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Abstract: Sustainable forest management requires accurate fine-scale description of wood resources.
Stem size distribution (SSD) by species is used by foresters worldwide as a representative overview
of forest structure and species composition suitable for informing management decisions at shorter
and longer terms. In mixed uneven-aged deciduous forests, tree data required for SSD estimation
are most often collected in the field through traditional forest management inventories (FMIs), but
these are time-consuming and costly with respect to the sampled area. Combining FMIs with remote
sensing methods such as airborne laser scanning (ALS), which has high potential for predicting forest
structure and composition, and is becoming increasingly accessible and affordable, could provide
cheaper and faster SSD data across large areas. In this study, we developed a method for estimating
species-specific SSDs by combining FMIs and dual-wavelength ALS data using neural networks
(NNs). The proposed method was tested and validated using 178 FMI plots within 22,000 ha of a
mixed uneven-aged deciduous forest in Belgium. The forest canopy was segmented, and metrics were
derived from the ALS point cloud. A NN with a custom architecture was set up to simultaneously
predict the three components required to compute species-specific SSDs (species, circumference, and
number of stems) at segment level. Species-specific SSDs were thereafter estimated at stand level by
aggregating the estimates for the segments. A robustness test was set up using fully independent
plots to thoroughly assess the method precision at stand-level on a larger area. The global Reynolds
index for the species-specific SSDs was 21.2 for the training dataset and 54.0 for the independent
dataset. The proposed method does not require allometric models, prior knowledge of the structure,
or the predefinition of variables; it is versatile and thus potentially adaptable to other forest types
having different structures and compositions.

Keywords: species-specific stem size distributions; multispectral airborne laser scanning (ALS);
forest management inventory; mixed uneven-aged deciduous forest; neural networks; segmentation;
Reynolds index

1. Introduction

Sustainable forest management requires a detailed and accurate description of forest
resources [1]. Species-specific stem-size distribution (SSD) is a critical variable for eval-
uating forests in terms of structure and species composition, especially in uneven-aged
stands [2,3]. The tree measurement most often used by foresters to construct SSD is the
diameter or, more rarely (as is the case in Belgium), the circumference. SSD allows the
assessment of forest regeneration state [4] and mature tree proportion [2], depending on
inventory threshold and stem-size class width. Depending on forest type and management
objectives, this allows to check the balance state and, if necessary, adjust silviculture, plan
interventions, and appraise timber harvesting [5]. SSD is usually interpreted graphically
by species with the y- and x-axes corresponding to stem density and stem-size classes,
respectively. Comparison of SSD at different times is also a relevant indicator of stand
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evolution [6], while mathematical relations and allometric models also allow the use of SSD
to express major stand parameters such as total basal area, wood volume, and biomass. The
species-specific SSD is therefore an important data for describing structure and composition
of forests.

Although some countries (Norway, Finland, Sweden, Denmark) use airborne laser
scanning (ALS) to inventory forests at a large scale [7–9], most traditional forest manage-
ment inventories (FMI) rely on data collected in the field; in particular, for SSD estimation
at management unit level (i.e., forest stand or property rather than single plot) in mixed
uneven-aged deciduous forests. Such field data are used to adjust forest management prac-
tices and to draw up management plans [10,11]. Considering uneven-aged forests, field
data most often correspond to sample-based inventories [12] and tree data are collected
on plots generally located on a regular grid [13]. For instance, in Belgium, the sampling
rate is usually one plot per 1–10 ha. The sampling rate needs to be adapted according to
the expected precision [12,14]. In even-aged forests, traditional FMI data correspond to
stand variables like volume, basal area, average size or dominant height estimated using
visual assessment or relascope measurements [7]. In mixed uneven-aged forests, main
measurements cover variables including individual tree dendrometric variables (e.g., cir-
cumference and height) and regeneration measurements (e.g., coverage of developmental
stages) depending on management objectives and constraints [10,11,15]. For management
purposes, FMI data only make sense if they are aggregated at the stand or forest level.
Traditional FMI are therefore frequent and widespread for uneven-aged deciduous forests
and could be used to estimate SSD.

Since the early 2000s, a great deal of interest was put on SSD estimation using ALS
data. Firstly, this interest was focused on boreal forests and plantations of primarily conif-
erous species. The area based approaches (ABA) were used with either non-parametric
modelling, such as the k-nearest neighbor method (kNN) [16–22], or parametric modelling
considering the Weibull distribution for plantations [23–26] and even-aged stands [27–31].
In more complex stands, plots were differentiated based on modality (unimodal or bimodal)
before the prediction of distribution parameters (shape and scale) [32]. The individual
tree detection (ITD) approaches were also implemented to estimate the SSD. Tree diameter
at breast height (DBH) has been estimated using several DBH regression models corre-
sponding to different growth patterns which integrated segment properties, forest density,
and local topography [33]. Machine learning techniques were also used to predict indi-
vidual tree DBH [34]. The ABA and ITD approaches were also combined to predict SSD
by fusing the two predicted SSDs [35], employing distribution matching techniques [36],
using replacement or histogram matching methods [37], or even using stand density and
crown radius distribution through a distribution matching step [38]. Secondly, the inter-
est in SSD estimation was focused on more complex forests, especially deciduous and
tropical stands. In this context, SSD has been estimated from the height distribution of
ALS first returns using allometric models [39] or multidimensional scaling [40]. Height
and intensity metrics were used with kNN imputation and random forest regression [41].
Tree-size frequency distribution has also been estimated from ITD and tree allometries [42].
Concerning species discrimination, most studies have usually not considered species at
all [35,38,41], used a preliminary plot stratification by main species during sampling de-
sign [40], or predicted only broadleaf proportion [39], while species-specific predictions
have mainly been made for coniferous species [21]. ALS data were sometimes combined
with spectral data [16,17,21], however nowadays multi-spectral ALS offers new possibilities
for differentiating tree species [43] and estimating forest stand variables [44]. Parametric
modelling requires the prior choice of the type of distribution (e.g., Weibull and bimodal), to
thereafter estimate the stem density distribution [32,39]. Some methods used a combination
of several interlocking models [38,39] for estimating SSD. Few studies have focused on
mixed uneven-aged deciduous forests.
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Tree detection rate is usually higher in even-aged coniferous stands with less com-
plex canopies, especially for taller and larger-DBH trees than in uneven-aged deciduous
stands [45]. Undetected trees are often smaller and dominated by the canopy [46], par-
ticularly as ALS pulse penetration rate decreases for understory vegetation [47]. Thus, a
major challenge is the correct linking of field data and remotely sensed data. Frequent
difficulties include positioning errors and differences in forest characterization between
the two data sources. Considering field surveys in uneven-aged forests, only a portion of
trees are measured (inside the sampling plots and above an inventory threshold), while
ALS data can cover the whole forest canopy but sub-canopy dominated trees are less easily
detectable. SSD estimation using regular ITD approaches are dependent on the tree detec-
tion rate [33,38,42]. Ref [38] dealt with this issue by employing crown radii distribution
corrections to avoid tree detection omissions for SSD estimation. Linking field data and
remotely sensed data requires well-adapted methods to maximize the concordance between
the two sources and optimize forest description predictions [48].

Neural networks (NNs), a form of artificial intelligence, are commonly used in remote
sensing [49]. NNs provide a flexible and powerful way to approximate complex nonlinear
relationships without a priori assumptions about relationships among variables [49]. They
automatically learn features from raw data and use them to perform a specific task, possess
inherent generalization abilities [49], and identify and respond to the main patterns from
partial data (i.e., not fully representative of the whole population) [50]. Versatility is another
advantage, as NN architecture can be defined from scratch to specifically meet user needs.
With sufficient data, NNs can outperform traditional modelling approaches [49]; they are
nevertheless much more complex to implement with multiple aspects to be considered,
including input/output data collection and pre-processing, architecture creation (numbers
of hidden layers and how they connect, number of nodes, activation functions, etc.),
and training configuration and evaluation (initialization of weights, learning algorithm,
loss functions, and under- and over-fitting checking) [49]. This complexity may partially
explain why the full potential of ALS data processing to characterize forests with NNs
remains underdeveloped.

In this context, we designed this study with three main objectives:

1. To develop a straightforward method for estimating species-specific SSDs using ALS
and FMI data for mixed uneven-aged deciduous forests.

2. To use a hybrid approach in which predictions were made at the segment level (i.e.,
tree crowns were slightly over-segmented, a tree crown could correspond to one or
several segments), but thereafter aggregated at stand level.

3. To use the potential and versatility of NNs to simultaneously predict the three com-
ponents required to compute species-specific SSDs: species, circumference class, and
number of stems.

2. Materials and Methods
2.1. Study Area

The study area was a mixed uneven-aged deciduous forest of 22,000 ha situated in the
Ardenne ecoregion of Wallonia (southern Belgium) (Figure 1). The area’s elevation ranged
from 180–432 m and its slope varied from 0–86◦. According to the Walloon Regional Forest
Inventory [51], oak (Quercus robur L. and Quercus petraea (Mattuschka) Liebl.) represented
44% of the total basal area, followed by beech (Fagus sylvatica L.) with 36%, birch (Betula spp.)
with 7%, Norway spruce (Picea abies (L.) H. Karst. subsp. abies) with 3%, and sycamore
maple (Acer pseudoplatanus L.) with <2%. This dominant oak–beech mixture is typical of
deciduous forests in the ecoregion [51] as a result of past centuries’ forest management
favoring oak for its socio-economic value [52].
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Figure 1. Study area in southern Belgium (Wallonia). Forest areas are in light grey. Black dots indi-
cate forest management inventory (FMI) plots. Black crosses indicate independent plots. ALS, air-
borne laser scanning; FR, France; LU, Luxembourg; GE, Germany; NL, Netherlands. 
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cision (x-y error < 1 m) with an Emlid Reach RS+ GPS (Emlid, https://emlid.com/, accessed 
on 8 February 2022). Plot radius was variable according to stem density in the field but 
was set to include at least 15 trees, with a maximum value of 18 m (1018 m2 at most). In 
Wallonia, circumference at 1.5 m height (c150) is traditionally used as a tree-size measure-
ment. c150, species, distance and bearing from plot center were collected for all trees with 
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Figure 1. Study area in southern Belgium (Wallonia). Forest areas are in light grey. Black dots indicate
forest management inventory (FMI) plots. Black crosses indicate independent plots. ALS, airborne
laser scanning; FR, France; LU, Luxembourg; GE, Germany; NL, The Netherlands.

2.2. Forest Management Inventory Plots

In total, 178 FMI plots were selected within the ALS acquisition area and set up
between May 2017 and April 2019 on systematic grids (400 × 200 m for 157 plots, and
100 × 100 m for the other 21) (Figure 1). For each plot, the center was positioned with high
precision (x-y error < 1 m) with an Emlid Reach RS+ GPS (Emlid, https://emlid.com/,
accessed on 8 February 2022). Plot radius was variable according to stem density in the
field but was set to include at least 15 trees, with a maximum value of 18 m (1018 m2 at
most). In Wallonia, circumference at 1.5 m height (c150) is traditionally used as a tree-size
measurement. c150, species, distance and bearing from plot center were collected for all
trees with c150 ≥ 40 cm, the inventory threshold traditionally used in Wallonia (Table 1).

Table 1. Forest management inventory (FMI) forest attributes (n = 178).

Attribute Mean Std. Dev. Min. Max.

Number of stems per hectare (stems/ha) 238.26 162.25 9.82 837.62
Basal area per hectare (m2/ha) 22.57 8.05 3.17 51.38

Root mean quadratic circumference (cm) 123.85 41.33 49.75 261.39
Proportion of dominant species 0.93 0.16 0.03 1.00

Canopy height (m) 26.94 3.81 11.94 36.79

2.3. Independent Plots

A robustness test was implemented using 13 independent plots evenly distributed
throughout the study area, mainly outside the forest areas in which the FMI plots were
located (Figure 1). Plot area ranged from 1591 to 3511 m2, corresponding to a total sampled
surface area of 3.13 ha. Plot position and tree data (Table 2) were surveyed between June
and August 2020 using the same methods as for FMIs.

https://emlid.com/
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Table 2. Independent plot forest attributes (n = 13).

Attribute Mean Std. Dev. Min. Max.

Number of stems per hectare (stems/ha) 224.37 89.13 76.22 415.38
Basal area per hectare (m2/ha) 21.95 3.68 13.28 26.70

Root mean quadratic circumference (cm) 115.94 27.52 82.28 186.67
Proportion of dominant species 0.95 0.10 0.64 1.00

Canopy height (m) 26.98 1.84 23.97 30.51

2.4. ALS Data

ALS discrete-return data were acquired using a Optech Titan Dual Wavelength sensor
(Teledyne) from 6–9 May 2018 under leaf-on conditions. This sensor allows the simul-
taneous acquisition of point clouds at a wavelength of 1064 (infra-red; C1 channel) and
532 (green; C2 channel) nm (Table 3). The mean aircraft flight altitude was 684 m above
sea level.

Table 3. ALS sensor properties.

Sensor Property

Number of returns recorded per pulse Up to 4
Pulse frequency (kHz) 200

Scanning frequency (scans/s) 70
Footprint diameter (m) 0.28

Scan angle ±16◦

Channel Wavelength (nm) Mean point density (pts/m2)

C1: Infra-red 1064 56
C2: Green 532 48

ALS data were preprocessed. The point cloud was classified to identify ground hits.
Outlier points (i.e., points that were too high above forest canopy) were filtered using
statistical methods in the PDAL toolbox [53]. The “mean_k” and “multiplier” parameters
were set to 12 and 3, respectively (defined after preliminary tests), and the filtered point
cloud was normalized. The CHM was built from the normalized point cloud using the
pit-free method [54] of the lidR package [55] with a spatial resolution of 0.5 m. ALS intensity
was range-calibrated following [56].

2.5. Overall Approach and Method Overview

Figure 2 illustrates the overall approach of the proposed method designed to use
traditional FMIs and ALS data. FMI plots were used to develop the method and train a
NN to predict the three components (species, circumference class, and number of stems)
at segment level needed to predict the species-specific SSD at stand level. A robustness
test was implemented using independent plots located throughout the study area. To
demonstrate the method’s application in forest management (stand level application), it
was implemented on a regular mesh throughout the study area, with cell predictions
subsequently aggregated at stand level.

Figure 3 presents the developed method. Field plots (FMIs and independent) and ALS
data were pre-processed, and a canopy height model (CHM) was generated (Figure 3I,II).
To avoid tree detection errors, the tree canopy was over-segmented, such that a tree crown
could contain one or several segments (Figure 3VI). The segmentation was implemented
by considering the height inventory threshold (Figure 3IV). Visible tree crowns in the FMI
dataset were digitized by visual interpretation on the CHM (Figure 3III), then used to
make the link between segments and FMI data and assign the species, circumference class,
and number of stems to each segment (Figure 3VII). The ALS 3D point cloud was used
to compute metrics for each segment to create a training dataset (Figure 3VIII). The tree
detectability status (Figure 3V) was assessed to maximize the link between field data and
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remote sensing data. A custom NN was created to simultaneously predict the species class,
circumference class, and number of stems at segment level (Figure 3IX). Following NN
training, its accuracy was assessed for the three components separately at segment level
to evaluate its prediction ability. The three predicted components were then combined to
estimate species-specific SSDs at stand level. The NN accuracies were also tested using
cross validation. Finally, the fully independent plots were used to set up a robustness test.
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The method was developed by considering four species classes (Oak, Beech, Spruce,
and Other). All treatments were carried out in R [57] or controlled by R using command
lines. LiDAR data processing was performed with the lidR (3.0.4 version) package [55].
Most GIS operations were implemented using the sf [58] and raster [59] R packages.

2.6. Field Data Pre-Processing

Both FMI and independent plot data were pre-processed (Figure 3II). Owing to posi-
tioning errors of plot centers, the alignment between the remote sensing and field data was
locally deficient. Consequently, plot centers for each dataset were relocated if necessary by
photo-interpretation of tree crown position in the CHM. Owing to the time gap between
ALS data acquisition and field inventories (≤2 growing seasons), c150 data were corrected
using Equation (1) in [60] according to species.

2.7. FMI Crown Digitalization

Tree crowns were manually digitized using the CHM to establish a link between
canopy segments and individual trees in the FMI plots in order to (1) construct a training
dataset (one tree crown could contain one or several segments, see Canopy segmenta-
tion and segment selection step below), and (2) to build models linking tree height and
c150 (Figure 3III). These digitized crowns corresponded to trees whose crown bound-
aries were totally visible and clearly distinguishable on the CHM (no spectral image was
available). ALS tree height was calculated as the 98th percentile of CHM pixels inside
digitized polygons [61]. This dataset, including only trees visible from the sky, was called
“FMI crowns”.

2.8. Tree Detectability Status Assessment

ALS covers the whole forest canopy, composed of (co-)dominant trees and overtopped
trees. Overtopped trees correspond to trees with a crown located in lower layer of the
canopy. Within dense complex forest stands, overtopped trees are barely visible and less
easily detectable, even using ALS data [47,62]. The tree detectability status (Figure 3V) was
used to identify the dominated and non-visible trees through ALS data (Figure 4) for the
independent dataset.
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Tree detectability status was evaluated by comparing the tree c150 with the potential
minimum c150 for the observed canopy height (ALS) at the tree position. To predict the
potential minimum c150 as a function of ALS canopy height, a model was fitted using FMI
crown data (FMI crowns correspond to trees visible from the sky, digitalized on CHM). The
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FMI crown dataset was used to fit a circumference model on smallest c150 per 2 m height
class (Figure 5) for each species class. Trees within independent plots whose c150 was
lower than the predicted potential minimum c150 were considered as undetectable trees
(overtopped) and excluded from the independent dataset.
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2.9. Canopy Segmentation and Segment Selection

We segmented the forest canopy in both FMI and independent plots into objects
delimiting whole or partial tree crowns, slightly over-segmenting tree crowns to better
delimit crown edges and avoid omission errors (Figure 3VI).

The segmentation was done by plot (+30 m buffer to avoid edge effects) for areas of
the FMI and independent plots using the mean-shift algorithm of the Orfeo toolbox [63].
A raster containing two bands (spatial resolution 0.50 cm) derived from ALS data was
used as the image to segment: the CHM (rescaled between 0–1000) and an intensity raster
(including both intensities; rescaled between 0–2000). The spatial radius, range radius,
and minimum region size were set to 20, 40, and 15, respectively. Parameter values were
fixed after a sensitivity analysis. The two band raster was masked before segmentation.
Only areas with CHM ≥ 10 m (height threshold based on field observations) and CHM
slope < 75◦ (to suppress low branches at canopy edges) were considered.

Training and independent datasets were then created by selecting segments crossing
FMI crowns and borders of independent plots, respectively (Figure 3VII). The training
dataset was used to train the NN and test the species-specific SSD estimations. The
independent dataset was used to test the method’s robustness.

Like the edge-tree correction method developed for ABA in [64], a segment was
selected if its local maximum (LM) was located inside the FMI crowns or plot. LMs were
generated from the CHM considering the pixel with the maximum height value inside
each segment. For each segment of the training dataset, the species class and c150 of
the corresponding FMI crowns were attributed to the segment. As mentioned above, the
forest canopy was over-segmented to avoid omission errors, so the number of stems for
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the considered segment was calculated as the ratio of the segment area to the area of the
corresponding FMI crown. The average number of stems per segment was 0.19.

2.10. Calculation of Metrics

Following previous research [26,32,33,35,43,44], 46 ALS features were calculated for
each segment (Figure 3VIII). Height metrics were calculated considering points above
2 m. Intensity metrics were calculated considering points above the 85th height percentile
inside segments for both channels (C1 and C2). Several vegetation indices combining the
mean intensity of each channel were also calculated for each segment. These metrics are
described in the Appendix A (Table A1).

2.11. Neural Network Implementation

Species-specific SSDs were derived from three successive and dependent components:
species class, circumference class, and number of stems. The relationship between ALS
and field variables strongly varies depending on the species, and for a given species
within a given area, circumference is one of the most important explanatory variables
for estimating the number of stems [33,60]. Errors in these estimations thus accumulate
and exacerbate one other. In the proposed method, a NN with a custom architecture was
implemented to simultaneously predict the three components (Figure 3IX). The c150 was
converted into 20 cm wide circumference classes. The training dataset consisted of tabular
data containing the three components for each segment and the ALS metrics. The NN
architecture allowed consideration of the between-component retroactive effects during
training, thus optimizing the learning and maximizing the precision of the three component
estimations. NN data preparation, architecture, and training were operated in R using the
keras R package [65] with TensorFlow as the backend.

NN implementation required input and output data preparation. The input numerical
variables (i.e., ALS metrics) were normalized to have a mean of 0 and a standard deviation
of 1. Concerning output data, the two categorical variables (species class and circumfer-
ence class) were converted into binary variables (dummy). The conversion method was
different for species class (as the nominal variable) and circumference class (as the ordinal
variable) [66]. For instance, a categorical variable of five classes with a value of 3 equals
0–0-1–0-0 if nominal and 1–1-0–0-0 if ordinal [67,68]. No modification was made to the
number of stems. Species class was converted into four binary variables and circumference
class into twelve (Table 4).

Table 4. NN architecture for the three components.

Output Variable Block Number Variable Type Activation Function Loss Function Accuracy Index

Species class 1
Categorical nominal
(converted into four

binary variables)
Softmax Categorical

cross-entropy Categorical accuracy

Circumference class 2
Categorical ordinal

(converted into twelve
binary variables)

Sigmoid Binary cross-entropy Binary accuracy

Number of stems 3 Numerical continuous Linear (none) Mean squared error R2

A specific architecture composed of three blocks (Figure 6) was created to simultane-
ously predict the three components required to compute the species-specific SSDs: species
class (block 1), circumference class (block 2), and number of stems (block 3). These three
blocks had the same architecture but independent weights. Each block was composed of
three successive dense layers (Figure 6). The first two comprised 32 hidden nodes followed
by the ‘hyperbolic tangent’ activation function [69] and a dropout of 25% [70]. The number
of hidden nodes and dropout percentage were defined to avoid over-fitting issues. The
third dense layer was only used for data reconstruction followed by one specific activation
function (Table 4). The total model trainable weight parameters numbered 8881.
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For NN training, the Adam optimizer was used with a learning rate of 0.005. The
overall loss was computed by summing the three losses (Table 4). The training was stopped
when the overall loss reached a plateau [71]. During training, as the input data were not
fully balanced, losses of species classes and circumference classes were weighted jointly.
These weights were inversely proportional to the segment occurrence, forcing the model to
pay more attention to the less frequent classes. In combination with the small number of
hidden nodes and the dropouts, this ensured high NN robustness and generalization ability.
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2.12. Neural Network Accuracy

The NN accuracy was assessed at the end of the training stage for the three components
separately using appropriate accuracy indices (Table 4). This assessment was made on
the entire training dataset considering predictions at segment level. Categorical variables
(species class and circumference class) were assessed through confusion matrices comparing
training and prediction classes. The number of stems was assessed considering R2 (Table 4),
RMSE, and bias.

The three components predicted at the segment level were aggregated to predict the
species-specific SSDs at stand level (all plots considered), considering the entire training
dataset. The number of stems per hectare by circumference class and by species was
calculated and compared with the field data. To evaluate the species-specific SSD estima-
tions, the Reynolds index (Equation (1)) [72] and Packalén index (Equation (2)) [16] were
calculated overall and by species; these indices are commonly used to assess the accuracy
of SSD estimation [32,35–37,39,41]:

Reynolds Index = ∑m
c=1 100× | fc − f̂c

N
|, (1)

Packalén Index = ∑m
c=1 0.5× | fc

N
− f̂c

N̂
|, (2)

where c is the circumference class from 1 to m, fc is the observed stem density in the
circumference class c, f̂c is the predicted stem density in the circumference class c, N is the
observed total stem density, and N̂ is the predicted total stem density. Stem density was
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calculated per hectare considering all plots. A value of 0 for these indices corresponds to a
perfect estimation. The Reynolds index could range from 0 to an infinite value while the
Packalén index is bounded between 0 and 1.

The NN was also evaluated using a simple cross-validation using the segments of
80% of the randomly selected plots (training data for the cross-validation). The model was
then tested on the segments contained in the 20% remaining plots (validation data for the
cross-validation). One hundred repetitions were performed; in each, the NN accuracy of
the three components and species-specific SSD estimations were evaluated considering
the validation dataset. The species class and circumference class were assessed using the
overall accuracy and the number of stems was assessed by R2. Based on SSD estimation, the
residual stem density by circumference class and species were calculated, and the Reynolds
and Packalen indices were also evaluated for each repetition.

2.13. Robustness Test

The proposed method was also tested on the independent dataset (Figures 1 and 3),
which was evenly distributed over the study area and mainly outside the FMI plot location.
This allowed an assessment of the method’s quality and robustness over the entire study
area, including more variability in structure and composition (species proportions). Species
class, circumference class, and number of stems were predicted for each segment of the
independent dataset. Segment predictions were aggregated to estimate the species-specific
SSDs at stand level.

3. Results
3.1. Neural Network Accuracy

The NN predicted the species class with a categorical overall accuracy of 0.92. The
confusion matrix is presented in Table 5. The user and producer accuracies ranged from
0.85–0.97 and 0.89–0.99, respectively, both with the highest value for spruce. Most con-
fusion took place between deciduous species, especially between oak and beech. The
circumference class (c150) was predicted with an ordinal overall accuracy of 0.36. The
corresponding confusion matrix is presented in Table 6. The user and producer accuracies
ranged from 0.11–0.92 and 0.06–0.84, respectively, with confusion between circumference
classes usually occurring between close classes. This effect seemed to be accentuated for
the central classes (110–210). The number of stems was predicted with an R2 value of 0.90,
a RMSE of 0.09, and a bias of 0.00.

The predictions of the three components of each segment were combined to com-
pute the species-specific SSDs per hectare at stand level for the whole training dataset
(Figure 7). The values of the overall Reynolds and Packalén indices were 21.15 and 0.10,
respectively. The total number of stems per hectare inventoried and estimated were 224 and
219, respectively. These accuracies varied according to species class (Table 7).

Table 5. Confusion matrix for the species class prediction.

Prediction Producer
AccuracyOak Beech Other Spruce

Training

Oak 1116 108 33 1 0.89
Beech 175 2305 7 12 0.92
Other 15 4 254 0 0.93
Spruce 0 2 0 373 0.99

User
accuracy 0.85 0.95 0.86 0.97

Overall
accuracy

0.92
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Table 6. Confusion matrix for the circumference class (c150) prediction. Class value corresponds to
the center of the circumference class (cm).

Prediction Producer
Accuracy50 70 90 110 130 150 170 190 210 230 250 270

Tr
ai

ni
ng

50 47 9 0 0 0 0 0 0 0 0 0 0 0.84
70 5 79 36 2 2 0 0 1 0 0 0 0 0.63
90 0 17 127 51 6 1 0 0 0 0 0 0 0.63

110 0 4 44 123 78 7 9 0 0 0 0 0 0.46
130 0 7 15 52 133 87 53 17 2 0 0 0 0.36
150 0 0 3 13 57 132 133 114 28 2 1 0 0.27
170 0 0 1 7 24 56 272 271 127 30 0 0 0.35
190 0 2 0 5 9 30 189 297 158 76 1 0 0.39
210 0 0 1 1 3 10 44 220 251 114 8 0 0.38
230 0 0 0 1 1 3 21 122 180 113 7 0 0.25
250 0 0 0 0 0 0 0 4 32 53 6 2 0.06
270 0 0 0 0 2 0 1 2 17 78 34 22 0.14

User
accuracy 0.90 0.67 0.56 0.48 0.42 0.40 0.38 0.28 0.32 0.24 0.11 0.92

Overall
accuracy

0.36

Table 7. Species-specific SSD accuracies computed by species class for the NN training dataset.

Species Reynolds Index Packalén Index
Inventoried
Number of
Stems/ha

Predicted
Number of
Stems/ha

Oak 32.27 0.17 76.4 73.7
Beech 41.22 0.21 75.0 74.8
Spruce 26.08 0.14 44.1 41.5
Other 25.00 0.12 28.8 28.8

The cross-validation results for the accuracy of the three components were lower than
for the global adjustment on the whole training dataset (Figure 8). The residual standard
deviations of the stem density by circumference class and species are presented in Figure 7.
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The Reynolds and Packalén index values were variable depending on the considered
species class (Figure 9). On average, these index values were lower when all species were
considered, as well as for beech and spruce (Figure 9).
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3.2. Robustness Test Using the Independent Dataset

The method was also tested on the independent dataset (Figure 10). The values of
the overall Reynolds and Packalén indices were 53.98 and 0.18, respectively, and the total
number of stems per hectare inventoried and predicted were 151.5 and 190.7, respectively.
These accuracies also varied according to species class (Table 8), and were lower than the
global NN accuracies (Table 7). The results of the robustness test were higher for the two
main species (oak and beech), which corresponded to 94% of the total basal area of the
independent dataset (Table 8). For beech, a certain shift can be observed between small
(50–70) and intermediate (90–170) circumference classes (Figure 10).

As an example, the developed method was used to estimate species-specific SSDs at
stand level for two management units located in the study area (Figure 11).
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Table 8. Species-specific SSD accuracies computed by species class for the independent dataset.

Species Proportion of Basal Area (%)
in the Independent Dataset Reynolds Index Packalén Index Inventoried Number

of Stems/ha
Predicted Number

of Stems/ha

Oak 53 22.38 0.11 59.5 60.2
Beech 41 65.17 0.32 77.2 79.1
Spruce 3 314.65 0.48 6.3 23.0
Other 3 247.11 0.43 8.4 28.4

Proportion of basal area (%) corresponded to the share of each species in the independent plots.
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4. Discussion

Our proposed method allowed precise stand-level prediction of species-specific SSDs
in a mixed uneven-aged deciduous forest of 22,000 ha. A specific NN was implemented to
simultaneously predict the three components required to compute species-specific SSDs
(species class, circumference class, and number of stems). Low Reynolds and Packalén
index values for the training dataset (Table 7) showed the ability of the NN model to
predict the species-specific SSDs for the training dataset. The cross-validation showed
comparable accuracy values. The results of the robustness test also had high accuracy
values, both overall and for the two main species (beech and oak) (Table 8), even if they
were globally a little lower than the results of the training phase. This seemed consistent
since the robustness test was performed with completely independent data located outside
the FMI plot locations (training area).

It was difficult to rigorously compare our results with those of other similar studies
due to methodological differences. For example, studied forests varied significantly, field
inventory data were mostly different, and remote sensing data had various properties.
However, comparisons can be made of the methods themselves, considering their particu-
larities, strengths, weaknesses, and their ability to meet scientific and management needs.
The SSD was estimated from the three predicted components at segment level using a single
NN. The proposed method does not require successive allometric relations or DBH models
as in other studies [33,35,38,39]. Nor does it require choosing the form of any relationship
among variables as in parametric approaches [32]. It did not require prior knowledge
of the structure or any need to predefine other variables. Similar to [32], our method is
highly versatile and can potentially be adapted to any type of forest. Some studies made
overall predictions but without distinguishing tree species [32,33,35,41]; the last study
focused on homogeneous coniferous stands dominated by spruce but with a wide range of
complex terrains. Ref [39] predicted broadleaf proportion considering that stem diameters
were equidistant quantiles of a Weibull distribution. Ref [40] produced species-specific
predictions but used a preliminary plot stratification by main species during the sampling
design. Similar to [21], who made species-specific predictions considering three species
classes (pine, spruce, and deciduous) using ALS and aerial imageries, our method was able
to make precise species-specific predictions from bi-spectral ALS metrics. However, the
digitization of tree crowns to create the training dataset was required and could be seen as
a limitation. However, due to the high complexity of the targeted forest’s structure and
species composition, the segmentation quality achievable using traditional tools [73–75]
would not be sufficient to avoid this step.

Concerning species discrimination, Ref.[43] used three-wavelength ALS data to dis-
criminate up to 10 species and showed that confusion appeared less frequently between
coniferous and broadleaved species. This was confirmed by our results, in which the spruce
class was better discriminated than the other three; as in [76], the main confusion occurred
between deciduous species. The Other class, which included different deciduous species,
had the lowest accuracy as that of the least well-represented classes is often lower and more
difficult to interpret [76].

A robustness test was performed to evaluate the results’ quality on a completely
independent data set. This confirmed that the method worked quite well for the main
species, especially oak, while a certain shift was observed for beech between the small and
intermediate circumference classes. In fact, the forest considered in the study area was
particularly complex and heterogeneous in both structure and composition. It is possible
that the relationship between ALS metrics and the three components differed slightly in
space owing to variations in silvicultural practices or growing conditions. NNs are known
to generalize and are capable of learning main patterns from partial data if training data
are sufficiently representative for the targeted area. A larger dataset for the less-well-
represented species and circumference classes could improve the results. Additional data
on soil properties, forest productivity, or other variables could also be included.
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The NN with a custom architecture allowed the simultaneous prediction of the three
components required to estimate species-specific SSD. Furthermore, the retroactive effect
of the errors of these components (i.e., the adjustment of the three components within the
neural network is not done independently) was taken into account during the adjustment,
which improved the overall accuracy.

Our proposed method optimizes the link between field data and remote sensing
data. The tree detectability through ALS data was assessed for trees of the independent
plots to improve SSDs evaluation. Such procedures are not mandatory for less complex
forests that are single-species or even-aged [33]. Correcting estimates according to tree
detectability status may appear to be a limitation. This is not an issue for silvicultural
practices because these trees usually correspond to small trees (c150 < 90 cm) with a low
future value. These trees correspond to 9.40% of the total basal area per hectare. In contrast,
the study area was mainly a productive forest where established regeneration is rapidly
uncovered by managers to meet sapling light requirements. In addition, the forest structure
also induced the development of sapling groups. Enhanced detection of understory trees
could be achieved using a higher-density point cloud (≥170 pt/m2 to detect trees in the
third canopy layer) [77]. The multidimensional deep learning [78,79] or the 3D point
cloud segmentation [47,80] could potentially improve understory tree detection to predict
species-specific SSD. Leaf-off ALS data could also be preferable for detecting understory
trees [81].

Our proposed method is versatile and should be adapted to work on any forests, thus
having great potential for improving forest management by allowing the prediction of
species-specific SSDs at stand level. It requires only traditional FMI and bi-spectral ALS
data, canopy segmentation, calculation of metrics, and NN training. FMIs are frequently
conducted in most managed forests and ALS data acquisition is rapidly becoming more
accessible and will be more frequently used in the near future. Nevertheless, the required
manual digitalization of tree crowns to create a training dataset is a barrier to adoption.
Further work should focus mainly on three points: (1) implementing the method in other
types of forest, (2) generalizing the procedure for linking field data and remote sensing
data, and (3) determining the optimal number of plots and digitized crowns (by species
and circumference class) to capture the variability of the area of interest [82,83].

5. Conclusions

Our proposed method allowed a precise stand-level estimate of species-specific SSDs
in a mixed uneven-aged deciduous forest of 22,000 ha using ALS and FMI data. The method
was not dependent on the tree detection rate. A specific NN (customized architecture)
was used to simultaneously predict the three required components (species class, circum-
ference class, and number of stems). Although the method should be tested with other
forests (different structures and tree species compositions), the results are promising for
forest management.
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Appendix A

Table A1. ALS metrics calculated for each segment. The name of each metric is indicated and
followed by a description. Intensity metrics were calculated for both channels (C1 and C2).

Geometric Metrics Description

area_m2 Segment area (m2)

Height metrics Description

acc Average height increase from 2014–2018 (m/year)
sd_CHM Standard deviation of CHM pixels (m)
cv_CHM Coefficient of variation of CHM pixels

sd_h Standard deviation (m) of point heights
cv_h Coefficient of variation of point heights

kurt_h Kurtosis of point heights
skew_h Skewness of point heights
cv_lad Coefficient of variation of the leaf area density
entr_h Entropy of point heights

ah_ratio Ratio of segment area to 98th percentile of CHM pixels
ri Rumple index of point heights

mn_slope_h Average slope calculated between the highest point and all other points
sd_slope_h Standard deviation of slope calculated between the highest point and all other points

mn_slope_h_fr Average slope calculated between the highest first return point and all other first return points
sd_slope_h_fr Standard deviation of slope calculated between the highest first return point and all other first return points

Intensity metrics Description

max_i_c1 Maximum of point intensity for the C1 channel
mean_i_c1 Mean of point intensity for the C1 channel

sd_i_c1 Standard deviation of point intensity for the C1 channel
kurt_i_c1 Kurtosis of point intensity for the C1 channel
skew_i_c1 Skewness of point intensity for the C1 channel

cv_i_c1 Coefficient of variation of point intensity for the C1 channel
entr_i_c1 Entropy of point intensity for the C1 channel

max_i_fr_c1 Mean of point intensity for the C1 channel; first returns only
mean_i_fr_c1 Mean of point intensity for the C1 channel; first returns only

sd_i_fr_c1 Standard deviation of point intensity for the C1 channel; first returns only
cv_i_fr_c1 Coefficient of variation of point intensity for the C1 channel; first returns only

kurt_i_fr_c1 Kurtosis of point intensity for the C1 channel; first returns only
skew_i_fr_c1 Skewness of point intensity for the C1 channel; first returns only
entr_i_fr_c1 Entropy of point intensity for the C1 channel; first returns only

max_i_c2 Maximum of point intensity for the C2 channel
mean_i_c2 Mean of point intensity for the C2 channel

sd_i_c2 Standard deviation of point intensity for the C2 channel
kurt_i_c2 Kurtosis of point intensity for the C2 channel
skew_i_c2 Skewness of point intensity for the C2 channel

cv_i_c2 Coefficient of variation of point intensity for the C2 channel
entr_i_c2 Entropy of point intensity for the C2 channel

max_i_fr_c2 Mean of point intensity for the C2 channel; first returns only
mean_i_fr_c2 Mean of point intensity for the C2 channel; first returns only

sd_i_fr_c2 Standard deviation of point intensity for the C2 channel; first returns only
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Table A1. Cont.

cv_i_fr_c2 Coefficient of variation of point intensity for the C2 channel; first returns only
kurt_i_fr_c2 Kurtosis of point intensity for the C2 channel; first returns only
skew_i_fr_c2 Skewness of point intensity for the C2 channel; first returns only
entr_i_fr_c2 Entropy of point intensity for the C2 channel; first returns only

Vegetation index Description

ndgi_mm_f Green normalized difference vegetation index
(mean_i_C1 −mean_i_C2)/(mean_i_C1 + mean_i_C2)

r_topo_bathy Channel ratio
mean_I_C1/mean_I_C2

References
1. FAO. Global Forest Ressources Assessment 2020—Key Findings; FAO: Rome, Italy, 2020.
2. O’Hara, K.L.; Gersonde, R.F. Stocking control concepts in uneven-aged silviculture. Forestry 2004, 77, 131–143. [CrossRef]
3. Boncina, A.; Diaci, J.; Cencic, L. Comparison of the two main types of selection forests in Slovenia: Distribution, site conditions,

stand structure, regeneration and management. Forestry 2002, 75, 365–373. [CrossRef]
4. Duchateau, E.; Schneider, R.; Tremblay, S.; Dupont-Leduc, L. Density and diameter distributions of saplings in naturally

regenerated and planted coniferous stands in Québec after various approaches of commercial thinning. Ann. For. Sci. 2020, 77, 38.
[CrossRef]

5. Rubin, B.D.; Manion, P.D.; Faber-Langendoen, D. Diameter distributions and structural sustainability in forests. For. Ecol. Manag.
2006, 222, 427–438. [CrossRef]

6. Cameron, A.; Prentice, L. Determining the sustainable irregular condition: An analysis of an irregular mixed-species selection
stand in Scotland based on recurrent inventories at 6-year intervals over 24 years. Forestry 2016, 89, 208–214. [CrossRef]

7. Næsset, E. Area-Based inventory in norway—From innovation to an operational reality. In Forestry Applications of Airborne Laser
Scanning; Springer: Berlin/Heidelberg, Germany, 2014; pp. 215–240. [CrossRef]

8. Kangas, A.; Astrup, R.; Breidenbch, J.; Fridman, J.; Gobakken, T.; Korhonen, K.T.; Maltamo, M.; Nilsson, M.; Nord-Larsen, T.;
Naesset, E.; et al. Remote sensing and forest inventories in Nordic countries—Roadmap for the future. Scand. J. For. Res. 2018, 33,
397–412. [CrossRef]

9. Maltamo, M.; Packalen, P.; Kangas, A. From comprehensive field inventories to remotely sensed wall-to-wall stand attribute
data—A brief history of management inventories in the nordic countries. Can. J. For. Res. 2020, 51, 257–266. [CrossRef]

10. Rondeux, J. La Mesure des Arbres et des Peuplements Forestiers, 3nd ed.; Les Presses Agronomiques de Gembloux: Gembloux,
Belgium, 2021.

11. Lei, X.D.; Tang, M.P.; Lu, Y.C.; Hong, L.X.; Tian, D.L. Forest inventory in China: Status and challenges. Int. For. Rev. 2009, 11,
52–63. [CrossRef]

12. Rahlf, J.; Hauglin, M.; Astrup, R.; Breidenbach, J. Timber volume estimation based on airborne laser scanning—Comparing the
use of national forest inventory and forest management inventory data. Ann. For. Sci. 2021, 78, 49. [CrossRef]

13. Hoover, C.M.; Bush, R.; Palmer, M.; Treasure, E. Using forest inventory and analysis data to support national forest management:
Regional case studies. J. For. 2020, 118, 313–323. [CrossRef]

14. Vega, C.; Renaud, J.-P.; Sagar, A.; Bouriaud, O. A new small area estimation algorithm to balance between statistical precision and
scale. Int. J. Appl. Earth Obs. Geoinf. 2021, 97, 102303. [CrossRef]

15. Scott, C.T.; Gove, J.H. Forest inventory. Encycl. Environ. 2002, 2, 814–820.
16. Packalén, P.; Maltamo, M. Estimation of species-specific diameter distributions using airborne laser scanning and aerial pho-

tographs. Can. J. For. Res. 2008, 38, 1750–1760. [CrossRef]
17. Maltamo, M.; Næsset, E.; Bollandsås, O.M.; Gobakken, T.; Packalén, P. Non-parametric prediction of diameter distributions using

airborne laser scanner data. Scand. J. For. Res. 2009, 24, 541–553. [CrossRef]
18. Peuhkurinen, J.; Maltamo, M.; Malinen, J. Estimating species-specific diameter distributions and saw log recoveries of boreal

forests from airborne laser scanning data and aerial photographs: A distribution-based approach. Silva Fenn. 2008, 42, 625–641.
[CrossRef]

19. Peuhkurinen, J.; Tokola, T.; Plevak, K.; Sirparanta, S.; Kedrov, A.; Pyankov, S. Predicting tree diameter distributions from airborne
laser scanning, SPOT 5 satellite, and field sample data in the Perm Region, Russia. Forests 2018, 9, 639. [CrossRef]

20. Strunk, J.L.; Gould, P.J.; Packalen, P.; Poudel, K.P.; Andersen, H.E.; Temesgen, H. An examination of diameter density prediction
with k-NN and airborne lidar. Forests 2017, 8, 444. [CrossRef]

21. Räty, J.; Packalen, P.; Maltamo, M. Comparing nearest neighbor configurations in the prediction of species-specific diameter
distributions. Ann. For. Sci. 2018, 75, 1–16. [CrossRef]

22. Mauro, F.; Frank, B.; Monleon, V.J.; Temesgen, H.; Ford, K.R. Prediction of diameter distributions and tree-lists in southwestern
oregon using lidar and stand-level auxiliary information. Can. J. For. Res. 2019, 49, 775–787. [CrossRef]

http://doi.org/10.1093/forestry/77.2.131
http://doi.org/10.1093/forestry/75.4.365
http://doi.org/10.1007/s13595-020-0929-5
http://doi.org/10.1016/j.foreco.2005.10.049
http://doi.org/10.1093/forestry/cpw003
http://doi.org/10.1007/978-94-017-8663-8_11
http://doi.org/10.1080/02827581.2017.1416666
http://doi.org/10.1139/cjfr-2020-0322
http://doi.org/10.1505/ifor.11.1.52
http://doi.org/10.1007/s13595-021-01061-4
http://doi.org/10.1093/jofore/fvz073
http://doi.org/10.1016/j.jag.2021.102303
http://doi.org/10.1139/X08-037
http://doi.org/10.1080/02827580903362497
http://doi.org/10.14214/sf.237
http://doi.org/10.3390/f9100639
http://doi.org/10.3390/f8110444
http://doi.org/10.1007/s13595-018-0711-0
http://doi.org/10.1139/cjfr-2018-0332


Remote Sens. 2022, 14, 1362 19 of 21

23. Maltamo, M.; Mehtätalo, L.; Valbuena, R.; Vauhkonen, J.; Packalen, P. Airborne laser scanning for tree diameter distribution
modelling: A comparison of different modelling alternatives in a tropical single-species plantation. Forestry 2017, 91, 121–131.
[CrossRef]

24. Arias-Rodil, M.; Diéguez-Aranda, U.; Álvarez-González, J.G.; Pérez-Cruzado, C.; Castedo-Dorado, F.; González-Ferreiro, E.
Modeling diameter distributions in radiata pine plantations in Spain with existing countrywide LiDAR data. Ann. For. Sci. 2018,
75, 36. [CrossRef]

25. Cosenza, D.N.; Soares, P.; Guerra-Hernandez, J.; Pereira, L.; Gonzalez-Ferreiro, E.; Castedo-Dorado, F.; Tomé, M. Comparing
Johnson’s SB and weibull functions to model the diameter distribution of forest plantations through ALS data. Remote Sens. 2019,
11, 2792. [CrossRef]

26. Zhang, Z.; Cao, L.; Mulverhill, C.; Liu, H.; Pang, Y.; Li, Z. Prediction of diameter distributions with multimodal models using
LiDAR data in subtropical planted forests. Forests 2019, 10, 125. [CrossRef]

27. Gobakken, T.; Næsset, E. Estimation of diameter and basal area distributions in coniferous forest by means of airborne laser
scanner data. Scand. J. For. Res. 2004, 19, 529–542. [CrossRef]

28. Gorgoso, J.J.; Alvarez Gonzalez, J.G.; Rojo, A.; Grandas-Arias, J.A. Modelling diameter distributions of Betula alba L. stands in
northwest Spain with the two-parameter Weibull function. Investig. Agrar. Sist. Recur. For. 2007, 16, 113–123. [CrossRef]

29. Maltamo, M.; Suvanto, A.; Packalén, P. Comparison of basal area and stem frequency diameter distribution modelling using
airborne laser scanner data and calibration estimation. For. Ecol. Manag. 2007, 247, 26–34. [CrossRef]

30. Breidenbach, J.; Gläser, C.; Schmidt, M. Estimation of diameter distributions by means of airborne laser scanner data.
Can. J. For. Res. 2008, 38, 1611–1620. [CrossRef]

31. Thomas, V.; Oliver, R.D.; Lim, K.; Woods, M. LiDAR and Weibull modeling of diameter and basal area. For. Chron. 2008, 84,
866–875. [CrossRef]

32. Mulverhill, C.; Coops, N.C.; White, J.C.; Tompalski, P.; Marshall, P.L.; Bailey, T. Enhancing the estimation of stem-size distributions
for unimodal and bimodal stands in a boreal mixedwood forest with airborne laser scanning data. Forests 2018, 9, 95. [CrossRef]

33. Paris, C.; Bruzzone, L. A growth-model-driven technique for tree stem diameter estimation by using airborne LiDAR data. IEEE
Trans. Geosci. Remote Sens. 2018, 57, 76–92. [CrossRef]

34. Malek, S.; Miglietta, F.; Gobakken, T.; Næsset, E.; Gianelle, D.; Dalponte, M. Prediction of stem diameter and biomass at individual
tree crown level with advanced machine learning techniques. iForest-Biogeosciences For. 2019, 12, 323–329. [CrossRef]

35. Räty, J.; Packalen, P.; Kotivuori, E.; Maltamo, M. Fusing diameter distributions predicted by an area-based approach and
individual-tree detection in coniferous-dominated forests. Can. J. For. Res. 2020, 50, 113–125. [CrossRef]

36. Vauhkonen, J.; Mehtätalo, L. Matching remotely sensed and field-measured tree size distributions. Can. J. For. Res. 2015, 45,
353–363. [CrossRef]

37. Xu, Q.; Hou, Z.; Maltamo, M.; Tokola, T. Calibration of area based diameter distribution with individual tree based diameter
estimates using airborne laser scanning. ISPRS J. Photogramm. Remote Sens. 2014, 93, 65–75. [CrossRef]

38. Kansanen, K.; Vauhkonen, J.; Lähivaara, T.; Seppänen, A.; Maltamo, M.; Mehtätalo, L. Estimating forest stand density and
structure using Bayesian individual tree detection, stochastic geometry, and distribution matching. ISPRS J. Photogramm. Remote
Sens. 2019, 152, 66–78. [CrossRef]

39. Spriggs, R.A.; Coomes, D.A.; Jones, T.A.; Caspersen, J.P.; Vanderwel, M.C. An alternative approach to using LiDAR remote
sensing data to predict stem diameter distributions across a temperate forest landscape. Remote Sens. 2017, 9, 944. [CrossRef]

40. Magnussen, S.; Renaud, J.P. Multidimensional scaling of first-return airborne laser echoes for prediction and model-assisted
estimation of a distribution of tree stem diameters. Ann. For. Sci. 2016, 73, 1089–1098. [CrossRef]

41. Shang, C.; Treitz, P.; Caspersen, J.; Jones, T. Estimating stem diameter distributions in a management context for a tolerant
hardwood forest using ALS height and intensity data. Can. J. Remote Sens. 2017, 43, 79–94. [CrossRef]

42. Ferraz, A.; Saatchi, S.S.; Longo, M.; Clark, D.B. Tropical tree size–frequency distributions from airborne lidar. Ecol. Appl. 2020,
30, 2154. [CrossRef]

43. Budei, B.C.; St-Onge, B.; Hopkinson, C.; Audet, F.A. Identifying the genus or species of individual trees using a three-wavelength
airborne lidar system. Remote Sens. Environ. 2018, 204, 632–647. [CrossRef]

44. Dalponte, M.; Ene, L.T.; Gobakken, T.; Næsset, E.; Gianelle, D. Predicting selected forest stand characteristics with multispectral
ALS data. Remote Sens. 2018, 10, 586. [CrossRef]

45. Hastings, J.H.; Ollinger, S.V.; Ouimette, A.P.; Sanders-DeMott, R.; Palace, M.W.; Ducey, M.J.; Sullivan, F.B.; Basler, D.; Orwig, D.A.
Tree species traits determine the success of LiDAR-based crown mapping in a mixed temperate forest. Remote Sens. 2020, 12, 309.
[CrossRef]

46. Yu, X.; Hyyppä, J.; Litkey, P.; Kaartinen, H.; Vastaranta, M.; Holopainen, M. Single-sensor solution to tree species classification
using multispectral airborne laser scanning. Remote Sens. 2017, 9, 108. [CrossRef]

47. Wang, X.H.; Zhang, Y.Z.; Xu, M.M. A multi-threshold segmentation for tree-level parameter extraction in a deciduous forest
using small-footprint airborne LiDAR data. Remote Sens. 2019, 11, 2109. [CrossRef]

48. Korpela, I.; Tuomola, T.; Välimäki, E. Mapping forest plots: An efficient method combining photogrammetry and field triangula-
tion. Silva Fenn. 2007, 41, 457–469. [CrossRef]

49. Mas, J.F.; Flores, J.J. The application of artificial neural networks to the analysis of remotely sensed data. Int. J. Remote Sens. 2008,
29, 617–663. [CrossRef]

http://doi.org/10.1093/forestry/cpx041
http://doi.org/10.1007/s13595-018-0712-z
http://doi.org/10.3390/rs11232792
http://doi.org/10.3390/f10020125
http://doi.org/10.1080/02827580410019454
http://doi.org/10.5424/srf/2007162-01002
http://doi.org/10.1016/j.foreco.2007.04.031
http://doi.org/10.1139/x07-237
http://doi.org/10.5558/tfc84866-6
http://doi.org/10.3390/f9020095
http://doi.org/10.1109/TGRS.2018.2852364
http://doi.org/10.3832/ifor2980-012
http://doi.org/10.1139/cjfr-2019-0102
http://doi.org/10.1139/cjfr-2014-0285
http://doi.org/10.1016/j.isprsjprs.2014.03.005
http://doi.org/10.1016/j.isprsjprs.2019.04.007
http://doi.org/10.3390/rs9090944
http://doi.org/10.1007/s13595-016-0581-2
http://doi.org/10.1080/07038992.2017.1263152
http://doi.org/10.1002/eap.2154
http://doi.org/10.1016/j.rse.2017.09.037
http://doi.org/10.3390/rs10040586
http://doi.org/10.3390/rs12020309
http://doi.org/10.3390/rs9020108
http://doi.org/10.3390/rs11182109
http://doi.org/10.14214/sf.283
http://doi.org/10.1080/01431160701352154


Remote Sens. 2022, 14, 1362 20 of 21

50. Grossi, E.; Buscema, M. Introduction to artificial neural networks. Eur. J. Gastroenterol. Hepatol. 2007, 19, 1046–1054. [CrossRef]
51. Alderweireld, M.; Burnay, F.; Pitchugin, M.; Lecomte, H. Inventaire Forestier Wallon-Résultats 1994–2012; SPW: Jambes, Belgium, 2015.
52. Claessens, H.; Perin, J.; Latte, N.; Lecomte, H.; Brostaux, Y. Une chênaie n’est pas l’autre: Analyse des contextes sylvicoles du

chêne en forêt wallonne. Forêt Wallonne 2010, 108, 3–18.
53. PDAL Contributors. PDAL Point Data Abstraction Library. Available online: https://pdal.io/ (accessed on 8 February 2022).
54. Khosravipour, A.; Skidmore, A.K.; Isenburg, M.; Wang, T.; Hussin, Y.A. Generating pit-free canopy height models from airborne

lidar. Photogramm. Eng. Remote Sens. 2014, 80, 863–872. [CrossRef]
55. Roussel, J.R.; Auty, D.; Coops, N.C.; Tompalski, P.; Goodbody, T.R.H.; Meador, A.S.; Bourdon, J.F.; de Boissieu, F.; Achim, A. Lidr:

An R package for analysis of Airborne Laser Scanning (ALS) data. Remote Sens. Environ. 2020, 251, 112061. [CrossRef]
56. Korpela, I.; Ole Ørka, H.; Maltamo, M.; Tokola, T.; Hyyppä, J. Tree species classification using airborne LiDAR—Effects of stand

and tree parameters, downsizing of training set, intensity normalization, and sensor type. Silva Fenn. 2010, 44, 319–339. [CrossRef]
57. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing, R Core Team:

Vienna, Austria, 2020. Available online: https://www.R-project.org/ (accessed on 8 February 2022).
58. Pebesma, E. Simple features for R: Standardized support for spatial vector data. R J. 2018, 10, 439–446. [CrossRef]
59. Hijmans, R. Raster: Geographic Data Analysis and Modelling, R Package Version 3.3–13. Available online: https://rspatial.org/

raster (accessed on 8 February 2022).
60. Perin, J.; Pitchugin, M.; Hébert, J.; Brostaux, Y.; Lejeune, P.; Ligot, G. SIMREG, a tree-level distance-independent model to simulate

forest dynamics and management from national forest inventory (NFI) data. Ecol. Model. 2021, 440, 109382. [CrossRef]
61. Michez, A.; Huylenbroeck, L.; Bolyn, C.; Latte, N.; Bauwens, S.; Lejeune, P. Can regional aerial images from orthophoto surveys

produce high quality photogrammetric Canopy Height Model ? A single tree approach in Western Europe. Int. J. Appl. Earth Obs.
Geoinf. 2020, 92, 102190. [CrossRef]

62. Hamraz, H.; Contreras, M.A.; Zhang, J. A robust approach for tree segmentation in deciduous forests using small-footprint
airborne LiDAR data. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 532–541. [CrossRef]

63. Grizonnet, M.; Michel, J.; Poughon, V.; Inglada, J.; Savinaud, M.; Cresson, R. Orfeo ToolBox: Open source processing of remote
sensing images. Open Geospat. Data Softw. Stand. 2017, 2, 15. [CrossRef]

64. Packalen, P.; Strunk, J.L.; Pitkänen, J.A.; Temesgen, H.; Maltamo, M. Edge-tree correction for predicting forest inventory attributes
using area-based approach with airborne laser scanning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1274–1280.
[CrossRef]

65. Allaire, J.J.; Chollet, F. Keras: RInterface to Keras. R Package Version 2.3.0.0. 2020. Available online: https://CRAN.R-project.org/
package=keras (accessed on 8 February 2022).

66. Agresti, A. Categorical Data Analysis, 2nd ed.; Wiley: Gainesville, FL, USA, 2002; Volume 35, pp. 583–584. [CrossRef]
67. Garavaglia, S.; Sharma, A.; Hill, M. A smart guide to dummy variables: Four applications and macro. In Proceedings of the

northeast SAS Users Group Conference, Nashville, TN, USA, 22–25 March 1998; Volume 43.
68. Potdar, K.; Pardawala, T.S.; Pai, C.D. A comparative study of categorical variable encoding techniques for neural network

classifiers. Int. J. Comput. Appl. 2017, 175, 7–9. [CrossRef]
69. Sharma, S.; Sharma, S.; Athaiya, A. Activation functions in neural networks. Int. J. Eng. Appl. Sci. Technol. 2020, 4, 310–316.

[CrossRef]
70. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Droupout: A simple way to prevent neural networks

from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.
71. Yoshida, Y.; Okada, M. Data-dependence of plateau phenomenon in learning with neural network—Statistical mechanical

analysis. In Advances in Neural Information Processing Systems; NeurIPS: Vancouver, BC, Canada, 2019; pp. 1722–1730.
72. Reynolds, M.R.; Burk, T.E.; Huang, W.-C. Goodness-of-fit tests and model selection procedures for diameter distribution models.

For. Sci. 1988, 34, 373–399.
73. Li, W.; Guo, Q.; Jakubowski, M.K.; Kelly, M. A new method for segmenting individual trees from the lidar point cloud. Photogramm.

Eng. Remote Sens. 2012, 78, 75–84. [CrossRef]
74. Dalponte, M.; Coomes, D.A. Tree-centric mapping of forest carbon density from airborne laser scanning and hyperspectral data.

Methods Ecol. Evol. 2016, 7, 1236–1245. [CrossRef] [PubMed]
75. Silva, C.A.; Hudak, A.T.; Vierling, L.A.; Loudermilk, E.L.; O’Brien, J.J.; Hiers, J.K.; Jack, S.B.; Gonzalez-Benecke, C.; Lee, H.;

Falkowski, M.J.; et al. Imputation of individual longleaf pine (Pinus palustris mill.) tree attributes from field and LiDAR data. Can.
J. Remote Sens. 2016, 42, 554–573. [CrossRef]

76. Axelsson, A.; Lindberg, E.; Olsson, H. Exploring multispectral ALS data for tree species classification. Remote Sens. 2018, 10, 183.
[CrossRef]

77. Hamraz, H.; Contreras, M.A.; Zhang, J. Forest understory trees can be segmented accurately within sufficiently dense airborne
laser scanning point clouds. Sci. Rep. 2017, 7, 6770. [CrossRef] [PubMed]

78. Qi, C.R.; Su, H.; Mo, K.; Guibas, L. PointNet: Deep learning on point sets for 3D classification and segmentation. In Proceedings
of the 2016 4th International Conference 3D Vision, 3DV 2016, Stanford, CA, USA, 25–28 October 2016; pp. 601–610.

79. Maturana, D.; Scherer, S. VoxNet: A 3D Convolutional Neural Network for real time Object Recognition. In Proceedings of the
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–3 October
2015; pp. 922–928. [CrossRef]

http://doi.org/10.1097/MEG.0b013e3282f198a0
https://pdal.io/
http://doi.org/10.14358/PERS.80.9.863
http://doi.org/10.1016/j.rse.2020.112061
http://doi.org/10.14214/sf.156
https://www.R-project.org/
http://doi.org/10.32614/RJ-2018-009
https://rspatial.org/raster
https://rspatial.org/raster
http://doi.org/10.1016/j.ecolmodel.2020.109382
http://doi.org/10.1016/j.jag.2020.102190
http://doi.org/10.1016/j.jag.2016.07.006
http://doi.org/10.1186/s40965-017-0031-6
http://doi.org/10.1109/JSTARS.2015.2402693
https://CRAN.R-project.org/package=keras
https://CRAN.R-project.org/package=keras
http://doi.org/10.1002/0471249688
http://doi.org/10.5120/ijca2017915495
http://doi.org/10.33564/IJEAST.2020.v04i12.054
http://doi.org/10.14358/PERS.78.1.75
http://doi.org/10.1111/2041-210X.12575
http://www.ncbi.nlm.nih.gov/pubmed/28008347
http://doi.org/10.1080/07038992.2016.1196582
http://doi.org/10.3390/rs10020183
http://doi.org/10.1038/s41598-017-07200-0
http://www.ncbi.nlm.nih.gov/pubmed/28754898
http://doi.org/10.1109/IROS.2015.7353481


Remote Sens. 2022, 14, 1362 21 of 21

80. Hamraz, H.; Contreras, M.A.; Zhang, J. Vertical stratification of forest canopy for segmentation of under-story trees within
small-footprint airborne LiDAR point clouds. ISPRS J. Photogramm. Remote Sens. 2017, 130, 385–392. [CrossRef]

81. Lu, X.; Guo, Q.; Li, W.; Flanagan, J. A bottom-up approach to segment individual deciduous trees using leaf-off lidar point cloud
data. ISPRS J. Photogramm. Remote Sens. 2014, 94, 1–12. [CrossRef]

82. Leão, F.M.; Nascimento, R.G.M.; Emmert, F.; Santos, G.G.A.; Caldeira, N.A.M.; Miranda, I.S. How many trees are necessary to fit
an accurate volume model for the Amazon forest? A site-dependent analysis. For. Ecol. Manag. 2021, 480, 118652.

83. Rana, P.; Vauhkonen, J.; Junttila, V.; Hou, Z.; Gautam, B.; Cawkwell, F.; Tokola, T. Large tree diameter distribution modelling
using sparse airborne laser scanning data in a subtropical forest in Nepal. ISPRS J. Photogramm. Remote Sens. 2017, 134, 86–95.
[CrossRef]

http://doi.org/10.1016/j.isprsjprs.2017.07.001
http://doi.org/10.1016/j.isprsjprs.2014.03.014
http://doi.org/10.1016/j.isprsjprs.2017.10.018

	Introduction 
	Materials and Methods 
	Study Area 
	Forest Management Inventory Plots 
	Independent Plots 
	ALS Data 
	Overall Approach and Method Overview 
	Field Data Pre-Processing 
	FMI Crown Digitalization 
	Tree Detectability Status Assessment 
	Canopy Segmentation and Segment Selection 
	Calculation of Metrics 
	Neural Network Implementation 
	Neural Network Accuracy 
	Robustness Test 

	Results 
	Neural Network Accuracy 
	Robustness Test Using the Independent Dataset 

	Discussion 
	Conclusions 
	Appendix A
	References

