dβ(1); see [12] or [10, Corollary 7.2.10].
Also, we know that d∗β(1) = (t1 · · · tn−1(tn − 1))ω whenever dβ(1) = t1 · · · tn0ω

with n ≥ 1 and tn 6= 0, and that d∗β(1) = dβ(1) otherwise; again, see [10,12]. We
get that either a = d∗β(1) or a = dβ(1) depending on the periodicity of a.

Finally, we recall the so-called Renewal theorem as stated in [6, Theorem 1
on p. 330]; also see [18, Theorem 0.18].

Theorem 1 (Renewal theorem). Let (cn)n≥1 and (dn)n≥0 be sequences of
nonnegative real numbers with cn ≤ 1 for all n ≥ 1. Suppose the greatest common
divisor of all integers n with cn > 0 is 1. Let (un)n≥0 be the sequence defined
by the recurrence relation un = dn + c1un−1 + · · · + cnu0 for all n ≥ 0. If∑∞
n=1 cn = 1 and

∑∞
n=0 dn < ∞ then limn→∞ un = (

∑∞
n=0 dn)(

∑∞
n=1 ncn)−1

where this is interpreted as zero if
∑∞
n=1 ncn =∞.

For a real number β > 1, we define

S′β = {w ∈ {0, . . . , bβc}N : ∀i ≥ 0, σi(w) ≤lex dβ(1)}.

We are now ready to show the claimed correction of Bertrand-Mathis’ result.

Theorem 2. A positional numeration system U is Bertrand if and only if one
of the following occurs.

1. For all i ≥ 0, U(i) = i+ 1.
2. There exists a real number β > 1 such that NU = Fac(Sβ).
3. There exists a real number β > 1 such that NU = Fac(S′β).

Moreover, in Case 2 (resp. Case 3), the following hold:

a. There is a unique such β.
b. The alphabet AU equals {0, . . . , dβe − 1} (resp. {0, . . . , bβc}).
c. We have

U(i) = a1U(i− 1) + a2U(i− 2) + · · ·+ aiU(0) + 1 (3)

for all i ≥ 0 and

lim
i→∞

U(i)

βi
=

β

(β − 1)
∑∞
i=1 iaiβ

−i (4)

where (ai)i≥1 is d∗β(1) (resp. dβ(1)).

d. The system U has the dominant root β, i.e., limi→∞
U(i+1)
U(i) = β.

Proof. Let U be a positional numeration system. We start with the backward
direction. If U(i) = i+1 for all i ≥ 0, then NU = 0∗∪0∗10∗, hence U is Bertrand.
Otherwise, for the sake of clarity, write S = {w ∈ NN : ∀i ≥ 0, σi(w) ≤lex a}
with a = d∗β(1) or a = dβ(1) as in the statement. Suppose that NU = Fac(S).
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We show that U is Bertrand. Consider y ∈ NU . There exist words x ∈ N∗ and
z ∈ NN such that xyz ∈ S. Since σi(xy0ω) ≤lex σ

i(xyz) for all i ≥ 0, we get that
xy0ω ∈ S. Therefore y0 ∈ NU . The converse is immediate since if y0 ∈ Fac(S)
then y ∈ Fac(S) as well.

Conversely, suppose that U is Bertrand. By Lemma 3, there exists a =
a1a2 · · · such that repU (U(i) − 1) = Prefi(a) and σi(a) ≤lex a for all i ≥ 0.
In particular, we have a1 ≥ 1. If a = 10ω then U(i) = i + 1 for all i ≥ 0. Oth-
erwise, by Lemma 5, either a = d∗β(1) for some β > 1 or a = dβ(1) for some

β > 1. Let us show that NU = Fac({w ∈ NN : ∀i ≥ 0, σi(w) ≤lex a}). Consider
y ∈ NU . By Lemma 1, we have Suffi(y) ≤lex Prefi(a) for all i ≤ |y|. Therefore,
σi(y0ω) ≤lex a for all i ≥ 0. Conversely, suppose that y is a factor of an infinite
word w over N such that σi(w) ≤lex a for all i ≥ 0. Then Suffi(y) ≤lex Prefi(a)
for all i ≥ 0. By Lemma 1, we get y ∈ NU .

To end the proof, we note that AU = {0, . . . , dβe − 1} if a = d∗β(1) and
AU = {0, . . . , bβc} if a = dβ(1). Moreover, since repU (U(i)−1) = a1 · · · ai for all
i ≥ 0, we get that the recurrence relation (3) holds for all i ≥ 0. The computation
of the limit from (4) then follows from Theorem 1 with ci = aiβ

−i, di = β−i

and ui = U(i)β−i. This in turn implies that limi→∞
U(i+1)
U(i) = β.

Note that in the previous statement, the second item coincides with the
condition given in the original theorem of Bertrand-Mathis [2]. The main dif-
ference between these two results is that there exist two Bertrand numeration
systems associated with a simple Parry number β > 1, i.e., such that dβ(1)
ends with infinitely many zeroes. To distinguish them, we call canonical the
Bertrand numeration system defined by (3) when a = d∗β(1), and non-canonical
that for which a = dβ(1). For instance, the canonical Bertrand numeration

system associated with the golden ratio 1+
√
5

2 is the well-known Zeckendorf
numeration system U = (1, 2, 3, 5, 8, . . .) defined by (U(0), U(1)) = (1, 2) and
U(i) = U(i − 1) + U(i − 2) for all i ≥ 2 [19]. The associated non-canonical
Bertrand numeration system is the numeration system U = (1, 2, 4, 7, 12, . . .)
from Example 2 defined by (U(0), U(1)) = (1, 2) and U(i) = U(i−1)+U(i−2)+1
for all i ≥ 2. See Figure 2 for automata recognizing the corresponding numer-
ation languages. In Figures 1a and 1b, we see the canonical and non-canonical
Bertrand numeration systems associated with the integer base 3.

4 Linear Bertrand numeration systems

In the following proposition, we study the linear recurrence relations satisfied
by Bertrand numeration systems associated with a Parry number β, i.e., a real
number β > 1 such that dβ(1) is ultimately periodic. As is usual, if an expansion
ends with a tail of zeroes, we often omit to write it down.

Proposition 1. Let U be a Bertrand numeration system.

1. If NU = Fac(Sβ) where β > 1 is such that d∗β(1) = d1 · · · dm(dm+1 · · · dm+n)ω

with m ≥ 0 and n ≥ 1, then U satisfies the linear recurrence relation of char-
acteristic polynomial (Xm+n−

∑m+n
j=1 djX

m+n−j)− (Xm−
∑m
j=1 djX

m−j).
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2. If NU = Fac(S′β) where β > 1 is such that dβ(1) = t1 · · · tn with n ≥ 1
and tn ≥ 1, then U satisfies the linear recurrence relation of characteristic
polynomial (Xn+1 −

∑n
j=1 tjX

n+1−j) − (Xn −
∑n
j=1 tjX

n−j), that is, the

polynomial (X − 1)(Xn −
∑n
j=1 tjX

n−j).

Proof. We only prove the first item as the second is similar. Thus, we suppose
that NU = Fac(Sβ) where β > 1 is such that d∗β(1) = d1 · · · dm(dm+1 · · · dm+n)ω

with m ≥ 0 and n ≥ 1. By Theorem 2, we get that

U(i)− U(i− n) =

i∑
j=1

djU(i− j) + 1−
i−n∑
j=1

djU(i− n− j)− 1

=

m+n∑
j=1

djU(i− j)−
m∑
j=1

djU(i− n− j)

for all i ≥ m+ n.

In the following corollary, we emphasize the simple form of the characteristic
polynomial in the first item of Proposition 1 when β is simple Parry number:
the coefficients can be obtained directly from the digits of dβ(1).

Corollary 1. Let U be a Bertrand numeration system such that NU = Fac(Sβ)
where β > 1 is such that dβ(1) = t1 · · · tn with n ≥ 1. Then U satisfies the linear
recurrence relation of characteristic polynomial Xn −

∑n
j=1 tjX

n−j.

5 Lexicographically greastest words of each length

A key argument in the proof of Theorem 2 was the study of the lexicographically
greatest words of each length; we see this in Lemmas 1 and 3. In this section,
we investigate more properties of these words, which will allow us to obtain yet
another characterization of Bertrand numeration systems.

In order to study the regularity of the numeration language of positional
systems having a dominant root, Hollander proved the following result.

Proposition 2 ([8, Lemmas 4.2 and 4.3]). Let U be a positional numeration
system having a dominant root β > 1. If β is not a simple Parry number,
then limi→∞ repU (U(i) − 1) = dβ(1). Otherwise, dβ(1) = t1 · · · tn with tn 6=
0 and for all k ≥ 0, define wk = (t1 · · · tn−1(tn − 1))kt1 · · · tn. Then for all
` ≥ 0, there exists I ≥ 0 such that for all i ≥ I, there exists k ≥ 0 such that
Pref`(repU (U(i)− 1)) = Pref`(wk0ω).

Example 3. For the integer base-b numeration system U = (bi)i≥0, we have
wk = (b− 1)kb for all k ≥ 0 and repU (bi − 1) = (b− 1)i for all i ≥ 0.

For the Zeckendorf numeration system, it can be easily seen that repU (U(i)−
1) = (10)

i
2 if i is even, and repU (U(i) − 1) = (10)

i−1
2 1 otherwise. We have

wk = (10)k11 for all k ≥ 0. Therefore, for all ` ≥ 0 and all i ≥ `, the words
repU (U(i)− 1) and wb`/2c share the same prefix of length `.
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Let U be the system defined by (U(0), U(1)) = (1, 3) and for i ≥ 2, U(i) =
3U(i−1)−U(i−2). Then U has the dominant root ϕ2 and repU (U(i)−1) = 21i−1

for all i ≥ 1. This agrees with Proposition 2 since dϕ2(1) = 21ω.

As illustrated in the next example, when β is a simple Parry number, Propo-
sition 2 does not imply the convergence of the sequence (repU (U(i)− 1))i≥0.

Example 4. Consider the numeration system U = (U(i))i≥0 defined by (U(0),
U(1), U(2), U(3)) = (1, 2, 3, 5) and for all i ≥ 4, U(i) = U(i−1)+U(i−3)+U(i−
4) + 1. The sequence U satisfies the linear recurrence relation of characteristic
polynomial X5 − 2X4 + X3 −X2 + 1, which has the golden ratio as dominant
root. Hence, as for the Zeckendorf numeration system, we have wk = (10)k11
for all k ≥ 0. For all i ≥ 4, we can compute repU (U(i) − 1) = 110i−2 if i ≡
0, 1 mod 4, and repU (U(i) − 1) = 10110i−4 otherwise. Therefore, for all i ≥ 4,
repU (U(i)−1) = Prefi(w00ω) if i ≡ 0, 1 mod 4, and repU (U(i)−1) = Prefi(w10ω)
otherwise. Thus, the limit limi→∞ repU (U(i)− 1) does not exist.

In Examples 2, 3 and 4, we illustrated that the sequence (repU (U(i)− 1))i≥0
may or may not converge. In the first two, we gave examples such that its limit
is either dβ(1) or d∗β(1). In the third, we illustrated that even if the recurrence
relation satisfied by U gives the intuition that the sequence would converge to
w10ω, it is not the case. In fact, seeing Proposition 2, one might think that we can
provide a positional numeration system U such that limi→∞ repU (U(i) − 1) =
wk0ω with k ≥ 1. We show that this cannot happen, which can be thought as a
refinement of Proposition 2.

Proposition 3. Let U be a positional numeration system with a dominant root
β > 1. If the limit limi→∞ repU (U(i)−1) exists, then it is either d∗β(1) or dβ(1).

Proof. If dβ(1) is infinite, then the result follows from Proposition 2. Let us
consider the case where dβ(1) = t1 · · · tn with tn 6= 0. Proceed by contradiction
and suppose that there exists k ≥ 1 such that limi→∞ repU (U(i) − 1) = wk0ω.
For all i large enough, t1 · · · tn−1(tn − 1) is a prefix of repU (U(i)− 1), hence the
greedy algorithm implies that

∑n
j=1 tjU(i−j) > U(i)−1. On the other hand, for

all i large enough, t1 · · · tn is a factor occurring at position kn+ 1 in repU (U(i+
kn)−1), hence, again from the greedy algorithm, we get U(i) >

∑n
j=1 tjU(i−j).

By putting the inequalities altogether, we obtain a contradiction.

Thanks to this result, we obtain another characterization of Bertrand nu-
meration systems.

Theorem 3. A positional numeration system U is Bertrand if and only if one
of the following conditions is satisfied.

1. We have repU (U(i)− 1) = Prefi(10ω) for all i ≥ 0.
2. There exists a real number β > 1 such that repU (U(i) − 1) = Prefi(d

∗
β(1))

for all i ≥ 0.
3. There exists a real number β > 1 such that repU (U(i) − 1) = Prefi(dβ(1))

for all i ≥ 0.
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Proof. All three conditions are sufficient by Lemma 3. Conversely, suppose that
U is a Bertrand numeration system. In Case 1 of Theorem 2, we have repU (U(i)−
1) = repU (i) = 10i−1 for all i ≥ 1. Otherwise, U has a dominant root β > 1 by
Theorem 2. The result then follows from Lemma 3 combined with Proposition 3.

We note that the three cases of Theorem 3 indeed match those of Theorem 2.

6 The non-canonical β-shift

In view of their definitions, the sets Sβ and S′β are both subshifts of AN, i.e., they
are shift-invariant and closed w.r.t the topology induced by the prefix distance.
These subshifts coincide unless β is a simple Parry number. Therefore, in the
specific case where β is a simple Parry number, by analogy to the name β-shift
commonly used for Sβ , we call the set S′β the non-canonical β-shift. In this
section, we see whether or not the classical properties of Sβ still hold for S′β .

The following proposition is the analogue of [10, Theorem 7.2.13] that char-
acterizes sofic (canonical) β-shifts, i.e., such that Fac(Sβ) is accepted by a finite
automaton.

Proposition 4. A real number β > 1 is a Parry number if and only if the
subshift S′β is sofic.

Proof (Sketch). If β is not a simple Parry number, then Sβ = S′β and the
conclusion follows by [10, Theorem 7.2.13]. Suppose that β is a simple Parry
number for which dβ(1) = t1 · · · tn with n ≥ 1 and tn 6= 0. We get d∗β(1) =
(t1 · · · tn−1(tn − 1))ω. An automaton recognizing Fac(S′β) can be constructed as
a slight modification of the classical automaton recognizing Fac(Sβ) given in [10,
Theorem 7.2.13]: we add a new final state q′, an edge from the state usually de-
noted qn (that is, the state reached while reading t1 · · · tn−1) to the new state q′

of label tn and a loop of label 0 on the state q′.

Example 5. The automata depicted in Figures 1a and 1b accept Fac(S3) and
Fac(S′3), and those of Figures 2a and 2b accept Fac(Sϕ) and Fac(S′ϕ).

A subshift S ⊆ AN is said to be of finite type if there exists a finite set of
forbidden factors defining words in S, i.e., if there exists a finite set X ⊂ A∗

such that S = {w ∈ AN : Fac(w) ∩X = ∅}. It is said to be coded if there exists
a prefix code Y ⊂ A∗ such that Fac(S) = Fac(Y ∗). It is well known that the
β-shift Sβ is coded [10, Proposition 7.2.11] for any β > 1 and is of finite type
whenever β is a simple Parry number [10, Theorem 7.2.15]. However, neither of
these two properties is valid for the non-canonical β-shift S′β .

Proposition 5. For any simple Parry number β, the subshift S′β is not of finite
type.

Proof. Suppose that β is a simple Parry number for which dβ(1) = t1 · · · tn
with n ≥ 1 and tn 6= 0. We show that for all k ≥ n − 1 and d ∈ {1, . . . , bβc},
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t1 · · · tn0kd belongs to the minimal set of forbidden factors. Let k ≥ n − 1 and
d ∈ {1, . . . , bβc}. Clearly, t1 · · · tn0kd /∈ Fac(S′β). Thus, in order to prove that

any proper factor of t1 · · · tn0kd belongs to Fac(S′β), it suffices to prove that

both t1 · · · tn0k and t2 · · · tn0kd belong to Fac(S′β). By [12] or [10, Corollary
7.2.10], we know that for all j ∈ {2, . . . , n}, we have tj · · · tn0ω <lex dβ(1). Thus,
t1 · · · tn0k ∈ Fac(S′β) and for j ∈ {2, . . . , n}, we get tj · · · tn0j−1 <lex t1 · · · tn.

We obtain that for each j ∈ {2, . . . , n}, tj · · · tn0kd0ω <lex dβ(1). Since moreover
0`d0ω ≤lex dβ(1) for each ` ∈ {0, . . . , k}, the conclusion follows.

In order to show that S′β is not coded, we prove the stronger statement that
it is not irreducible. A subshift S is said to be irreducible if for all u, v ∈ Fac(S),
there exists w ∈ Fac(S) such that uwv ∈ Fac(S).

Proposition 6. For any simple Parry number β, the subshift S′β is not irre-
ducible.

Proof. Suppose that β is a simple Parry number for which dβ(1) = t1 · · · tn with
n ≥ 1 and tn 6= 0. If S′β were irreducible, then there would exist w ∈ Fac(S′β)
such that t1 · · · tnwt1 · · · tn ∈ Fac(S′β), which is impossible.

The entropy of a subshift S of AN can be defined as the limit of the sequence
1
i log(Card(Fac(S) ∩Ai)) as i tends to infinity. We refer the reader to [18, The-
orem 7.13] or [10]. It is well known that the β-shift Sβ has entropy log(β). The
following proposition shows that the same property holds for S′β .

Proposition 7. For all real number β > 1, the subshift S′β has entropy log(β).

Proof. Let β > 1 be a real number. Let U be the Bertrand numeration sys-
tem such that NU = Fac(S′β), i.e., the numeration system defined by (3) with
(ai)i≥1 = dβ(1). Since the number of length-i factors of S′β is equal to U(i), the

entropy of S′β is given by limi→∞
1
i log(U(i)). The result now follows from (4).

We note that, mutatis mutandis, the same proof can be applied in order to
show that the β-shift has entropy log(β).

Finally, whenever β is a Parry number, we prove a relation between the
number of words of each length in the canonical and the non-canonical β-shifts.

Proposition 8. Suppose that β > 1 is a real number such that dβ(1) = t1 · · · tn
with n ≥ 1 and tn 6= 0, and let U and U ′ respectively be the canonical and non-
canonical Bertrand numeration systems associated with β. Then U ′(i + n) =
U(i+ n) + U ′(i) for all i ≥ 0.

Proof. Since Prefn−1(dβ(1)) = Prefn−1(d∗β(1)), we have U ′(i) = U(i) for all
i ∈ {0, . . . , n− 1}. Moreover, since t1 · · · tn is the only length-n factor of S′β that
is not present in Sβ , we have U ′(n) = U(n) + 1. Hence, the statement holds for
i = 0 since U(0) = U ′(0) = 1. Now we proceed by induction. Consider i ≥ 1
and suppose that the result holds for indices less than i. By (3) of Theorem 2
and Corollary 1, we get that U ′(i + n) − U(i + n) =

∑n
j=1 tjU

′(i + n − j) + 1
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−
∑n
j=1 tjU(i + n − j) =

∑n
j=1 tj(U

′(i + n − j) − U(i + n − j)) + 1 where
U ′(i+n− j)−U(i+n− j) = 0 if j > i, and by induction hypothesis, U ′(i+n−
j)−U(i+n− j) = U ′(i− j) if j ≤ i. As a first case, assume that i ∈ {1, . . . , n}.
We obtain U ′(i+n)−U(i+n) =

∑i
j=1 tjU

′(i− j) + 1 = U ′(i) where the second
equality comes from Theorem 2. As a second case, assume i ≥ n. Similarly, we
get U ′(i+ n)− U(i+ n) =

∑n
j=1 tjU

′(i− j) + 1 = U ′(i).
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2. Bertrand-Mathis, A.: Comment écrire les nombres entiers dans une base qui n’est
pas entière. Acta Math. Hungar. 54(3-4), 237–241 (1989).

3. Bruyère, V., Hansel, G.: Bertrand numeration systems and recognizability. Theo-
ret. Comput. Sci. 181(1), 17–43 (1997).

4. Charlier, E., Rampersad, N., Rigo, M., Waxweiler, L.: The minimal automaton
recognizing mN in a linear numeration system. Integers 11B, A4, 24 (2011).

5. Dajani, K., Kraaikamp, C.: Ergodic theory of numbers, Carus Mathematical Mono-
graphs, vol. 29. Mathematical Association of America, Washington, DC (2002).

6. Feller, W.: An introduction to probability theory and its applications. Vol. I. John
Wiley and Sons, Inc., New York; Chapman and Hall, Ltd., London (1957), 2nd ed.

7. Frougny, C., Solomyak, B.: On representation of integers in linear numeration
systems. In: Ergodic theory of Zd actions, London Math. Soc. Lecture Note Ser.,
vol. 228, pp. 345–368. Cambridge Univ. Press, Cambridge (1996).

8. Hollander, M.: Greedy numeration systems and regularity. Theory Comput. Syst.
31(2), 111–133 (1998).
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