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Belgian Blue cattle are known for their high degree of muscling and good carcass qualities. This high
degree of muscling is mainly caused by a mutation in the myostatin gene (MSTN). Although the MSTN
mutation is considered as fixed in the Belgian Blue breed, segregation is occurring in a sub-population
bred for dual purpose. In the latter population, we observed an association between the mutation in
MSTN and susceptibility to psoroptic mange, a skin disease caused by Psoroptes ovis mites that heavily
plagues Belgian Blue cattle. In total, 291 animals were sampled and screened for their susceptibility
for mange lesions and their MSTN genotype. Via linear mixed modelling, we observed that homozygous
mutant animals had a significant increase in the size of mange lesions (+2.51% lesion extent) compared to
homozygous wild type. These findings were confirmed with zero-inflated modelling, an animal model
and odds analysis. Risk ratios for developing severe mange lesions were 5.9 times as high for homozygous
mutant animals. All analyses confirmed an association between the MSTN genotype and psoroptic mange
lesion size.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of The Animal Consortium. This is an open

access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Implications

In the present study, we uncover an association between the
mutation in the myostatin gene that causes double muscling in
Belgian blue cattle, and the susceptibility to psoroptic mange. This
skin disease, for which Belgian Blue cattle are very susceptible, is
caused by mites and causes severe wounds, pain and animal suffer-
ing. Cattle with the double muscling mutation were more prone to
developing psoroptic mange and had larger lesions. The association
is of importance for other breeds and other livestock species, as it
may point towards a negative role of myostatin in ectoparasitic
susceptibility.

Introduction

The Belgian Blue cattle breed is known for its extreme degree of
muscling, mainly caused by a loss-of-function mutation in the
myostatin (MSTN) gene, which is also known as GDF8 (Grobet
et al., 1997). This gene is a member of the transforming growth fac-
tor beta superfamily (TGF-b) and encodes a chalone that inhibits
muscular growth. The mutation in MSTN in Belgian Blue cattle is
an 11 bp deletion, called nt821(del11), causing a premature stop-
codon and a dysfunctional protein (Grobet et al., 1997). Therefore,
nt821(del11) causes muscular hypertrophy, also called ‘‘double
muscling”. Wild-type animals are denoted as +/+, heterozygous
asmh/+ and homozygous mutated asmh/mh. In Belgian Blue cattle,
the mh/mh mutation is almost completely fixed and therefore,
most animals exhibit the double-muscled phenotype (Druet
et al., 2014; Dunner et al., 2003). However, in the 1970s, the breed,
at that time called Race de Moyenne et Haute Belgique, was split
into the current Belgian Blue cattle (all double-muscled) and a
smaller sub-population called the dual purpose Belgian Blue (or
in French: Bleue Mixte) (Colinet, 2010). This population comprises
today about 3 500 animals, is not focused on extreme muscling and
is used for dairy and meat production. In this sub-population, the
nt821(del11) MSTN mutation is segregating. It is estimated that
approximately 80% of all animals are carriers of the mh allele
(Colinet, 2010).
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Belgian Blue cattle show excellent carcass qualities, but also
have a high sensitivity for psoroptic mange. This highly contagious
disease is caused by the Psoroptes ovis (P. ovis) mite evoking severe
exudative dermatitis and pruritus. Moreover, the infestation can
result in severe economic losses due to a loss in average daily gain
(as much as 680 grams per day), treatment costs and decreased
leather quality (Fisher and Wright, 1981; Lonneux et al., 1998;
Rehbein et al., 2003). Severe infestations can lead to death of the
animal. This genetic predisposition for developing psoroptic mange
of Belgian Blue cattle, compared to other breeds, has been thor-
oughly described by Pouplard et al. (1990), Losson et al. (1999),
Sarre et al. (2012) and involvement of genetic effects of the host
have been suggested for a long time (Losson et al., 1999). Sarre
et al. (2012) showed that 74% of all Belgian Blue farms in Northern
Belgium (Flanders) had mange problems and almost half of the
farmers regarded psoroptic mange as difficult to control or uncon-
trollable. Moreover, in non-endemic countries, outbreaks are often
associated with imported Belgian Blue animals (Jones et al., 2008;
Millar et al., 2011; Mitchell et al., 2012). Besides, differences in
immune response against P. ovis between Belgian Blue cattle and
Holstein-Friesian cattle were reported (Losson et al., 1999; Sarre
et al., 2015; Chen et al., 2021).

The dual purpose Belgian Blue population is in general consid-
ered less susceptible to psoroptic mange but this disease still poses
a serious threat. Moreover, dual purpose farmers often indicate
that double-muscled animals (mh/mh genotype) are more suscep-
tible for psoroptic mange, and these animals are often the first in
their herds to show clinical signs of psoroptic mange. While this
claim has been circulating amongst breeders and policymakers
for years, we initiated a study on the association between psoroptic
mange susceptibility and MSTN genotypes in dual purpose Belgian
Blue cattle. The hypothesis of this study was that the MSTN geno-
type is associated with psoroptic mange susceptibility in Belgian
Blue cattle. As MSTN plays a crucial role in the breeding pro-
gramme of many beef cattle breeds, a potential causal relationship
between MSTN and ectoparasitic resistance would be of major
importance.
Material and methods

Animals

Farm visits were conducted between 2013 and 2019 during
the winter housing period, in which a total of 291 dual purpose
Belgian Blue cattle were sampled. These farm visits were initiated
by farmers who were confronted with a psoroptic mange out-
break. Only herds where clinical signs of psoroptic mange were
observed and without acaricide treatment at least 6 weeks before
sampling were selected. Ten farms were visited and animals were
assigned to 13 Farmer_Groups based on within-farm manage-
ment groups (e.g. different age classes, originating from different
summer pastures) (Supplementary Table S1). All data were col-
lected in the same population during two consecutive projects,
namely PSOROVIS (2013–2015, Project 1) and BOMANGE (2018–
2019, Project 2).

The severity of mange lesions was expressed as the percentage
of infested body surface, i.e. summed over all lesion spots (lesion
extent), following the method proposed by Guillot (1981). The
severity of every lesion was scored from 1 (almost completely
healed) to 4 (active, thick crusted, wet lesions) (example figures
added as Supplementary Fig. S1). In addition, three skin scrapings
(each 4 cm2) were taken at the predilection places for P. ovis, i.e.
the neck, back and tail and were pooled per animal. These were
used to confirm the presence of P. ovis mites and to exclude other
ectoparasites (e.g. Chorioptes bovis, Bovicola (Damalinia) bovis, Hae-
2

matopinus eurysternus). Skin colour was recorded during the farm
visit, and checked with the colour registered by the herdbook.

Genotyping

DNAwas extracted from EDTA blood samples, and animals were
genotyped on either the EuroGenomics LD BeadChip genotyping
array (Illumina, San Diego, CA, USA) (for 2013–2015, Project 1) or
the EuroGenomics MD BeadChip array (Illumina, San Diego, CA,
USA) (for 2018–2019, Project 2). Both arrays include single nucleo-
tide polymorphism (SNP) markers to detect the nt821(del11) MSTN
mutation. Using this array, MSTN genotypes were derived for all
animals.

Stratification and variance inflation analysis

The data structure was somewhat unbalanced (MSTN genotypes
vs. Farmer_Group, see Supplementary Table S1) and we verified if
this would affect the results. First, a SNP-based principal compo-
nent analysis was conducted to verify whether all studied animals
were originating from the same population and whether popula-
tion stratification was present. This analysis was performed using
PLINK 1.9 (--pca command) (Chang et al., 2015) and visualised
using ggplot2 (Wickham, 2016). Next, a variance inflation analysis
was performed to check the non-orthogonal distribution between
Farmer_Group and MSTN genotypes (unbalanced distribution).
This analysis was performed using the car package (Fox and
Weisberg, 2019) in which a generalised variance inflation factor
(GVIF) is computed (Fox and Monette, 1992). GVIF values above
10 indicate that (fixed) effects in a model are confounded which
may affect estimates of the coefficients (Kutner et al., 2005).

Statistical analyses

To study the possible association between MSTN and psoroptic
mange lesions, we used three types of analysis, to account for
the limitations of the observational data. First, we fitted a linear
mixed model to test for (significant) effects. Next, these results
were used to fit an animal model that takes the pedigree into
account. However, these models rely heavily on a Gaussian distri-
bution of the data, and therefore might not be suited as there were
a large number of zero-values (animals showing no lesions). Sec-
ond, we used a zero-inflated model that takes the structure of
the data into account. Zero-inflated models assume that zero-
values are originating from a separate process and therefore can
be modelled independently. The model fits both the odds of an ani-
mal to have a lesion (thus: lesion extent >0) and the lesion size of
the animal, given that the animal has a lesion. Third, a different
approach was followed to cancel out any potential effect of the
underlying distribution of lesion extent: a risk and odds analysis
was performed.

All statistical analyses were executed using R packages (R Core
Team, 2020). Mixed linear models were estimated using the nlme
package (Pinheiro et al., 2021) where random effect variances were
estimated using REML (Patterson & Thompson, 1971). Potential
fixed effects, besides theMSTN genotype, were coat colour, number
of mites counted in skin scraping, sex, age at the moment of sam-
pling, birth year, project and the two first principal components.
Contrasts were tested with the multcomp package (glht function)
(Hothorn et al., 2008). The animal model was fitted including a
pedigree of 1 690 individuals (up to 13 generations deep), and
SNP genotypes were included for relationship matrix calculations
(ssGBLUP). For estimation of this animal model, gibbs3f90 with
1 000 000 iterations, 10 000 burnin and a thinning of 1 000 was
used (Misztal et al., 2014). The zero-inflated model was fitted using
the glmmTMB package (Brooks et al., 2017). The fitted model had a
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random Farmer_Group effect and MSTN genotype, the first two
principal components and Project as fixed effects, with a Gaussian
error distribution. To determine the relative risk and odds ratios,
both the chance of having a lesion, and having a large lesion (>av-
erage lesion size), were examined using the epiR package
(Stevenson et al., 2021).
Results

Mange lesion description

Table 1 gives an overview of the observed lesion extent for all
sampled animals (n = 291) and for the extreme lesions (scores 3
and 4, only recorded for animals sampled in project 2, n = 160).
At the moment of sampling, 102 animals did not show any lesion.
Skin scrapings did not always reveal P. ovis, but animals were kept
in the dataset if in the concerned Farmer_Group at least one animal
was found with P. ovis, as it confirmed the presence of an infesta-
tion at the group level. One hundred and fifty-five animals had a
white coat colour, 39 were (spotted) black and 106 were (spotted)
blue. The average age at sampling was 5 years (SD: 2.3 years), with
a minimum of 1.3 years and maximum of 11.8 years.
Myostatin genotyping

All 291 sampled animals were genotyped forMSTN. A total of 59
animals were +/+ (20%), 60 animals mh/+ (21%) and 172 animals
were mh/mh (59%). These proportions approximate the distribu-
tion of the MSTN genotypes known by the herdbook (G. Glorieux,
Personal Communication) and by Colinet (2010). An overview of
the distribution of MSTN genotypes per Farmer_Group is added
in Supplementary Table S1.
Stratification and variance inflation analysis

Principal components were computed on the SNP genotype
data, and individuals were labelled according to their MSTN geno-
type (Supplementary Fig. S2). The first principal component (PC1)
explained 16.4% of the total variance, PC2 8.6% and PC3 5.4%.
Moderate population stratification could be observed, somewhat
separating +/+ animals from mh/mh animals. Therefore, it was
decided to include the first two principal components in all models
to comply with possible population stratification effects, although
they were not considered significant (P-value < 0.05) in any of the
used models. Besides, a principal component analysis was per-
formed excluding BTA 2, where MSTN is located (results not
shown). This produced similar results and therefore we conclude
that the observed stratification was independent from the MSTN
genotype. In the variance inflation analysis, the calculated

GVIF
1

2�DF
� �2

values were below three for Farmer_Group,MSTN geno-

type and the first two principal components.
Table 1
Overview of lesion characteristics at the moment of visit for all dual purpose Belgian Blue
n = 160, respectively) and for severe lesion (score 3 + score 4) for animals sampled in pro

Lesion extent
(in % body coverage)

Project 1 + 2 Project 1

Mean 2.45 4.26
Median 0.57 1.71
SD 4.55 5.67
Max 32.0 32.0

3

Association analysis

Fig. 1 shows an overlay of a boxplot (blue) and individual obser-
vations (red) of lesion extent, per MSTN genotype. Animals with
mh/mh genotype clearly exhibit on average larger lesions, with a
higher variance and thus more extreme lesions.

A linear mixed model for lesion extent with Farmer_Group as
random effect and the first two principal components, project (1
or 2) andMSTN genotype as fixed effect, was fitted. Effect estimates
are shown in Table 2. Animals with white coats had larger lesions
(+0.85% lesion extent compared to black colour and +0.60% lesion
extent compared to blue coat colour) but the overall effect of coat
colour was not significant at 0.05. Therefore, it was not withheld in
the final model (shown in Table 2). Other fixed effects - number of
mites counted, sex, age at the moment of sampling and birthyear -
were considered insignificant as well (P-value > 0.05). For extreme
lesions (sum of lesions with scores 3 and 4), a linear mixed model
was fitted with MSTN genotype and the first two principal compo-
nents as fixed effect and Farmer_Group as random effect. The pro-
ject effect was not included as all animals in this analysis were
sampled in project 2. Results are also shown in Table 2. Results
of the posthoc contrast analysis between the different MSTN geno-
types are shown in Table 3. Both contrasts between mh/+ and mh/
mh, and [+/+ andmh/+] versusmh/mhwere considered significantly
different (P < 0.05, or P < 0.01 with Bonferroni correction for mul-
tiple testing).

The same linear mixed model for lesion extent was also fitted as
an animal model to take the pedigree and genomic relationship
between animals into account. The model estimated the relative
effect of mh/+ compared to +/+ at �0.09% lesion extent
(SE = 0.75%), and the relative effect of mh/mh compared to +/+ at
2.64% lesion extent (SE = 0.66%). Additive genetic standard
deviance was estimated at 1.55% lesion extent, Farmer_Group SD
at 1.28% lesion extent and residual SD at 3.81% lesion extent. These
estimations result in a heritability of 12.7% for susceptibility to
psoroptic mange in the sampled population.

Subsequently, the zero-inflation model was fitted. The risk of
being among those who have no lesions was 2.38, expressed as
odds ratio (=ratio of the probability of having no lesion and the
probability of having a lesion). The odds were decreased for ani-
mals with mh/+ with �0.82 (P-value = 0.28) and for animals with
mh/mh with �2.45 (P-value = <0.01); thus, these animals have a
higher chance of developing a lesion. The odds were decreased
for animals sampled in Project 1 with �0.63 (P-value = 0.22). The
effect of the first two principal components was considered
insignificant (P-value > 0.20). The baseline lesion extent was
3.63% of body surface for animals who had a chance of having
lesions. Mh/+ decreased it with �3.25% lesion extent (P-
value = 0.36), whereas having mh/mh decreased it with �1.86%
lesion extent (P-value = 0.63), both estimates were considered
insignificant. Sampling in Project 1 increased with 4.95% lesion
extent among those who have a chance of having lesions (P-
value < 0.001). The effect of the first two principal components
cattle sampled in both projects (n = 291), for projects 1 and 2 separately (n = 131 and
ject 2 (n = 160).

Severe lesion extent
(in % body coverage)

Project 2 Project 2

0.90 0.67
0.29 0
1.56 1.81

10.0 10.0



Fig. 1. Boxplot (blue) of the observed lesion extent in dual purpose Belgian Blue cattle in the three groups ofMSTN genotypes and individual (red) observations of all psoroptic
mange lesions grouped by MSTN genotype. Blue dots in the boxplot can be considered as the extreme values per group. SD in the +/+ group is 1.07%, for the mh/+ group 1.80%
and for the mh/mh group 5.45%. Abbreviations: MSTN = Myostatin gene.

Table 2
Overview of the fitted effect estimates in the linear mixed model for lesion extent (n = 291) and severe lesion extent (score 3 + 4, n = 160, only Project 2) in dual purpose Belgian
Blue cattle.

Lesion extent Severe Lesion extent

Estimate SE P-value Estimate SE P-value

Intercept �0.32 0.96 0.74 0.51 1.00 0.61
Fixed effects
MSTN genotype
mh/+ �0.11 0.96 0.90 0.06 0.96 0.95
mh/mh 2.51 1.20 0.03 3.01 1.20 0.01

Principal components
PC1 �4.84 7.32 0.51 �8.00 8.22 0.33
PC2 9.67 6.95 0.17 4.68 7.29 0.52

Project
Project 2 2.53 0.80 0.01

Random effects
Var(Farmer_Group) (n = 13) 0.71 (n = 8) 1.98
Residual variances 16.14 16.10

Abbreviations: MSTN = Myostatin gene. All units in % lesion extent. In the lesion extent model, intercept includes the +/+ MSTN genotype and the Project 1 effect, with PC1
(principal component) and PC2 scores equal to 0. For the severe lesion extent, the intercept includes the +/+ MSTN genotype and with PC1 and PC2 scores equal to 0. The given
P-values are indicatory for whether the estimate is different from zero. PC1 scores: [�0.11; 0.08], PC2 scores: [�0.16; 0.10].
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was considered insignificant (P-value > 0.40). In conclusion, there
was a significant effect of the MSTN genotype on the occurrence
of lesions in this zero-inflated model, but once an animal shows
lesions, the effect of MSTN was insignificant for the lesion size.

Finally, relative risks and odds ratios were estimated by group-
ing the animals for the presence of the wild-type MSTN allele (+),
thus either +/+ or mh/+ versus mh/mh, for two situations: (1) the
risk or chance of having a lesion at the moment of sampling, thus
4

lesion extent > 0% and (2) the risk or chance of having a lesion lar-
ger than the mean lesion size (>2.45% lesion extent). Table 4 shows
the contingency tables for both scenarios. For scenario (1): animals
with the mh/mh genotype were 1.82 times more likely to develop a
lesion compared to animals with the +/+ or mh/+ genotype, and the
odds of animals with mh/mh genotype having a lesion were five
times the odds of animals with +/+ or mh/+ genotype (95% confi-
dence interval: 3.03–8.33). For scenario (2): animals with the mh/



Table 3
Contrast analysis in dual purpose Belgian Blue cattle between the different MSTN
genotypes in a linear mixed model with MSTN genotype, project and the first two
principal components as fixed effects, and the Farmer_Group as random effect.

Tested contrast Estimate SE P-value

mh/mh vs mh/+ +2.62 0.77 <0.001
mh/+ vs +/+ +0.21 1.78 0.91
mh/mh vs +/+ +2.83 2.07 0.17
[mh/+ and mh/mh] vs +/+ +1.51 1.89 0.42
mh/mh vs [+/+ and mh/+] +2.72 1.28 <0.01

Abbreviations: MSTN = Myostatin gene.
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mh genotype were 5.88 times more likely to develop a lesion larger
than the average measured lesion size compared to animals with
the +/+ or mh/+ genotype, and the odds of animals with mh/mh
genotype having a lesion larger than the average measured lesion
size were nine times the odds of animals with +/+ ormh/+ genotype
(95% confidence interval: 4.35–20).
Discussion

The aim of the study was to investigate whether the Belgian
Blue’s high susceptibility for psoroptic mange is linked to muscular
hypertrophy caused by the nt821(del11) MSTN mutation. As the
main population of Belgian Blue is fixed for this mutation, we could
not study the potential association between MSTN and mange
lesion development in this population. Therefore, we studied this
potential association in the dual purpose Belgian Blue population
that still segregates this mutation. Accordingly, we studied the
psoroptic mange lesions of 291 dual purpose Belgian Blue cattle
and related this to their MSTN genotype. A significant association
was found between the nt821(del11) MSTN mutation and the
psoroptic mange lesion size.

The possibility of population stratification in the sampled data
was studied via principal component analysis. Based on this anal-
ysis, it was concluded that moderate population stratification was
present, which was countered by including the first two principal
components (together explaining 25% of the total variation) in all
used models. This addition was considered non-significant in all
tested models. Therefore, we deem the effect of population strati-
fication in the data on the presented models as limited. Moreover,
when using an animal model, any possible population stratification
will be captured by the (SNP and pedigree based) relationship
matrix in the animal model. Besides, animals sampled in both pro-
jects clustered together, indicating that they originate from the
same base population (results not shown). We sampled about
10% of the whole population, which we considered representative
for the whole population based on principal component analysis
and herdbook records. The variance inflation factor analysis was
performed to check whether the non-orthogonal design between
MSTN genotypes and Farmer_Groups caused bias. This analysis
indicated no significant problem due to the distribution of geno-
Table 4
Contingency table of the 291 analysed dual purpose Belgian Blue cattle in two scenarios
whether an animal has developed a lesion larger than the average lesion size (2.45%) at t

Scenario 1 (Lesion extent > 0%)

Lesion

Yes

MSTN genotype
+/+ or mh/+ 52
mh/mh 137

Abbreviations: MSTN = Myostatin gene.

5

types over Farmer_Groups, as the GVIF was estimated below three
for all effects in the model, where 10 is frequently considered to be
the threshold (Kutner et al., 2005).

When modelling lesion extent in dual purpose Belgian Blue cat-
tle, the preliminary linear model and the animal model yielded
similar results. Both models showed a significant association
between MSTN genotype and mange lesion size: animals with the
mh/mh genotype had significantly larger lesions. Also, when specif-
ically estimating contrasts (posthoc analysis), lesions of the mh/mh
genotype differed significantly from the group of animals with +/+
and mh/+ genotypes. On an allele basis, animals with at least
one + allele had significantly smaller lesions at the moment of sam-
pling. To our knowledge, we are the first to confirm the association
betweenMSTN and psoroptic mange susceptibility. The heritability
for mange susceptibility in the sampled population was estimated
at 12.7%, which can be considered as low. Similar heritabilities
were observed in other studies for ectoparasitic susceptibility such
as tick resistance in cattle (Mapholi et al., 2016; Turner et al.,
2010).

To take the high number of animals with no lesions (lesion
extent = 0%) into account, we have fitted a zero-inflated model.
This model first fits the probability of an individual to have a
lesion, and next, it fits a model for the size of the lesion for those
animals who have a probability to have a lesion in the first part
of the model. The mh/mh genotype was significantly associated
with the probability of development of a lesion, but it did not sig-
nificantly influence the actual size of the lesion. Or simply put, ani-
mals with the + allele had a significantly lower chance of
developing lesions, which was also the outcome of the posthoc
contrast analysis.

Next, a non-parametric risk and odds analysis was performed.
These analyses are irrespective of the underlying distribution of
the data, but purely focus on the occurrence of an event (the devel-
opment of a lesion). We showed that the relative risk of developing
a psoroptic mange lesion is higher for animals with mh/mh, and
this risk even increases when considering severe lesions. Similar
results were found for the odds to develop a psoroptic mange
lesion.

Irrespective of the statistical method that was used, all analyses
pointed to a clear association between the nt821(del11) MSTN
mutation and the psoroptic mange lesion size in the dual purpose
Belgian Blue cattle breed.

However, this association does not immediately imply causal-
ity. Based on this research, we cannot exclude the possibility that
a causative gene is co-inherited with MSTN. After all, MSTN muta-
tions also appear in other cattle breeds, and only Belgian Blue cat-
tle shows such a high degree of psoroptic mange susceptibility.
Moreover, given that the Belgian Blue population is completely
fixed for the mh MSTN allele, MSTN is not the sole source of vari-
ability in psoroptic mange susceptibility observed within the breed
and between other breeds. More research is needed to elucidate a
(causative) role ofMSTN in the increased psoroptic mange sensitiv-
ity. The use of MSTN-null mutant animals could be a valuable
: (1) whether an animal has developed a lesion at the moment of sampling, and (2)
he moment of sampling.

Scenario 2 (Lesion extent > mean lesion
extent)
Lesion

No Yes No

67 8 111
35 70 102
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approach but such a study in cattle seems currently unfeasible
because of the large number of animals needed and the complexity
of the trial. A null mutant study in mice could be an option, but the
different mite species in mice (Myocoptes musculinus, Myobia mus-
culi or Radfordia affinis) could impact the representativeness of the
study.

Although this study is the first to describe this association
between MSTN and the susceptibility for an ectoparasitic disease,
MSTN has been related to other phenotypes such as skin healing
and immunity. Zhang et al. (2012) reported that MSTN is expressed
in the skin of both mice and humans, where it plays a role in
wound healing. They found that MSTN-null mice showed a delayed
skin wound healing in both the epidermis, due to a reduced ker-
atinocyte migration and protracted keratinocyte proliferation,
and in the dermis, where both fibroblast-to-myoblast transforma-
tion and collagen disposition were reduced. This resulted in a
delayed re-epithelialisation and wound contraction. Moreover,
Wallner et al. (2016) also suggested that MSTN could play a role
in future wound healing treatments in humans. Up to date, there
are no indications that this would differ in cattle. If this would be
the case, the abrasive feeding of P. ovis at the epidermis could be
promoted by a delayed wound healing. Furthermore, Zhang et al.
(2011) found that pharmacological inhibition of myostatin sup-
pressed the expression of inflammatory cytokines in mice. Also,
Lyons et al. (2010) found a similar relation between MSTN and
proinflammatory cytokines (IL-17, IL1b and IFN-c) in high-fat
induced obese mice.

As there is no literature available on MSTN-null mutants in
mammals in relation to the immune system, some effects of MSTN
on the immune system in fish are described. However, caution
must be taken when interpreting results from fish to mammals
as they have two MSTN copies (Stinckens et al., 2011). Wang
et al. (2018) found in null-MSTN transgenic zebrafish (Danio rerio)
that individuals had an impaired NF-jB pathway. Similar results
were also found by Wu et al. (2020) in Crucian carps (Carassius
auratus). Also, in MSTN transgenic medaka (Oryzias latipes), the
immune system appeared to be at least partially suppressed
(Chiang et al., 2016).

Given these various roles MSTN plays in other species, it is not
ruled out that MSTN also plays a role in the immune system in cat-
tle, although this has never been studied before. The association
between MSTN and the susceptibility for psoroptic mange in Bel-
gian Blue cattle that we observed may support this idea.

This research confirms the common belief of Belgian Blue farm-
ers that ‘‘double-muscled” (mh/mh genotype) dual purpose Belgian
Blue cattle are more prone to psoroptic mange than others. This
finding could also (partially) explain the high level of susceptibility
for psoroptic mange in the Belgian Blue main population. Unfortu-
nately, it was impossible to test for this association in the meat-
type Belgian Blue population, and therefore, we performed the
research in the related dual purpose sub-population. The associa-
tion was confirmed using different statistical approaches, where
it was shown that animals with mh/mh genotype developed signif-
icantly larger lesions (+2.51% lesion extent). Moreover, animals
with the mh/mh genotype had a higher risk for developing psorop-
tic mange lesions and the odds of these animals developing a large
lesion were nine times the odds of animals with +/+ or mh/+ geno-
type. Besides its effects on muscle development, the literature
describes an effect of MSTN on both skin healing and immune sup-
pression in other species, adding evidence for the possible link
between MSTN and mange susceptibility in cattle. As MSTN plays
an important role (in breeding) for many livestock breeds, this
potential causal relation between MSTN and ectoparasitic resis-
tance is of utmost importance. However, more research has to be
6

carried out into the molecular mechanisms to better understand
this putative association.
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