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Abstract: The systematic use of plant protection products is now being called into question with
the growing awareness of the risks they can represent for the environment and human health. The
application of precision agriculture technologies helps to improve agricultural production but also
to rationalize input costs and improve ecological footprints. Here we present a study on fungicide
application efficiency and its impact on the grass quality of a golf course green using the free
open-source image analysis software FIJI (Image J) to analyze ground RGB (high-resolution digital
cameras) and multispectral aerial imagery in combination with experimental data of spray pressure
and hydraulic slot nozzle size of a boom sprayer machine. The multivariate regression model best
explained variance in the normalized green-red difference index (NGRDI) as a relevant indicator of
healthy turfgrass fields from the aerial, ground, and machine data set.

Keywords: RGB sensor; imagery; precision agriculture; boom sprayer; pressure; nozzle size; applica-
tion efficiency; vegetation indices; grass quality; environment risk

1. Introduction

The surface on which a sport is played makes a huge difference, not only in the way it
is played but on player health, maintenance and even the likability of the local environment.
There are many benefits to choosing a turfgrass yard or field over other options. Operating
preventative fungicide applications may help keep your sward healthy and disease-free.
Precision agriculture aims to apply a precise and appropriate amount of inputs of water,
pesticides, fertilizers etc., to the crop at the right time for improving productivity and
quality [1], which may considerably reduce the quantity of pesticides and savings in input
costs [2]. The second benefit concerns environmental impacts [3]. Consequently, concerning
crops, soils and farmers, precision agriculture has become a key element of sustainable
agriculture [4,5] by reducing pressure on the environment through increasing machinery
efficiency. For example, the use of GNSS (Global Navigation Satellite System) reduces
agriculture fuel consumption, as when satellite imagery supports variable rate technology
application of pesticides including sprayer machines and can eventually reduce the total
amount used [3,6].

Current technological advancements allow the use of real-time sensors in the soil to
collect and transmit data instantly without the need for human presence [7,8]. Precision
agriculture has further been enabled by RGB (Red, Green, Blue) or multispectral cameras
to capture multiple field images that can then be combined via photogrammetric methods
to build orthophotos covering large areas. The multispectral images include several values

Sustainability 2022, 14, 3666. https://doi.org/10.3390/su14063666 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su14063666
https://doi.org/10.3390/su14063666
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-2484-7703
https://orcid.org/0000-0002-8879-9181
https://orcid.org/0000-0003-4668-5458
https://orcid.org/0000-0002-9022-6948
https://orcid.org/0000-0002-1071-4926
https://orcid.org/0000-0002-9852-742X
https://orcid.org/0000-0002-1687-1965
https://doi.org/10.3390/su14063666
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su14063666?type=check_update&version=1


Sustainability 2022, 14, 3666 2 of 15

per pixel besides the traditional red, green and blue values to process and analyze spectral
vegetation indices that can provide detailed information on plant health, including fungal
infections and treatment needs [9]. In phytosanitary applications, the majority of fungicide
products are used in the form of a spray to protect turfgrass fields and optimize their
quality [10]. The precise distribution of agrochemicals is essential to ensure effective
intervention with a significant impact on both production costs and the environment.

Spray operation should use drop shadows to deliver the active component to the target
area. Fungicide treatment effectiveness as a function of drop sizes and velocity has been the
subject of an expansive disquisition and, despite the process complexity, some trends are
well established [1,11]. As a rule of thumb, drops whose sizes exceed 300 µm in diameter
tend to splash on the target shell. Among others, the parameters determining the splash
characteristics are the drop kinetic energy and the area characteristics [12,13]. On the other
hand, small driblets under 200 µm in diameter are prone to interact with the wind, which
may beget their drift downwards from the target [1,11]. Still, nozzles are characterized by a
wide distribution of drop size (span) involving implicit drifting or effectiveness losses due
to splashing marvels. Therefore, the spray should contain optimal driblets regarding their
droplet sizes and velocity. A better spray uniformity may ameliorate treatment effectiveness
and reduce drift hazards. On this basis, reducing the extent of the drop size distribution is
still a challenge in the field of precision phytosanitary treatment.

Spray pressure, nozzle size, and tractor speed for a boom sprayer are the main param-
eters determining boom flow rate, drop size, drift, and subsequently treatment application
efficiency [10]. To solve this problem, remote sensing has become an essential toolset in the
modernization of ground-based high throughput plant phenotyping (HTPP), ultimately
including advances in yield, but including adaptation to abiotic stressors, biotic limiting
conditions as vulnerability to diseases and pests, and indeed quality [14–17]. As a clas-
sical approach of remote sensing using satellites, unmanned aerial vehicle UAVs, visible
and near-infrared (VNIR) imaging spectroscopy has proven a reasonably reliable ability
in biophysical crop evaluations in agriculture [18,19] such as the normalized difference
vegetative index (NDVI) [20] resulting from visible and near-infrared (NIR) reflectance that
is strictly related to vegetation presence or vigor [21,22]. The main difficulties regarding
the use of NDVI include its atmospheric impact, ease of saturation, and sensor quality [23].

Various RGB vegetation indices (RGB VIs), estimated from commercial RGB cameras,
have proven their capability to predict yield, evaluate nutrient deficits, and measure disease
impacts [24,25] as a less expensive alternative to scientific multispectral VNIR or thermal
infrared (TIR) sensors [26]. RGB images can be treated using comparisons between red,
green, and blue light as broadband reflectance values or through the use of alternative
color spaces, as with the Breedpix code [27]. The normalized green–red difference index
(NGRDI), which is closely related to vegetation presence or vigor, and the triangular
greenness index (TGI), which estimates chlorophyll concentration in leaves and canopies,
are both calculated from the treatment of R, G, and B as separate spectral bands [25]. In
the hue–saturation–intensity (HSI) color space, where the hue (H) element describes color
chroma crossing the visible spectrum in the form of an angle between 0◦ and 360◦ [14].
The percentage of pixels in the image in the hue range from 60◦ to 180◦ presents the green
index area (GA), but the percentage of pixels in the image in the hue range from 80◦ to
180◦ presents the greener green area (GGA) excluding yellowish-green tones that might
be partially stressed or senescent. The crop senescence index (CSI) is calculated from
GA and GGA, providing strong segregation between resistant and sensitive genotypes in
different treatments [14,20,28,29]. In the Commission Internationale de I’Edairage (CIE),
CIELab color space model, dimension L* represents lightness, the a* factor presents green
to red, and the b* factor expresses blue to yellow. Dimensions u* and v* in the CIELuv
color space model are perceptibly homogeneous coordinates and symbolize axes like
a* and b* in separating the color spectrum [30]. The CIElab and CIEluv color spaces can
concurrently contrast the green vegetation amount with the reddish/brown soil background
and yellowing caused by the foliar chlorophyll loss, both communal symptoms of nitrogen
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deficit. Already, for improving crop performance, RGB VIs have been used at both the
canopy and leaf status [16,31,32].

In this current study, the defined remote sensing indices, hue, a*, u*, NGRDI, and
NDVI are examined for their potential to ensure effective fungicide intervention with
significant impact. Then, we evaluate the performance of a set of remote sensing RGB VIs
from natural color images acquired at the ground level on a playing turf. Additionally, we
evaluated how these different data contribute to improving multivariate model estimations
of grass phytosanitary conditions in combination with the operating parameters of a boom
pressure sprayer, such as spray pressure and nozzle size, to provide some improvements
over traditional practices. This study aims to assess if defined remote sensing indices can be
used to ensure effective fungicide intervention with significant impact and provide support
in golf turf maintenance.

2. Materials and Methods
2.1. Experimental Conditions

The experimentation was carried out on a grass lawn of the Citrus Golf Course
located in Hammamet, Tunisia (35◦49′31′ ′ N, 10◦38′13′ ′ E, 24 m.a.s.l) (Figure 1). The Golf
course is characterized by sandy soil with a pH slightly below 6. It offers two remarkable
18-hole courses: the Olive trees course and the Forest course, whose main quality is the
technical richness of the layout. All the courses represent 80 hectares of grassed land that
is perfectly maintained throughout the year with a local weather station data recording
mean temperature, humidity, and total rainfall of 19 ◦C, 66% and 380 mm, respectively.
The experiment was carried out in six greens of the Forest course (Figure 1). Each green
of 400 m2 area was divided into two experimental units for 12 units for both nozzle sizes.
Three turf photographs were taken 5 days after the sprayer passage on each unit with
9 replications. Five treatment applications with a 10-day interval were performed from
March to Mai 2021 (Figure 2). The control simple was a digital photograph taken per
experimental unit with a Nikon D7500 camera about 125 cm above the grass canopy before
treatment application. The infested turf presented low vegetation indices values compared
to treated turf. In the golf course of Hammamet, only two nozzles 05 and 06 were used and
thus compared in turf phytosanitary applications. For each fungal treatment, a combination
of pressure-speed-nozzle size (Table 1) was tested to assess the treatment effectiveness of
a boom pressure sprayer (BPS) with flat-jet nozzles and the health status of the grass turf
using RGB remote sensing technology to avoid a considerable risk of contamination by
spray drift and losses on the soil, a reason of increasing public care. To avoid external
sources of variability, all the operating parameters were maintained as constant as possible
in all treatments. The boom sprayer was calibrated to apply a constant rate of 300 l ha−1.
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Figure 2. Design of experiments.

Table 1. Treatments.

Treatment 1 2

Sprayer BPS BPS
Nozzle CHS AXI11005 CHS AXI11006

Colour and Size Brown 05 Grey 06
Number of nozzles 11 11

Pressure (bar) 5.6 2.6
Measured spray liq. flow rate (L min−1) 3.4 1.9

Forward speed (km h−1) 7.2 4.7
Spray volume (L ha−1) 300 300

PTO speed (rpm) 540 540

To ensure the quality of the product distribution, a check of the conventional hydraulic
slot nozzles (CHS) status was carried out to eliminate defective nozzles and correct the clog-
ging others at a spray pressure and an engine speed of 2.6 bars and 2000 rpm, respectively.
If the average nozzle flow rate was less than the average flow rate −5% and greater than
the average flow rate +5%, then the nozzle was changed (Table 2). The spray uniformity
coefficient (Cu) was also tested before the treatments to ensure an even distribution over
the whole plot passing the sprayer over the green and then measuring the volume collected
in containers. The distribution under the nozzles was assessed by collecting the heights
of the product applied in containers placed on the lawn following a grid of 1 × 1 m. The
volumes applied in containers placed under the nozzles were collected at a 2 bars pressure
and a 0.5 m height for the two nozzle sizes to compare their distribution quality.

Cu (%) = 100 (1 −∑|Zi − ¯Z|/N * ¯Z) (1)

Zi: average fungicide level at test tube i (mm);
¯Z: average fungicide level applied to the treated area (mm);
N: number of observations.

If Cu < 70%, the distribution should be enhanced; if Cu > 70%, the distribution
is uniform.

Table 2. Testing the nozzle status.

Nozzles 05 L min−1 Status Nozzles 06 L min−1 Status

1 3.48 A 1 1.96 A
2 3.42 A 2 1.86 A
3 3.42 A 3 1.84 A
4 3.42 A 4 2 A
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Table 2. Cont.

Nozzles 05 L min−1 Status Nozzles 06 L min−1 Status

5 3.3 A 5 1.8 C
6 3.48 A 6 1.96 A
7 3.3 A 7 1.86 A
8 3.36 A 8 2 A
9 3.3 A 9 1.96 A
10 3.42 A 10 1.92 A
11 3.48 A 11 1.92 A

Total flow rate 37.38 Total flow rate 21.08
Average flow rate (FR) 3.398 Average flow rate (FR) 1.916

FR −5% 3.22 FR −5% 1.8202
FR +5% 3.556 FR +5% 2.011

A: accepted nozzle; C: changed nozzle.

2.2. Data Collection

Remote sensing evaluations were performed on the grass turf greens in March, April,
and May during the springer season of 2021 with the intensive cycles of turf maintenance.
Weakened by the winter, the grass on a natural golf course needed special attention to
grow as quickly as possible. Mechanical aeration of the soil to stimulate root development
and promote fertilizer penetration was performed during this period. The turf should be
sufficiently robust since fungal growth was favored. Preventive applications of a fungicide
to problem areas were recommended every 10 days, followed by proximal and aerial
remote sensing. For ground RGB VIs, vegetation indices were obtained from one picture
taken at the ground level for each plot five days after treatment when the effects on the
plant appear well (Figure 3). At the ground level, one digital photograph was taken per
plot with a Nikon D7500 camera at about 125 cm above the grass canopy at a zenithal angle
and focused near the center of each plot. The images were acquired with a resolution of
20.7 megapixels with a focal length of 12 mm with the aperture programmed in automatic
mode at a resolution of 7087 × 4724 for a Ground Sample Distance (GSD) of 0.04 cm/pixel.
The calibration photos were then imported and divided into the separate color channels of
red, green, and blue, and in the CIELab color space as lightness, a*, and b* by the software
FIJI. NDVI was measured in March, April, and May of 2021 at almost the same time as
RGB data by Sentinel-2 satellite optical sensor with 13 spectral bands R, G, B, and NIR at
10m resolution.
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green area (GGA). (D) Grass ground image from 125 cm with normalized green–red difference
index (NGRDI).
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2.3. Image Processing

The ground RGB photos were captured in favorable climatic conditions and subse-
quently analyzed applying a Breedpix 0.2 software version edited to JAVA8 and incorpo-
rated as a section of the MaizeScanner, an open-source and open access FIJI plugin that
provides the TGI and NGRDI indices from converted RGB values based on RGB broadband
reflectance and also for color measurement from the HSI, CIELab and CIELuv color spaces.

TGI = −0.5 [190 × (R670 − R550) − 120 × (R670 − R480)] (2)

We used digital camera bands of red, green, and blue broadband reflectance focused
relatively at 670, 550, and 480 nm, respectively [33].

NGRDI = (R550 − R670)/(R550 + R670) (3)

The absorption of chlorophyll at R670 differs between grass and soil through the
difference between green and red light reflectance, knowing that R550 is the reflectance
value of the green and R670 is the reflectance value of the red bands of the RGB camera.
Considering variances in light intensity, the sum is normalized and ranges from −1.0 to 1.0.
Extending from soil to healthy grass, NGRDI alters mainly between −0.2 and 0.5 [14,33,34].

CSI = 100 × (GA − GGA)/GA (4)

CSI was calculated by FIJI software as already mentioned from GA and GGA where
GA as a color space index is the percentage of pixels in the hue varying from 60 to 180◦ and
from yellow to bluish-green, whereas GGA varies from 80 to 180◦ excepting yellowish-green
tones that might be partially stressful or senescent [9,24].

The NDVI-Sentinel-2 is the normalized difference of the red and the NIR band, calcu-
lated as:

NDVI = (NIR − RED)/(NIR + RED) (5)

NDVI is an effective index for quantifying green vegetation, which normalizes green
leaf dispersing in NIR wavelengths via chlorophyll assimilation in red wavelengths. The
NDVI values vary from −1 to 1. Negative values conform to water, while values close to
zero (−0.1 to 0.1) conform to barren areas. Low and positive values from 0.2 to 0.4 cor-
respond to grassy land, while high values closer to 1 indicate a positive estimate for live
green plants of greater biomass [23]. On clear days, the amount of solar radiation scatter
is inversely proportional to the fourth power of the wavelength (~λ−4, where λ is wave-
length) (Figure 4). The differences in NDVI values among different objects are due to their
relative differences in spectral responses (Figure 4).
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2.4. Statistical Analysis

The SPSS 17 software was used for establishing statistical analysis. The grass treat-
ments were analyzed using ANOVA and Fisher’s Least Significant Difference (LSD) tests
(α = 0.05) to test the effects of spraying conditions on the application efficiency. The results
of the canopy level image averages per picture taken at the ground level were compared
with the canopy level whole plot averages of the Sentinel-2 images with Pearson correlation
coefficients and ANOVA analyses. Correlation coefficients of the different remote sensing
indices were additionally compared against NGRDI. Multiple regressions were calculated
with NGRDI as the dependent variable and the different indices as independent variables.

3. Results and Discussion
3.1. Nozzle Size and Pressure and Their Effect on the Uniformity Coefficient

The uniformity coefficient was calculated to evaluate the uniformity of the fungicide
distribution during spraying using the formula mentioned in Section 2.1. This coefficient
was used as an indicator of the performance of spray systems. It varies from 0 to 100%; the
closer the coefficient is to 100%, the better the uniformity. According to the obtained results,
for the brown nozzle size 05, the uniformity coefficient ranges from 86.64% at a pressure
of 2.6 bars to 80.71% when the pressure was increased to 5.6 bars (Figure 5). However, for
the second grey nozzle size 06, the variation in the distribution uniformity was greater
and decreased from 85.47% at 2.6 bars to 77.23% at 5.6 bars. Consequently, the uniformity
coefficient was sensitive to the pressure variation presenting an increased risk of drift with
an increase in tractor forward speed for the two tested nozzles. The pressure is one of the
variables that influence the spray characteristics [37], while its influence on kinetic energy
distribution has rarely been mentioned [38]. It can be seen that the uniformity coefficient
decreased with increasing working pressure. The statistical analysis demonstrates that
working pressure and nozzle size have a significant effect on uniformity (p < 0.01).
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3.2. Effect of Nozzle Size on the Distribution Quality

Figure 6 shows that increasing the nozzle size was accompanied by increased spray
rates and an increase in droplet size. In fact, the theoretical nozzle flow rate depends
on the nozzle type and pressure. The type of nozzle is itself a function of the technical
characteristics, including its size [11,39]. Irregular distribution of the spray mixture was
noticed on the ground, which is why, for a boom equipped with this type of nozzle, an
overlap between the contiguous jets is planned to compensate for this lack of spray mixture.
This difference could be explained by the principle according to which the two types of
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nozzles work. In fact, for hydraulic slot nozzles, the reduction of the drift risk is achieved by
operating at a low pressure to limit the production of fine droplets. However, it is reported
that one of the direct consequences of limiting the working pressure is the reduction of
the spray width. When changing from size 05 to size 06, the homogeneity of the sprayed
liquid is affected. This decrease in distribution quality is related to the droplet size. For
the size 06 and with a relatively low pressure of 2 bars, the spray becomes very sharp with
a high volume of liquid collected at the nozzle axis, which explains the decrease of the
treatment efficiency.
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3.3. The Performance of Remote Sensing Indices Assessing Grass Healthy Status

Table 3 shows an increase of the GA index with the decrease of pressure and nozzle
size. The average value ranged from 0.812 to 0.824 when the spray pressure decreased
from 5.6 bars to 2.6 bars. GA average values also ranged from 0.795 to 0.841 when the
nozzle size decreased from 06 bars to 05 bars. The photosynthetically active area, excluding
senescent leaves, was captured by the GGA index. The GGA values following the different
fungal treatments increased, especially after the second treatment operation, and reached a
maximum value of 0.67 and a minimum value at the 4th treatment of 0.278. These results
are in agreement with those reported by Boukhalfa et al. [13]—that the spray pressure has
a direct effect on drift and thus on treatment efficiency and liquid uptake. An increase
in tractor forward speed and pressure makes the droplets more and more sensitive to
the microclimate. Indeed, the diameter of the droplets forming the spray spectrum can
range from about 10 microns for the smallest to 800 microns or more for the largest. The
finest droplets are very sensitive to drift, even in calm weather. They remain suspended in
the air for a longer period because of their reduced mass and low speed. They are more
constrained in their fall by aerodynamic friction forces and are therefore affected by air
movement and weather conditions [10]. The CSI values tend to be higher following the 4th
treatment operation of 57.127 at a low pressure of 2.6 bars.

Table 3. Remote sensing variables from RGB and Sentinel-2 images depending on spray pressure
and nozzle size at a boom height of 0.5 m.

GA GGA CSI NGRDI TGI NDVI

Spray
pressure

2.6 0.824 ± 0.141 0.543 ± 0.212 36.726 ± 17.612 0.099 ± 0.061 3451.929 ± 557.037 0.545 ± 0.111
5.6 0.812 ± 0.158 0.545 ± 0.226 36.066 ± 18.754 0.107 ± 0.071 3343.531 ± 626.003 0.570 ± 0.104

Nozzle
size

05 0.841 ± 0.142 0.587 ± 0.217 33.018 ± 18.068 0.117 ± 0.068 3490.770 ± 596.139 0.589 ± 0.104
06 0.795 ± 0.154 0.501 ± 0.213 39.773 ± 17.680 0.089 ± 0.062 3304.691 ± 578.984 0.527 ± 0.104

Treatment
operations

1 0.902 ± 0.063 0.656 ± 0.152 28.062 ± 12.794 0.115 ± 0.046 3651.644 ± 446.768 0.617 ± 0.063
2 0.908 ± 0.045 0.680 ± 0.121 25.548 ± 10.260 0.158 ± 0.047 3746.222 ± 426.312 0.645 ± 0.065
3 0.905 ± 0.054 0.672 ± 0.160 26.377 ± 14.331 0.145 ± 0.051 3569.860 ± 469.783 0.576 ± 0.072
4 0.612 ± 0.159 0.278 ± 0.138 57.127 ± 12.618 0.025 ± 0.041 2697.033 ± 412.197 0.544 ± 0.075
5 0.763 ± 0.101 0.433 ± 0.166 44.865 ± 15.446 0.072 ± 0.038 3323.892 ± 544.391 0.407 ± 0.075
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Mechanical aeration of the turfgrass green favored the water and air penetration,
reduced undesirable effects, stimulated the root development and tillering of the plant, and
promoted the soil microbial activity, thus accelerating the organic matter decomposition.
Similarly, aeration improved the density of the turf and increased the flexibility and elastic-
ity of the plant cover, which accelerated the soil drying after rain or irrigation, provided
easier access to nutrients, and improved disease resistance, justifying the decrease of GGA
value following this maintenance operation. TGI index estimates the vegetation fraction
of cultivated land, monitoring crop health or the crop chlorophyll content. Following the
obtained results, the higher pressure of 5.6 bars decreased the grass chlorophyll content
from 4500 and the 2500 TGI index with a maximum noted in treatment 2 and a minimum
in treatment 5. For the two nozzle sizes, 05 and 06, NGRDI varied from 0.117 to 0.089,
respectively. NDVI values were obtained from Sentinel-2 images processing using the QGIS
software (Figure 7). NDVI results tend to decrease until 0.3 following the 5th treatment
using the nozzle size 06. Borge et al. [40] proved that the variation of NDVI values is due to
identifying some rust-infected areas in the Sentinel-2 multispectral images. These results
coincide with those of Huang et al. [23] who showed that the NDVI application allows
highlighting spectral differences, including turfgrass quality and color.
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Table 4 mentioned the correlation between pressure, nozzle size, vegetation indices
and levels of significance and showed that the sprayer parameters had a significant effect
on the studied remote sensors variables from RGB and Sentinel-2 images. The highest
averages were obtained at low pressure and size (Table 3). The NGRDI closely related
to vegetation presence or vigor is used as a low-cost alternative to NDVI and considers
the spectral characteristics of healthy green vegetation. This index is an effective way of
detecting the green state of plants. It has the same principle as NDVI, but different bands
are used. This is why we chose to use the NGRDI as a reference index to reduce the use of
pesticides more gradually.

GA and GGA quantify the portion of green pixels to the total pixels of the image and
is a reliable estimation of vegetation cover. The values of GA were consistently below 60%.
Advances in digital photography allow for sufficiently high resolution for low-altitude
aerial imaging to be a viable and economical monitoring tool for agriculture [41]. Addition-
ally, other research showed higher correlations between RGB VIs and yield previous than
NDVI under frequent data acquisitions during the crop growing cycle [42]. The RGB and
NDVI data acquisition was promising, which may reduce the use of pesticides on grassy
swards over better treatment efficiency.
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Table 4. Remote sensors variables from RGB and Sentinel images correlations with operating pa-
rameters of the boom sprayer. Levels of significance: * p < 0.05; ** p < 0.01; *** p < 0.001. ns:
non-significant.

Spray Parameters Pressure Nozzle Size

Remote Sensing Variables r p r p

Intensity −0.154 * −0.015 ns
Hue 0.016 ns 0.159 *

Saturation 0.025 ns −0.031 ns
Lightness −0.173 * 0.011 ns

a* 0.049 ns −0.209 **
b* −0.125 ns 0.012 ns
u* 0.028 ns −0.203 **
v* −0.175 ** 0.054 ns

GA −0.039 ns 0.154 *
GGA 0.005 ns 0.197 ***
CSI −0.018 ns −0.187 *

NGRDI 0.059 ns 0.216 ***
TGI −0.092 ns 0.157 *

NDVI 0.116 ns 0.287 ***

3.4. Multiple Linear Regression (MLR) Model

The summary of statistical characteristics of the data in NGRDI estimation is presented
in Table 5. Hue values ranged between 48.371 and 120.353, with an average value of 79.568,
which plays an important role in green NGRDI. Increased spray pressure and nozzle size
can decrease NGRDI and make the treatment application less efficient. GGA and NDVI
ranged between 0.056 and 0.904 and from 0.259 to 0.750, respectively. MLR is one of the
statistical methods which attempts to model the correlation between involving RGB and
multispectral variables and the response variable depending on linear equation into the
observed data. The MLR model (Table 6) is:

NGRDI = Pressure× 0.08 + Size× 0.05 + Hue× 0.02− a× 0.01
+u× 0.01 + GGA× 0.248 + NDVI× 0.09− 0.301

(6)

Table 5. Statistics of data set for the normalized green–red difference index (NGRDI) prediction.

Minimum Maximum Mean Median SD Skewness Kurtosis

Hue 48.371 120.353 79.568 81.501 11.486 −0.255 0.930
a* −22.840 −4.189 −15.582 −16.244 3.963 0.620 0.052
u* −17.436 7.252 −8.068 −8.855 5.357 0.713 0.228

GGA 0.056 0.904 0.544 0.583 0.219 −0.334 −0.919
NDVI 0.259 0.750 0.558 0.580 0.108 −0.617 −0.504

Pressure 2.600 5.600 4.100 4.100 2.121
Size 5.000 6.000 5.500 5.500 0.707

Table 6. Multilinear regression of NGRDI as the dependent variable comparing the different spray ap-
plication parameters and remote sensing variables: Sentinel-2 and ground RGB VIs. R2, determination
coefficient; RMSE, root mean squared error. Level of significance: *** p < 0.001.

Equation R2 Durbin-Watson
Coefficient RMSE F p-Level

NGRDI = Pressure * 0.08 + Size * 0.05 + Hue * 0.02 − a * 0.01 +
u * 0.01 + GGA * 0.248 + NDVI * 0.09 − 0.301 0.88 0.87 0.023 175.05 ***

To estimate the efficiency of the used fungicide treatment application and the health
status of the green through NGRDI, results of ANOVA and regression analysis of the se-
lected input dataset using a standard Akaike information criterion (AIC) selection criterion
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are shown in Table 6. We further display the determination coefficient (R2), and the root
mean squared error (RMSE). The presented model was significant at the p < 0.001 level.

Combining the spray data, remote sensing indices provided little improvement in the
multivariate model explaining the application efficiency and the turfgrass health status
using NGRDI, which may help to choose the suitable pressure and nozzle size in fungicide
applications, thus reducing the use of pesticides and costs and mitigating the contribution
to climate change. Thus, the implementation of ground RGB VIs combined with some
operating spray parameters can result in substantial time cost savings, particularly when
applied on a large scale.

Figures 8 and 9 showed the relationship between remote sensing variables from RGB
and Sentinel images, between the normalized green-red difference index (NGRDI) and
input dataset since NGRDI was closely related to vegetation presence or vigor. It was
used as a low-cost alternative and considered the spectral characteristics of healthy green
vegetation. This index was an effective way of detecting the green state of plants. This
is why we studied the relationship between the selected input data to predict NGRDI
(selected as a relevant indicator of the spray treatment efficiency in the present research)
from selected RGB indices, multispectral indices and spray parameters. Correlations
between input indices were good. The highest correlation was obtained with GGA. The
impacts of the percentage of pixels in the image in the hue range from 80◦ to 180◦, and the
hue on the grass healthy green were linear. So, they could be employed to predict NGRDI
by MLR. The obtained results (Figure 9 and Table 6) showed that the MLR model had an
agreeable prediction performance.
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Figure 8. Scatter plot displaying between normalized green-red difference index (NGRDI) and input
dataset. (a): GGA, greener green area; (b): GA, green area; (c): CSI, crop senescence index; (d): Hue;
(e): NDVI, normalized difference vegetative index; (f): TGI, triangular greenness index.
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Figure 9. Comparison (a) and relationships (b) between the predicted by multiple linear regression
(MLR) model and calculated NGRDI.

RGB VIs have been used extensively for crop management as well as crop breeding in
a similar fashion, though the authors know of no research to date combining RGB VIs and
nozzle size or tractor speed in a turfgrass study. In application to low-N phenotyping in
maize by Buchaillot et al. in 2019 [14], viable uses of RGB color image analyzes from the
ground or UAVs presented potential profits compared with currently used field sensors,
specifically relative to the high quality of the RGB sensor calibrations directly from the
factory and the time costs when applying to larger breeding platforms. Kefauver et al. in
2017 [29] showed that multivariate regression models explained 77.8, 71.6, and 82.7% of the
variance in yield from the aerial, ground, and combined data sets, respectively, in a study
applied to barley in Spain. Gracia-Romeo et al., 2018 [25] demonstrated the applicability of
remote sensing approaches based on RGB images to assessing crop performance and hybrid
choice combined with sustainable management practices. The results of previous studies
using RGB VIs and comparisons with NDVI from multispectral sensors is comparable to
the study presented here when applied to similar crops, though without the additional
precision agriculture component included in this study.

4. Conclusions

Assessing golf course turfgrass quality using image processing methods and depend-
ing on different spray parameters has been highlighted here using simple and economical
modern remote sensing information acquisition and monitoring technologies. Multispectral
and RGB image-based vegetation indices showed good correlations, with NGRDI selected
as the most relevant indicator to monitor the treatment efficiency and, therefore, the turf
quality as a function of spray pressure, nozzle size, and forward speed. So, these different
intertwined application mechanical properties were employed to predict NGRDI, as the
best indicator of turfgrass health, by MLR to derive further insights. In fact, the treatment
uniformity coefficient decreased with increasing working pressure and ranged from 86.64%
at 2.6 bars to 80.71% at 5.6 bars for the size 0.5. The nozzle size also affected the treatment
distribution quality. Using the nozzle size 0.6 increased the spray volume and the droplet
size and therefore decreased the distribution quality and consequently the treatment effi-
ciency. Regarding the GA index, the average value increased at the low pressure 2.6 bars
and the size 0.5. The CSI values further increased to 57.127, following the low-pressure use.
Moreover, the higher pressure of 5.6 bars decreased the grass chlorophyll from 4500 and
2500 through the TGI index. For the two nozzle sizes 05 and 06, NGRDI varied from
0.117 to 0.089, respectively. NDVI results equally tended to decrease until 0.3 using the size
0.6. The MLR model had an agreeable NGRDI prediction performance with an RMSE of
0.023 and a high correlation coefficient (R2 = 0.88). In summary, good results were obtained
for estimating turfgrass vigor as a function of various treatment management parameters
with the support of remote sensing technologies at different scales.
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Abbreviations

GPS Global positioning system
GNSS Global navigation satellite systems
VRT Variable-rate technology
RGB Red-green-blue
HTPP Hight throughput plant phenotyping
VNIR Visible and near-infrared
NDVI Normalized difference vegetative index
RGB VIs Red–green–blue vegetation indices
TIR Thermal infrared
NGRDI Normalized green–red difference index
TGI Triangular greenness index
HIS Hue–intensity–saturation
H Hue
GA Green area
GGA Greener green area
CSI Crop senescence index
BPS Boom pressure sprayer
CHS Conventional hydraulic slot nozzle
Cu Uniformity coefficient
FL Flow rate
NIR Near-infrared
ANOVA Analyses of variance
R2 Determination coefficient
RMSE Root mean squared error
MLR Multiple linear regression
UAV Uncrewed aerial vehicle
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