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ABSTRACT 

In the present work, the capacity of phase field method to highlight microstructural 
changes during the spinodal decomposition of a given binary alloy basing on the Cahn-Hilliard 
equation is presented. Then, growth and coarsening of precipitates are studied using the KKS 
(Kim-Kim-Suzuki) model, which includes Cahn-Hilliard and Allen-Cahn equations. The 
implementation of time stepping algorithms to resolve Phase-Field equations is illustrated. 
Within Fourier space, using semi-implicit spectral method, it has been demonstrated that it 
allows faster computing than schemes based on finite difference method. First, spinodal 
decomposition of a given binary alloy under isothermal loading is implemented and three time 
stepping approaches are applied: constant time stepping, non- iterative and an iterative method. 
While the non-iterative method is faster than the constant time stepping scheme, the iterative 
one, althoughrelatively more CPU consuming,can guaranteethe convergence of the computing. 
These methods are combined in an innovative approach tested on 1D, 2D and 3D grids. The 
effectiveness of the adopted adaptive time-stepping algorithm allows resolving equations in 
reasonable CPU time. It predicts different physical phenomena,such as phase separation and 
growth and coarsening of precipitates induced by important interfacial energies.  

Key words: Phase-Field method, AlSi10Mg, adaptive time stepping, Cahn-Hilliard, 
Allen-Cahn, Semi-implicit spectral method 

 

1 INTRODUCTION 
  During a Selective Laser Melting (SLM) process, also named Laser Powder Bed Fusion 

(LPBF), applied thermal cycles and solidification velocities are considerably increased when 
compared to ordinary directional solidification. That results in a very fine cellular-dendritic, 
out-of-equilibrium and inhomogeneous microstructure. Indeed, during the SLM process, various 
phenomena occur such as heat transfer, fluid flow, moving boundaries and crystalline anisotropy 
[1].  

 AlSi10Mg alloy, additively manufactured, is widely used in automotive and aerospace. 
The prediction of its long-term behavior is of interest and strongly linked to its original state after 
solidification and heat treatment. Standard analytical methods are not enough to assess the 
mechanical and thermo-physical properties of the formed microstructure. In several simulations 
of SLM processes, thermo-physical data are either taken constant in the most simplified models 
or, if based on measurements, related to material samples generated by another process, while 
real properties are indeed different [2]. Therefore, the correct thermo-physical properties of the 
material in its current state should be taken into account during manufacturing or 
post-treatments.  
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The number of numerical models of microstructural evolution in materials science has 
been increased in recent years. Microstructure evolution in Additive Manufacturing (AM) has 
been intensively investigated by means of cellular automaton, finite element, and phase-field 
methods. Cellular automaton method has been applied, as a mesoscale approach, to predict 
grain growth during solidification and give insights about their distributions [3]. Nevertheless, in 
some case, this method is not efficient for modeling the evolution of the most influential 
parameters on mechanical properties. It is the case of the alloying concentrations in aluminum 
alloys (Si in AlSi10Mg or Sr in Al–Sr alloys). Even if phase field method (PFM) is relatively a new 
approach, it has become more and more recommended for prediction of the formed 
microstructure under the different driving forces such as thermal gradients, stress and magnetic 
fields [3, 4]. However, it should be highlighted that one of the limits for the use of this approach 
is the physical interface width, which is of the order of few nanometers. In order to conduct 
simulations at larger length scales and decouple interfacial energy from the thickness of the 
interface, the Kim-Kim-Suzuki (KKS) model [5] has been introduced and its applications in 
microstructural simulations have been significantly increased [6]. In such a model, different 
contributions are present: the chemical free energy, double well-potential, phase field gradient 
as well as the elastic misfit strain energy between the precipitates and the matrix during 
precipitates growth and coarsening. 

In order to ensure the balance between accuracy of calculation and CPU time when 
taking into account the different contributions, adaptive time stepping was proposed [7, 8]. By 
literature, different approaches of time stepping were applied to resolve PF equation, such as 
Cahn-Hilliard (CH) for conservative order parameters [8, 9], Allen-Cahn (AC) for non-conserved 
order parameters [9] and Phase-Field Crystal (PFC) model [7, 10]. The proposed adaptive 
stepping methods could be classified following two criteria: the numerical scheme on a one hand 
and the methodology of adaptive time stepping on the other hand. Numerical schemes should 
ensure unconditionally energy stability during computing. One can enumerate: backward Euler 
scheme based on semi-implicit discretization in time [10], linear splitting schemes [11] and 
Fourier spectral method [12, 13]. For the methodologies of time stepping, they can be, by 
themselves, classified in iterative [9, 14] and non-iterative ones [8, 15].  

The aim of this work is to accurately consider the different energies influencing the final 
microstructure of the AlSi10Mg during heat loading. It is important to choose the methodology 
of the numerical implementation of the KKS model in order to ensure the good convergence of 
the solution with a reasonable CPU time.  

 This work is divided in two main parts. In the first one, we explore the performance of 
the Fourier spectral method by implementing a semi-implicit scheme and comparing it to a 
classical Finite Difference (FD) one. Three methodologies of time-stepping are applied and 
compared. Numerical implementation targets the CH equation for spinodal decomposition 
(isothermal loading) of a given binary alloy. Once the first goal (concentration prediction) is 
achieved and the innovative time-stepping strategy is described, the second part of the article 
presents the application of this method on the KKS model (considering both CH and AC 
equations), to study the growth and coarsening of Si precipitates in AlSi10Mg, which is here 
approximated as a binary alloy.  

2 Numerical method  
2.1 Governed equations and free energy expressions  
2.1.1 Spinodal decomposition  
 The spinodal decomposition of a binary alloy (Al-Si for example) is governed by the 
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CHequation expressed as:  

 ∂௑

∂௧
=▽ 𝑀.▽ (

ఋீ

ఋ௑
) (1) 

WhereG denotes the total free energy of the binary alloy, M the mobility and X the 
concentration (molar fraction) of one element (Si in AlSi10Mg for example).  

 When neglecting the terms related to the elastic strain, Gcan be expressed as:  

 𝐺(𝑋) = ∫  
௏

[  𝑔(𝑋) +
ଵ

ଶ
𝜅(▽ 𝑋)ଶ]  𝑑𝑉 (2) 

𝜅is here the gradient energy coefficient and g is the chemical bulk energy ; it can be expressed as 
a 4௧௛  polynomial in function of X: 𝑔(𝑋) = 𝐴𝑋ଶ(1 − 𝑋ଶ), A is a constant.  
Equation 1 could be written as follows:   

 ∂௑

∂௧
=▽ (𝑀. 𝐺௑௑ ▽ 𝑋) (3) 
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Where𝐺௑௑ the second derivative of G with respect to X. Equation 4 is offers an easy 
implementation of the semi-implicit scheme in Fourier space as follows:  
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Here △ 𝑡 is the time step,k is the frequency vector of dimension in Fourier space and n is the 
time step. {. }௞

௡is the fast Fourier transform (fft) of the given function at the time tn. {𝑋}௞
௡ାଵ is 

expressed as a function of {𝑋}௞
௡in a semi-implicit scheme:  
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2.1.2 Coarsening of precipitates 
 The KKS model is based on CH equation (eq. 1) for the conservative PF on a one hand 

and AC equation for the non-conservative PF on the other hand as follows:  

 ∂ఎ

∂௧
= −𝐿 

ఋீ

ఋఎ
 (7) 

 Here L is the kinetic interface coefficient and𝜂 is the order parameter (non-conservative PF). 
The higher is L, the more diffusive is the interface. At each time step, 𝜂 takes 1 as value in the Si 
precipitate and 0 in the Al matrix.  

 As illustrated in [16], the total free energy in the KKS model is composed of three kinds 
of energies as follows:  

 𝐺 = ∫  
௏

[𝑓௖௛௘௠(𝑋, 𝜂, 𝑡) +
఑మ

ଶ
(▽ 𝜂)ଶ   + 𝑓௘௟(𝜂)]  𝑑𝑉 (8) 

 Here 𝑓௖௛௘௠ is the chemical free energy (also called molar free energy because it depends on 

the concentration),఑
మ

ଶ
(▽ 𝜂)ଶ is the interface contribution, while 𝑓௘௟  is the elastic energy due to 

precipitates misfit. 
2.2 Time stepping strategy 
 For the simulation of spinodal decomposition using CH equation, it should be noted that 

equation 1 could also be written:  

 ∂௑

∂௧
= ∇𝑀. ∇(𝜇) (9) 

Where𝜇 =
ఋீ

ఋఎ
 is the chemical potential. It could be inferred from the expression above that the 

energy trends to decrease with time due to gradient-type dynamical equation. Zhang et al. [7] 
proposed a method for time stepping based on the time derivative (G’) of the total free energy:  
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Figure 1: Spinodal

   Before testing the methods 1 and 2 on Equation 1, a set of 2D simulations, using 
constant time step approach, was conducted. The aim of this trial is to see the influence of the 
time-stepping on the energy evolution during decomposition. As shown in F
easily inferred that the range of time steps below 0.1 ensure good convergence. The discrete 
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Figure 2: Energy evolution during spinodal
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Figure 4: Influence of the variation of the different parameters of equation 10 on the 
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3.1.3 Need for more accurate time stepping methodology
  Advantages and inconvenient of methods 1 and 2 of adaptive time stepping could be 

summarized as follows. Method 1 ensures 
decomposition in a reasonable CPU time by adapting time step at each iteration in function o
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simulation diverges.  

(b) (c) 

: Influence of the variation of the different parameters of equation 10 on the 
evolution during simulation (using Method 2): (a) energy e (b) infinite norm, (c) time step

energy residual. 
 

for more accurate time stepping methodology 
Advantages and inconvenient of methods 1 and 2 of adaptive time stepping could be 

summarized as follows. Method 1 ensures an accurate computation of the
decomposition in a reasonable CPU time by adapting time step at each iteration in function o
the variation of energy derivative. However, the residual of energy is not controlled. For method 
2, the residual is forced to remain between 2 limits. Meanwhile, the continuous decrease of time 

when residual value is above resmax,can lead to divergence. To overcome these issues, we 
propose an alternative (called hereafter Method 3) which can be described as a combination of 
method 1 and method 2. The proposed algorithm is as follows.   

• Step 1: compute 𝑋௡ାଵ and obtain: 𝑅𝐸௡ାଵ =
ఢ(థ೙శభ)ିఢ(థ೙

△௧೙

ାଵ > 𝑟𝑒𝑠𝑚𝑎𝑥:   
Repeat this iteration: take △ 𝑡௡ାଵ =△ 𝑡௡/𝜃 and go to step 1
if the number of iteration exceeds 10, define the new time step as: 

 △ 𝑡 = 𝑚𝑎𝑥(△ 𝑡௠௜௡,
△௧೘ೌೣ

ඥଵାఈ  ீᇱ(௧)మ
) 

௡ାଵ < 𝑟𝑒𝑠𝑚𝑖𝑛 take  

 △ 𝑡 = 𝑚𝑎𝑥(△ 𝑡௠௜௡,
△௧೘ೌೣ

ඥଵାఈ  ீᇱ(௧)మ
) 

Here, no additional parameters are introduced compared to Method 2. Indeed, 
௠௔௫=10*△ 𝑡௠௜௡. By this way, while (RE ≺resmin

adapted basing on the energy derivative criteria, which prevents it from gradual increase in 
the system needs to store enough energy at isothermal heating before 

starting phase transformation). Similarly, when (RE ≻ resmax) and residual could not be 
by 10 iterations, the algorithm expects a continuous decrease of time step values and 

. Depending on the energy residual curve, a trial and error 
can be remade in order to better adjust resmax and resmin values. Results of energy evolution 

al are illustrated in Fig.5. One can remark the good behavior of infinite norm evolution 
as well as the energy residual. Comparing to Method 2, resmax is not increased;
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decrease rate, compared to results obtained by method 1, as illustrated in Fig. 4a .Moreover, the 
be decreased. Similarly, the 

be improved by decreasing 
to check the capability of this adaptive algorithm, the 

exponential increase of the energy residual. 

(d) 

: Influence of the variation of the different parameters of equation 10 on the energy 
evolution during simulation (using Method 2): (a) energy e (b) infinite norm, (c) time step evolution and (d) 

Advantages and inconvenient of methods 1 and 2 of adaptive time stepping could be 
an accurate computation of the spinodal 

decomposition in a reasonable CPU time by adapting time step at each iteration in function of 
the variation of energy derivative. However, the residual of energy is not controlled. For method 
2, the residual is forced to remain between 2 limits. Meanwhile, the continuous decrease of time 

gence. To overcome these issues, we 
propose an alternative (called hereafter Method 3) which can be described as a combination of 

)
+ ∫  

௏
| ▽ 𝜇௡ା

భ

మ|ଶ𝑑𝑉 

and go to step 1 
if the number of iteration exceeds 10, define the new time step as:  

to Method 2. Indeed, △ 𝑡௠௜௡ is the 
resmin), the time step is 

adapted basing on the energy derivative criteria, which prevents it from gradual increase in 
the system needs to store enough energy at isothermal heating before 

) and residual could not be 
a continuous decrease of time step values and 

. Depending on the energy residual curve, a trial and error approach 
values. Results of energy evolution 

r of infinite norm evolution 
increased; the algorithm 



 

has the capability to decrease the value of residual at each step. 
decrease of the system energy is ensured a
guaranteed. It should be also noted that this methodology avoid strange numerical behavior
observed with Method 1 (Fig. 

 

(a) 

Figure 5: Infinite norm (a) and energy residual (b) evolution (using 

In in Fig. 6a, a comparison 
energy significantly decays with
method, CPU time is higher than 
different numerical approach
environment (our case), optimization of computing time can be ensured through J
library [18]. Numba, the open source compil
translate its subsets as well as NumPy and Python to fast machine code. To apply it
decorator can be implemented as 
then. It should be also noted th
For that, spectral method has the advantage, comparing to 
minimize loops and directly apply functions on ND
Fourier transform (fft) on the whole concentration matrix instead of looping on all grid points. By 
combining different optimization strategies, it is supposed to get accurate solutions in 
reasonable CPU time. This is one of goals of this ingoing wor
schemes, compared to a classical 
dimensions (from N௫=64 to 1024). 

 

(a) 

Figure 6: (a) Energy evolution using Method 1, 2 and 3 of adapting time stepping (b) CPU time difference 

3.1.4 Microstructure evolution

has the capability to decrease the value of residual at each step. Therefore
ease of the system energy is ensured and simulation of microstructure evolution is 

guaranteed. It should be also noted that this methodology avoid strange numerical behavior
observed with Method 1 (Fig. 3).  

(b)

Infinite norm (a) and energy residual (b) evolution (using 
 

comparison is presented between the three methods. Using Method 3, 
with time and the decomposition is ensured. As it is an iterative 

method, CPU time is higher than with Method 1. Simulation time can be optimized using 
different numerical approaches in particular parallelization. For codes developed

, optimization of computing time can be ensured through J
]. Numba, the open source compiler in python environment, uses JIT compilation to 

translate its subsets as well as NumPy and Python to fast machine code. To apply it
decorator can be implemented as a header of time-consuming functions to intensively compute 

noted that code implementation has a direct impact 
For that, spectral method has the advantage, comparing to FDschemes, to offer the possibility to 
minimize loops and directly apply functions on ND-arrays such as the application on the
Fourier transform (fft) on the whole concentration matrix instead of looping on all grid points. By 
combining different optimization strategies, it is supposed to get accurate solutions in 
reasonable CPU time. This is one of goals of this ingoing work. The computing speed of fft 

to a classical FD one, can be demonstrated using 1D grids 
=64 to 1024). Associated results are shown in Fig.6b. 

 
(b) 

evolution using Method 1, 2 and 3 of adapting time stepping (b) CPU time difference 
between spectral method and FD scheme.  

evolution 
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Therefore, a continuous 
nd simulation of microstructure evolution is 

guaranteed. It should be also noted that this methodology avoid strange numerical behavior 

 
(b) 

Infinite norm (a) and energy residual (b) evolution (using Method 3). 

methods. Using Method 3, the 
decomposition is ensured. As it is an iterative 

can be optimized using 
in particular parallelization. For codes developed in Python 

, optimization of computing time can be ensured through JIT (just in time) 
er in python environment, uses JIT compilation to 

translate its subsets as well as NumPy and Python to fast machine code. To apply it,”@jit” 
consuming functions to intensively compute 

impact on computing speed. 
, to offer the possibility to 

arrays such as the application on the fast 
Fourier transform (fft) on the whole concentration matrix instead of looping on all grid points. By 
combining different optimization strategies, it is supposed to get accurate solutions in 

k. The computing speed of fft 
can be demonstrated using 1D grids with different 

esults are shown in Fig.6b.  

 

 

evolution using Method 1, 2 and 3 of adapting time stepping (b) CPU time difference 



 

 Microstructure evolution using Method 3 during spinodal decomposition is illustrated in Fig. 7. 
A 2D grid is here used using the optimum parameters of time stepping already obtained. For the 
3D morphology, a grid (𝑁௫=
separate into a binary alloy by 
decomposition using a constant time step 
other hand. The constant time step is chosen 
microstructure is used as reference.
constant time stepping is illustrated
shown in Fig.7f to j. Energy evolution using both schemes is shown in Fig.7 .
adaptive time stepping method 
differences in schemes are chosen in order to illustrate 
computed grids.Obtaining the exact morphologies is not a trivial task when time schemes are 
different [19]. Current results are acceptable. 
shown in Figs. 7 l to n. Similar decompositions are checked.

(a) (b) 

 
(f) (g) 

(k) 

Figure 7: Spinodal decomposition using

3.2 Growth and coarsening of 
3.2.1 Implementation of KKS model and results in 1D

 Coarsening of Si precipitates in AlSi10Mg, approximated to a binary alloy, is studied using the 
KKS model, by resolving both equations 1 (CH) and 7 (AC). 
1D, 2 precipitates distributed along a 

Microstructure evolution using Method 3 during spinodal decomposition is illustrated in Fig. 7. 
the optimum parameters of time stepping already obtained. For the 
=𝑁௬=64) is used. The initial homogeneous morphology tends to 

o a binary alloy by aging time.We propose a comparison betwe
decomposition using a constant time step on the one hand and adaptive time stepping

. The constant time step is chosen verysmall (t*=0.01) so
reference. Results are shown in Fig. 7. Microstructure evolution using 

illustrated in Fig.7a to e, while those of adaptive 
f to j. Energy evolution using both schemes is shown in Fig.7 .

time stepping method are close to the reference. Some points corresponding to 
differences in schemes are chosen in order to illustrate the maximum differences between 

btaining the exact morphologies is not a trivial task when time schemes are 
Current results are acceptable. An additional comparison is ensured in 3D as 

shown in Figs. 7 l to n. Similar decompositions are checked. 
Constant time stepping 

 
(c) (d) 

Adaptive time stepping 

 
(h) (i) 

 

 

(l) initial 3D grid (m) Constant time step

7: Spinodal decomposition using 2D grid (a to k) and 3D one
 

oarsening of Si precipitates 
of KKS model and results in 1D 

Coarsening of Si precipitates in AlSi10Mg, approximated to a binary alloy, is studied using the 
KKS model, by resolving both equations 1 (CH) and 7 (AC). The proposed simulation targets, in 
1D, 2 precipitates distributed along a 1D Grid (100∆x) for simplification 
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Microstructure evolution using Method 3 during spinodal decomposition is illustrated in Fig. 7. 
the optimum parameters of time stepping already obtained. For the 

=64) is used. The initial homogeneous morphology tends to 
e propose a comparison between spinodal 

adaptive time stepping on the 
(t*=0.01) so the computed 

tructure evolution using 
in Fig.7a to e, while those of adaptive time stepping is 

f to j. Energy evolution using both schemes is shown in Fig.7 .k. Results of the 
points corresponding to 

maximum differences between 
btaining the exact morphologies is not a trivial task when time schemes are 

An additional comparison is ensured in 3D as 

  
(e) 

 
(j) 

 

onstant time step (n)adaptive 
 

one (l to n).  

Coarsening of Si precipitates in AlSi10Mg, approximated to a binary alloy, is studied using the 
The proposed simulation targets, in 

fication purposes. It should be 



 

noted that grid dimensions for this case of simulations are suggested to be higher (e.g. 2048 
in [20] to better control interface diffusion. At this stage, we target comparing computing speed 
and numerical behavior of the

The temperature is constant and set to 
defined as:  

 𝑓௖௛௘௠(𝑋, 𝜂, 𝑡) =

Here h is a monotonous function,
𝜃(d-Si diamond) phases respectively, 
the double well potential.The most important parameters for the si
Table 1. Elastic strain energy due 
 

Table 1. Values of the most important parameters used in the 1D simulation of 
coarsening of precipitates using KKS model.

Model parameter 
Molar composition of the 
matrix AL and precipitates 
d-Si in Si 𝑋

஺௟೔೙೔೟

ௌ௜ , 𝑋
ௗିௌ௜೔೙೔೟

ௌ௜  
0.03, 0.99

Al/Si Inter-diffusivity D 2.52 
 

 
For the KKS model, adaptive time stepping is based on the computing of two residuals, 

associated to AC and CH equations respectively: 

 𝑅௡ା

 Here 𝛾 donates the mobility. 
diffusion of the interface can be observed
gradient-effect and elastic energies. The interface position progressively changes during
isothermal aging. In the simulations, the two precipitates whose 
trend to diffuse and coalescence is 
Si concentration (XSi) and order parameter 
scheme (Figs. 8 c and d). We found that the same evolution 
approximatively 10 times longer using 
ensure indeed accurate computing and avoid 
 

 
(a) 

Figure 8: Evolution of order parameter (

3.2.2 Toward the prediction of the thermo
AlSi10Mg  

 The elastic energy in the system due to the volume misfit between the precipitates an
the matrix will be considered. 

noted that grid dimensions for this case of simulations are suggested to be higher (e.g. 2048 
in [20] to better control interface diffusion. At this stage, we target comparing computing speed 
and numerical behavior of the different simulation criterion: energy, residual, infinite norm etc.

emperature is constant and set to 400K. The chemical energy in equation 8 is 

= (1 − ℎ(𝜂, 𝑡). 𝑓ఈ(𝑋ఈ , 𝜂, 𝑡) + ℎ(𝜂, 𝑡). 𝑓ఏ(𝑋ఈ

h is a monotonous function,𝑓ఈ and 𝑓ఏ  are the chemical free energy of 
phases respectively, g is a double well potential function and 

The most important parameters for the simulation are summarized in 
energy due to precipitates misfit is not considered. 

Table 1. Values of the most important parameters used in the 1D simulation of 
coarsening of precipitates using KKS model. 

value Model parameter 

0.03, 0.99 
Interface mobility 
coefficientMη 

 10-16  [m2s-1] Kinetic coefficient for 
interface L 

For the KKS model, adaptive time stepping is based on the computing of two residuals, 
associated to AC and CH equations respectively:  

ାଵ =
ா(η೙శభ)ିா(η೙)

ௗ௧೙ + ቐ

ଵ

ఊ
∫  

௏
(

η೙ିη೙శభ)

௧೙ )ଶ 𝑑𝑉

𝛾 ∫  
௏

| ▽ 𝜇௡ାଵ/ଶ|௅మ

ଶ 𝑑𝑉

  

ity. Results of the numerical experimental is shown in Fig. 8. The 
diffusion of the interface can be observed and is triggered by the interaction of chemical, 

effect and elastic energies. The interface position progressively changes during
aging. In the simulations, the two precipitates whose initial width

nd coalescence is expected for long time of heating. Results are shown in Fig. 8. 
) and order parameter (η) are computed for 15000

We found that the same evolution is reproduced 
approximatively 10 times longer using a constant time step (Figs. 8 a and b). The proposed method 
ensure indeed accurate computing and avoid losing too much computational time

  
(b) (c) 

parameter (𝜂) and Si concentration with the coarsening of precipitates.
 

the prediction of the thermo-physical properties and tensile strength of 

The elastic energy in the system due to the volume misfit between the precipitates an
considered. Such results are to be post-processed to provide thermo
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noted that grid dimensions for this case of simulations are suggested to be higher (e.g. 2048 ∆x 
in [20] to better control interface diffusion. At this stage, we target comparing computing speed 

different simulation criterion: energy, residual, infinite norm etc. 
. The chemical energy in equation 8 is 

, 𝜂, 𝑡)+ w.g (12) 
are the chemical free energy of 𝛼(𝛼 Al fcc) and 

g is a double well potential function and w is the height of 
mulation are summarized in 

 

Table 1. Values of the most important parameters used in the 1D simulation of growth and 

value 
 
2.42 10-22[m4s-1J-1] 

5.92 10-14 [m3s-1J-1] 

For the KKS model, adaptive time stepping is based on the computing of two residuals, 

  (13) 

Results of the numerical experimental is shown in Fig. 8. The 
and is triggered by the interaction of chemical, 

effect and elastic energies. The interface position progressively changes duringthe 
initial width is (w= 6.△x), a 

esults are shown in Fig. 8. 
15000 steps using adaptive 

reproduced by 150000 steps and 
(Figs. 8 a and b). The proposed method 

computational time. 

 
(d) 

) and Si concentration with the coarsening of precipitates. 

physical properties and tensile strength of 

The elastic energy in the system due to the volume misfit between the precipitates and 
processed to provide thermo-physical 
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properties (thermal conductivity and specific heat capacity) as well as mechanical properties 
(elasticity). The values based on numerical predictions are compared to the ones deduced from 
experimental measurement in particular for differential scanning calorimetry (DSC), dilatometry, 
laser flash diffusivimetry (LFA) and micro or nano-indentation experiments. Once validated, the 
methodology is expected to offer a quick and efficient properties prediction for different thermal 
post treatments.  

 

4 Conclusions 
 In this work, the spinodal decomposition and precipitates growth in a binary alloy (the 

target is AlSi10Mg) were investigated. We have shown that adaptive time stepping is very 
important to keep energy residual in an appropriate range and to ensure the decay of the system 
energy during evolution. Different approaches of time stepping were investigated: constant time 
stepping, a non-iterative method and an iterative one. An optimization of the iterative method 
was ensured for the spinodal decomposition. Then, 1D, 2D and 3D simulations were conducted 
in order to validate the approach. Such a method is of great importance to be applied when the 
PF field model should take into account the different forms of energy, which is the case of the 
KKS model. A first implementation, in 1D, of the KKS model was shown to prove its capability of 
studying the growth and coarsening as well as concentration evolution of Si in precipitatesand 
inside the aluminum matrix. We used different criterion to evaluate performances of simulations 
of microstructural changes: energy, residual, potential gradient, infinite norm and time step 
evolutions. 

The robust implemented model is a mandatory step toward prediction of microstructural 
changes, elastic and thermo-physical properties when correlating phase-field results with 
Calphad data. 

5 Data availability 
 The python code, needed to produce the results obtained in section 3.1 can be shared, 

while results of section 3.2cannot at this time. The related work is ingoing. 
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