HUMAN MOTION MEASUREMENT METHOD FOR ROBOT PROGRAMMING BY DEMONSTRATION

Authors: Robin Pellois and Olivier Brüls
Aerospace and Mechanical Engineering Department, University of Liège, Liège, Belgium e-mail : robin.pellois@uliege.be, o.bruls@uliege.be

Context: Programming by Demonstration

Programming by demonstration (PbD) [1] aims at making robot programming more intuitive, faster and requiring fewer skills, based on one or several human demonstrations of a task. This work proposes a method to acquire a human demonstration which does not limit human motion and is easy to implement.
In order to guarantee the easiness of use of the method, we opt for IMUs for human motion capture.

Inertial human motion tracking method

According to the arm model, the human hand trajectory ${ }^{H} \mathbf{A D}_{n}$ is estimated from the orientation of each segment (arm, forearm, hand) as

The orientation of each segment i is decomposed as ${ }^{H} R_{\text {in }}={ }^{H} R_{S i 0}{ }^{S i 0} R_{\text {Sin }}{ }^{\text {Sin }} R_{\text {in }}$
A 2-steps initialisation procedure enables to estimate ${ }^{H} R_{S i 0}$ and ${ }^{S i n} R_{1 n}$ (rotation of the arm straight and a static pose) and the transformation ($\left.{ }^{H} R_{R},{ }^{R} \mathbf{A O}\right)$ from human frame H to robot frame R (trajectory imposed by the robot to the operator). The parameters involved in the method are optimized through the minimization of the following function $f\left({ }^{1 n} \mathbf{A B},{ }^{2 n} \mathbf{B C},,{ }^{3 n} \mathbf{C D},{ }^{S 1}{ }_{1},{ }^{S 2}{ }_{R_{2}},{ }^{S 3} R_{3},{ }^{H} R_{S 10},{ }^{H} R_{S 20},{ }^{H} R_{S 30},{ }^{H} R_{R},{ }^{R} \mathbf{A O}\right)=\sum_{k=1}^{N}\left\|{ }^{R} \mathbf{P}_{k}-\left({ }^{R} R_{H}{ }^{H} \mathbf{A} \mathbf{D}_{k}^{*}+{ }^{R} \mathbf{A O}\right)\right\|^{2}$ ${ }^{H} \mathbf{A D}_{k}^{*}=H^{H} R_{1 k}^{*}{ }^{1 k} \mathbf{A B}+{ }^{H} R_{2 k}^{*}{ }^{2 k} \mathbf{B C}+{ }^{H} R_{3 k}^{*}{ }^{3 k} \mathbf{k} \mathbf{C D}$

The rotation ${ }^{S i 0} R_{\text {Sin }}$ matrix is computed from inertial sensor data. An original heading reset enables to limit drift from gyroscope integration arround gravity direction.

Results: IMU ORIENTATION ESTIMATION

The method for IMU orientation estimation is evaluated on a robotic arm and compared to 4 others algorithms. The orientation of the end-effector, measured by encoders, is used as reference.

$\begin{aligned} & \frac{0}{2} \\ & \stackrel{y}{0} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	$\begin{gathered} \hline \text { Xsens } \\ \text { algorithm } \\ {[2]} \end{gathered}$	Mahony's algorithm [3]	Madgwick's algorithm [4]	Fourati's algorithm [5]	algorithm without heading reset	algorithm with heading reset
1	34.8 ± 15.9	23.3 ± 9.2	24.8 ± 10.0	24.8 ± 10.0	25.6 ± 10.3	2.3 ± 1.5
2	25.4 ± 13.9	118.4 ± 45.7	139.1 ± 42.1	65.3 ± 36.8	64.6 ± 36.5	8.4 ± 8.0
3	12.5 ± 6.3	38.4 ± 15.3	154.9 ± 4.5	33.3 ± 16.3	34.2 ± 16.7	2.0 ± 1.5

ReSULTS: INERTIAL MOTION TRACKING

The inertial measurement method is evaluated using Xsens IMU sensors [2]. A Sawyer robot imposes different trajectories to the operator. These trajectories are measured by the robot encoders and used as reference.

CORRECTING TRAJECTORY WITH VISION

As a first step, the correction of the trajectory is adressed in a pick and place context. The method is based on matching positions of interest (POIs) \mathscr{O} and \mathscr{H}, from vision-based estimation of object positions and inertial-based hand trajectory respectively.
1 - Detecting POIs based on the clustering algorithm DBSCAN.
2 - Pairing POIs by eliminating uncessary POIs based on point set registration by kernel correlation and then associating POIs based on their temporal parts.
3 - Correcting trajectory by applying a global transformation (rotation + translation) and then a local correction close to the POIs to the hand trajectory.

Results: application of The method

The complete method is evaluated through several pick and place tasks with 30 mm side cubes with an ARuCo marker on a face. The task is considered a success if the cubes, at their final states, are covering a part of their targeted position.

References

[1] A. Billard, S. Calinon, R. Dillmann, and S. Schaal, "Robot Programing by Demonstration," in Springer Handbook of Robotics, pp. 1371-1394, Springer, 2008.
[2] M. Paulich, M. Schepers, N. Rudigkeit, and G. Bellusci, "Xsens MTw Awinda: Miniature wireless inertial-magnetic motion tracker for highly accurate 3D kinematic applications," Whitepaper, 2013.
[3] R. Mahony, T. Hamel, and J.-M. Pflimlin, "Non-linear complementary filters on the special orthogonal group," IEEE Transactions on Automatic Control, vol. 53, no. 5, pp. 1203-1218, 2008.

 no. 1, pp. 149-157, 2014.

ACKNOWLEDGEMENTS

This work was supported by the Interreg V program of the Greater Region within the Robotix Academy project.

