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Objectives: The effects of ultra-distance on cardiac remodeling and fibrosis are unclear.

Moreover, there are no data reporting the kinetics of cardiac alterations throughout the

event and during recovery. Our aim was to investigate the kinetics of biological markers

including new cardiac fibrosis biomarkers suppression of tumorigenicity 2 (ST2) and

galectin-3 (Gal-3) during and after an extreme mountain ultramarathon.

Methods: Fifty experienced runners participating in one of the most challenging

mountain ultramarathons (330 km, D+ 25,000m) were enrolled in our study. Blood

samples were collected at four time points: before (Pre-), at 148 km (Mid-), at the finish

line (Post-), and 3 days after the recovery period (Recov-).

Results: The cardiac fibrosis biomarkers (ST2 and Gal-3) increased from Pre- to

Mid-. During the second half, ST2 remained higher than pre-values as opposed to Gal-3.

Necrosis, ischemia, and myocyte injury biomarkers increased until Mid- then decreased

but remained higher at Recov- than Pre-values. Oxidative stress appeared at Mid-. Lipid

peroxides remained higher at Recov- compared to Pre-. The maximal value in most of

these biomarkers was observed at Mid- and not at Post-.

Conclusions: The present study supports biphasic kinetics of cardiac fibrosis

biomarkers, with a relative recovery during the second half of the event that seems

specific to this extreme event. Overall, performing at such an extreme ultramarathon

seems less deleterious for the heart than shorter events.

Keywords: cardiac biomarker, cardiac fibrosis markers, ultramarathon running, ST2, galectin-3

INTRODUCTION

Cardiovascular incidents during physical activity known as “sudden cardiac death” (SCD) (1) are
rare but can be associated with right ventricular dysfunction, arrhythmia, or dysplasia (2, 3). Blood
biochemical markers play a particular role in the diagnosis of several cardiovascular diseases and
the stratification of risk and treatment (4). It is assumed that if at rest under normal conditions, the
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values of these biomarkers are higher than the cut-off limits; then,
the subject presents an acute risk of developing cardiovascular
disease (4).

A non-optimal level of physical activity is among the SCD
risk factors for athletes. There is vigorous debate on a potential
ceiling, where above a maximal volume of exercise, there is
an increased incidence of SCD (5, 6). One way to explore
how extreme exercise loads may affect SCD is to assess ultra-
endurance athletes (7). Indeed, in recent years, ultra-endurance
events have become increasingly popular (8), and so, there is
an emerging clinical urgency to clarify any relationship between
exercise volume and SCD.

Several biomarkers such as cardiac troponins, myoglobin,
creatine kinase, and natriuretic peptides have been identified
as markers of cardiomyocyte damage and stretch (9). Mild
to moderate elevations in these markers have been reported
following prolonged running exercises (10). It has been reported
in extreme mountain ultramarathons (MUM) that athletes
experienced heart rate adaptation and myocardial strain in
the pre- to mid-race segment, attributable to an increase
in extracellular water and subsequent plasma volume due to
inflammation (11, 12). Of note, the observed cardiac changes
were resolved post-race (11, 12). Less trained athletes might
exhibit a higher cardiac risk compared to well-trained runners
(13–15). It has been shown that in the long term, some endurance
athletes have an increased prevalence of coronary artery disease,
myocardial fibrosis, and arrhythmias (16). Moreover, it is
unexplored if remodeling and cardiac fibrosis occur during
MUM, despite myocardial fibrosis possibly being the cause
of arrhythmia and consequently, of sudden death (17) in
endurance athletes.

For this purpose, from a biochemical point of view,
two emergent biomarkers are of high interest: suppression
of tumorigenicity 2 (ST2) and galectin-3 (Gal-3) which are
recognized as remodeling and cardiac fibrosis markers (18, 19).

The aim of the present study was therefore to measure the
kinetics of most of the available biological markers including the
new cardiac fibrosis biomarkers ST2 and Gal-3 during and after
an extreme MUM.

MATERIALS AND METHODS

The Tor des Geants R© (TDG) is a 330 km long MUM, with
considerable positive/negative elevation changes (+24,000m) in
the Valley of Aosta (Italy). It is considered one of the most
difficult MUM in the world. The altitude along the course ranges
from 322 to 3,300m, including 25 mountain passes over 2,000m.
The maximum time allowed to complete the race is 150 h and the
best performance was 71 h 49 min.

The subjects were registered runners recruited in the present
study by the race organizers through the mail and public
announcements. Informed written consent was provided by each
participant. The experimental design of the study was approved
by the local ethical committee of the Azienda Regionale Sanitaria
USL della Valle d’Aosta (n◦900-18/08/2014).

The exercise intensity was assessed by calculating the
flat-equivalent speed calculated with the distance as follows (20):

flat-equivalent distance = distance (km) + positive elevation
change (m)/100.

Blood Biomarkers Collection and Analysis
The experimental design was a longitudinal study with repeated
assessments at four key time points before, during, and after
the race. The first session (Pre-) was performed 4 days prior to
the race; the second (Mid-), was during the race at mid-point
(148.7 km, D+ 9,270m). At the end of the race, the athletes were
evaluated for a third time (Post-) in <1 h after their arrival. The
last session was finally performed after 72 h of recovery (Recov-).
Bodyweight (kg) and body temperature (◦C) were recorded at
each session. Body mass index (BMI) was calculated.

Blood samples were collected at each session within 10
mins after arrival at each key point. Samples were drawn from
an antecubital vein into a dry, heparinized, and EDTA tube
according to the analysis to be performed. Both tubes were
immediately centrifuged for 10 mins (3,500 RPM). Since it was
not possible to carry out the analyses on the same day by point-of-
care technologies, the plasma and serum were frozen at−80◦C.

The hematology parameters were directly analyzed by a
pocH-100iTM analyzer (Sysmex, Nordstedt, Germany). Cobas
8000 and Cobas 6000 (Roche Diagnostics, Manheim, Germany)
were used to perform serial determinations for creatine
kinase (CK), creatine kinase muscle and brain (MB) isoform
(CKMB), troponin T high sensitive (hsTnT), N-terminal pro-
hormone of natriuretic peptides (NT-proBNP), myoglobin
(MYO), heart-fatty acid-binding protein (HFABP) (Randox,
Crumlin, United Kingdom), C-reactive protein high sensitive
(hsCRP), electrolytes [sodium (Na), potassium (K), chloride
(Cl)], total proteins (PT), renal biomarkers [serum creatinine
(CR), urea (URS), and urinary creatine (CRU)], and oxidized and
reduced glutathione (Bioxytech, Burlingame, CA, United States)
(GOX and GSH). For Gal-3 measurements, we used an
enzyme-linked fluorescent assay (Biomerieux, Marcy l’Etoile,
France). Soluble ST2 was measured using a high sensitivity
sandwich monoclonal immunoassay (Presage ST2 Assay Critical
Diagnostic, San Diego, CA, United States). Lipid peroxides
(POXL) and myeloperoxydase (MPO) were measured on Etimax
(Diasorin, Saluggia, Itlay) with (Mercodia, Uppsala, Sweden)
ELISA kit.

Statistical Analysis
Data are presented as mean ± SD at each sampling time for
biomarkers. Some parameters were log-transformed to normalize
their distribution. The generalized linear mixed model was
used to test the level of each biomarker over time. Pairwise
comparisons between time points were done with the Scheffe
post-hoc test. The deltas were tested by the paired Student t-
test. Results were considered significant at the 5% critical level
(p < 0.05). Data analysis was carried out with Statistical Analysis
System (version 9.4 for Windows).

RESULTS

Baseline Parameters
A total of 50 runners participated in the Pre- measurements.
None of the subjects had clinical or anamnestic evidence of
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TABLE 1 | Demographic and training profile data.

Pre Mid Post Recov

N 50 32 32 29

Sex (male/female) 46/4 31/1 31/1 29/0

Age (years) 43.0 ± 9.1 43 ± 8.6 43 ± 8.6 43.1 ± 8.3

Height (m) 1.75 ± 6.20 1.75 ± 6.40 1.75 ± 6.40 1.75 ± 5.60

Weight (kg) 72.2 ± 8.0 71.7 ± 8.2 71.7 ± 8.2 70.8 ± 7.3

BMI (kg m−2 ) 23.6 ± 2.0 23.4 ± 2.0 23.4 ± 2.0 23.1 ± 2.0

Body temperature (◦C) 36.2 ± 0.9 37.3 ± 0.5 37.3 ± 0.5 37.1 ± 0.7

Pain 4.1 ± 2.9 4.1 ± 2.9 1.08 ± 1.7

Training (hours of running)/week (n) 3.9 ± 1.7 3.9 ± 1.5 3.9 ± 1.5 4.0 ± 1.4

Running experience (years) 14.2 ± 10.4 13.5 ± 10.5 13.5 ± 10.5 13.1 ± 9.8

Experience in ultra-marathons (years) 5.3 ± 3.6 5.5 ± 3.6 5.5 ± 3.6 5.3 ± 3.6

Previous ultra-marathons (years) 13.0 ± 10.0 11.0 ± 9.0 11.0 ± 9.0 11.5 ± 9.0

cardiac diseases or hypertension. Nineteen runners withdrew
from the race due to different health problems such as diarrhea,
fever, or traumatic injuries and were, therefore, not included in
the analysis. Twenty-seven runners participated in all the blood-
drawn tests. The characteristics of these subjects are displayed
in Table 1. The mean finishing time of our subjects was 126 h
01min 44 s ± 14 h 05min 21 s. The flat-equivalent speed was
5.7 ± 0.9 km/h for the first segment and 3.7 ± 0.4 km/h for the
second half, corresponding to a 33± 8% difference.

Biological Analysis
We checked the impact of the hematocrit (HCT) on all the
biomarkers and the ratio was maximum between Pre- and
Post- of 1.13. This means that there is only a 13% difference
between results corrected or not by hematocrit. All biological
data are shown in Table 2. Pre-levels were within the reference
values range, i.e., considered as normal for a healthy population.
Significant increases were observed especially at Mid.

Cardiac Fibrosis Biomarkers
Galectin 3 (Gal-3) increased by 39 ± 25% from Pre- to Mid-,
then increased slowly to Post- and returned to baseline values at
Recov. As opposed to Gal-3, ST2 increased from more than 270
± 230% from Pre- to Mid- but decreased from Mid- to Post- but
remained elevated at Recov- (27± 46% higher than Pre-values).

Necrosis-Ischemia Biomarkers
As expected, we found a significant increase for hsTnT (165 ±

136%), HFABP (1,815 ± 2,245%), CK (8,760 ± 9,323%), CK-
MB (3,890 ± 3,982%), and MYO (5,203 ± 6,128%) from Pre-
to Mid-. During the second half of the race, these biomarkers
decreased fromMid- to Post- but remained higher at Recov- than
the baselines values: hsTnT (40± 54%), HFABP (1.0± 1.3%), CK
(493± 501%), CK-MB (418± 313%), and MYO (231± 181%).

Myocytes-Stress Injury Biomarkers
NT-proBNP increased significantly, with a rise of 1,003 ± 847%
between Pre- and Mid-, remained at the same level up to Post-
, but decreased (−64 ± 32%) during the recovery (109 ± 134%
higher than Pre-).

Oxidative Stress Biomarkers
Reduced glutathione decreased by 8.1 ± 9.7% between Pre-
and Mid- and stayed stable thereafter. The ratio of total
glutathione/oxidized glutathione decreased significantly by 126
± 412% between Pre- andMid- before an increase of 186± 437%
at Post- and finally came back at Recov- to the same values at
Mid-. MPO remained stable at Mid- before decreasing. POXL
increased slowly from Pre- at 26.8 ± 68.0% to be maximum at
Recov- and remained higher at 182± 122% than at Pre-.

Inflammation
C-reactive protein high sensitive (hsCRP) increased by 2,717 ±

1,980% from Pre- to Mid-, remained high between Mid- and
Post- and then decreased from Post- to Recov- but remained
higher than the baseline values (795 ± 840% higher than the
Pre- values). White blood cells increased from Pre- to Mid-
(80 ± 54%) but then decreased and returned to baseline values
at Recov-.

Renal Functions Biomarkers
Plasmatic CR and URS (urea) levels increased by 24 ± 14% and
by 89 ± 50%, respectively, during the Pre- to Mid-phase before
decreasing and returning to baseline values at Recov-.

DISCUSSION

Over the last decade, there is an increasing interest in the
cardiac and muscular disorders induced by ultra-endurance
events. The novelty of the present study is the display of the
changes of many biomarkers not only after the race (Post-) but
during (Mid-) and after 3 days of recovery (Recov-), which add
great value to the understanding of the underlying mechanisms
because the kinetics of release is different for each biomarker. In
previous studies, sample withdrawal was limited to immediate
post-race or, at most, within 24 h post-exercise, most likely
because of practical difficulties in the sample collection for longer
recovery periods (21). Some studies have taken blood 24-, 48-
, or sometimes 72 h or more after the event but concentrated
their discussion on the increase observed just after the race and
did not discuss that this was related to after the acute recovery
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TABLE 2 | Blood biomarker concentrations (mean ± SD) at different time points and the p-value in the Tors de Geants (TDG) runners.

Time points P-values

References

values

Pre- Mid- Post- Recov- P-value P-value P-value P-value

Variable (units) Mean ± SD Mean ± SD Mean ± SD Mean ± SD Overall TPre-TMid TMid-Tpost TPost-Trecov

Remodelling-fibrosis

ST2 (ng/ml) <35 28 ± 15.4 78.9 ± 40.7 61 ± 32.5 28.9 ± 11.4 <0.0001 <0.0001* 0.047** <0.0001**

Galectine-3 (ng/ml) <17.9 9 ± 1.8 11 ± 2.3 10.1 ± 2.1 9.1 ± 1.5 <0.0001 <0.0001* 0.012** 0.0015**

Ischemia-necrosis

Creatine kinase (UI/L) 30–175 135 ± 72.1 9,016 ± 9,834 3,276 ± 3,353 675 ± 530 <0.0001 <0.0001* <0.0001** <0.0001**

Creatine kinase MB (µg/L) 0–6 3.1 ± 2.2 84.7 ± 63.6 45.6 ± 33.8 13.1 ± 7.2 <0.0001 <0.0001* <0.0001** <0.0001**

CKMB/CK (µg/100UI) 0–5 2.3 ± 0.8 1.2 ± 0.6 2 ± 1.5 2.4 ± 1.3 <0.0001 <0.0001** <0.0001* 0.018*

Heart fatty acid binding protein (ng/ml) <3.55 6.8 ± 5.2 76.2 ± 75.7 32.9 ± 24.3 8.6 ± 4.3 <0.0001 <0.0001* 0.0057** <0.0001**

Myoglobin (µg/L) 28–72 28 ± 8.6 1,207 ± 1,287 441 ± 384 80.1 ± 43.3 <0.0001 <0.0001* <0.0001** <0.0001**

hsTnT (ng/L) <14 5.5 ± 1.1 12.7 ± 7 9.7 ± 4.3 6.9 ± 2 <0.0001 <0.0001* 0.069 0.0032**

Copeptine (pmol/L) <12 5.9 ± 2.9 20.7 ± 12.2 13.7 ± 8.6 7.9 ± 3.8 <0.0001 <0.0001* 0.0029** 0.0004**

Inflammation

White blood cell (103/mm3 ) 3.6–15 7 ± 1.8 10.5 ± 2.2 8.1 ± 2 6.4 ± 1.4 <0.0001 <0.0001* <0.0001** <0.0001**

Total protein (g/L) 62–78 72.7 ± 3.6 68.1 ± 4 65.7 ± 4.7 66.2 ± 4.0 <0.0001 <0.0001** 0.019 0.78

CRP (mg/L) 0–6 1.2 ± 1.9 18.2 ± 12.3 13.7 ± 12.9 5.7 ± 4.3 <0.0001 <0.0001* 0.062 <0.0001**

Oxidative stress

Oxidized glutathion (µmol/L) <10 1.6 ± 1.2 6.2 ± 8.4 3.2 ± 8 6.6 ± 14.1 0.016 0.064 0.22 0.34

Reduced glutathion (µmol/L) 717–1110 811 ± 105 742 ± 80.8 745 ± 89.3 746 ± 106 0.0025 0.015** 0.99 1

Ratio total glutathion/oxidized glutathion 111–747 628 ± 221 443 ± 294 547 ± 231 446 ± 286 0.0077 0.028** 0.39 0.47

Myeloperoxdase (ng/ml) <55 34.8 ± 16.8 35.5 ± 17.1 30.9 ± 15.2 31.3 ± 13.8 0.0005 0.96 0.007** 0.99

Lipid peroxides (µmol/L) <432 273 ± 155 311 ± 175 528 ± 217 638 ± 184 <0.0001 0.79 <0.0001* 0.015*

Renal function

Creatinine (mg/dl) 0.72–1.18 1 ± 0.1 1.1 ± 0.1 1 ± 0.1 0.9 ± 0.1 <0.0001 0.002* 0.0055** 0.0004**

Urinary creatinine (g/L) 0.24–2.55 1.3 ± 0.8 1.9 ± 0.8 1.7 ± 0.7 1 ± 0.5 <0.0001 0.015* 0.72 0.002**

Uric acid (mg/L) <70 5.2 ± 0.9 5.8 ± 1.3 5.4 ± 1.5 4.3 ± 0.8 <0.0001 0.014* 0.11 <0.0001**

Urea (g/L) 16–48 36.4 ± 7.9 66.8 ± 19.1 49.5 ± 13.3 35.1 ± 7.4 <0.0001 <0.0001* <0.0001** <0.0001**

Myocyte-stress biomarkers

NT-proBNP (ng/L) <103 50.3 ± 1.4 472 ± 383 396 ± 374 95.5 ± 59.4 <0.0001 <0.0001* 0.41 <0.0001**

Ions

Potassium (mmol/L) 3.5–5.1 4.1 ± 0.4 3.7 ± 0.3 3.6 ± 0.5 3.9 ± 0.4 <0.0001 0.0008** 0.84 0.031*

Sodium (mmol/L) 135–145 141 ± 1.8 141 ± 2.6 140 ± 3.2 141 ± 1.9 0.32 0.99 0.87 0.33

Chlore (mmol/L) 98–107 101 ± 1.7 103 ± 2.8 103 ± 2.9 104 ± 2.9 <0.0001 0.0009* 0.99 0.50

*Significative increase.
**Significative decrease.

phase (15, 22–24). Moreover, while most of the published studies
have focused principally on the release of cTroponins and
natriuretic peptides (25–27), we have included an analysis of
two emerging biomarkers, ST2 and Gal-3, known as remodeling
and cardiac fibrosis markers (15, 18). Overall, we observed a
transient biphasic increase in different cardiac and inflammatory
biomarkers, however, the increase was often lower than that
observed for shorter races.

The highest exercise intensity exerted by the athletes was
during the first segment of the race which may have influenced
the initial increase in muscle, inflammatory, and cardiac
biomarkers measured at Mid-. After the mid-point, lower
susceptibility to skeletal muscle damage because of repeated
bouts of the same exercise (28) may be an explanation for the
increasing level of most biomarkers that we tested. Furthermore,
the athletes ran at a slower pace after Mid- most likely because

of the accumulation of fatigue. After the recovery period,
remodeling and fibrosis, ischemia-necrosis and inflammatory
biomarkers, and the huge rise observed at Mid-, had a trend
to return to the baseline values with a rate according to their
half-life. The 33% lower intensity exerted by the athletes during
the second half of the race, is in line with previous results
(6.2 ± 2.1 and 4.5 ± 0.4 km/h) reported for the same event in
Saugy et al. (20) and indicates that most of the participants were
only walking slowly during the final part. A similar decrease
in intensity was also shown by the changes in vertical speed
(m/h) measured during the uphill portion of the mountain passes
throughout the race (29). The biphasic responses reported in the
present study were not limited to biomarkers since we already
showed a similar biphasic time course (i.e., larger at mid-race
than at the end) for cardiac fatigue (11) or alterations in postural
control (30).
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We believe that two mechanisms (i.e., the large decrease
in exercise intensity and the large increase in extracellular
water) are specific to this extreme MUM and may explain the
biphasic pattern in the physiological responses tested. Of interest
is that multi-stage ultra-endurance road running events, such
as the TransEurope Footrace (4,500 km in 64 days) induce a
relatively stable speed across stages and consequently different
kinetics of biomarkers than in the present MUM (31). Something
very interesting to highlight is the similar response of the
different biomarkers despite their different molecular size, which
commonly influences these responses during exercise (21, 32).

Cardiac Remodeling-Fibrosis Biomarkers
Studies have focused on the main fibrosis cardiac biomarkers in
relation to endurance events (15, 25, 33–35). In the present study,
we included two emerging biomarkers, ST2 and Gal-3. Notably,
we observed a large and transient change for ST2, while there was
a smaller increase in Gal-3.

ST2
During an extreme running event, even in trained athletes, the
ST2 complex likely reflects a high degree of stress, i.e., the highest
concentration of 163 ng/ml is observed at Post- and returns to
baseline values during the recovery.

If ST2 remains elevated, further examination is recommended
(possibly due to exacerbating underlying vulnerability, such
as genetic cardiomyopathies, subclinical cardiac ischemia) to
determine the origin of this sustained elevation (36, 37).

Since every 10 ng/ml increase in ST2 was associated with
a ∼20% increase in cardiovascular risk (38), the increase of
the ST2 during MUM could reflect, if repeated regularly, the
remodeling and development of cardiac fibrosis, as shown
previously for increased stress or injury to the myocardium due
to acute myocardial infarction, uncontrolled hypertension, and
other forms of myocyte damage. Indeed, replacement fibrosis
appears at sites of previous cardiomyocyte necrosis but not
without adverse functional consequences such as increased
vulnerability for arrhythmias, impact on systolic and diastolic
function (39). Fibrosis is a fundamental component of the
adverse structural remodeling of the myocardium present in
the failing heart (39). It is well known that responses to acute
and chronic damage can involve recruitment of immune cells
to the myocardium; production of cell signaling proteins from
mast cells and macrophages, resulting in activation of fibroblasts
and myofibroblasts; and the deposition of procollagen into
the extracellular matrix, which is irreversibly cross-linked to
collagen-generating cardiac fibrosis (38, 40).

Gal-3
Reportedly, Gal-3 is not a dynamic biomarker that could explain
different kinetics, when compared to ST2 (18). However, previous
authors have shown plasma Gal-3 is substantially elevated in
endurance athletes after running although no correlation with
cardiac function or myocardial fibrosis (25). Contradicting these
findings, other studies have shown that increased Gal-3 was
associated with biochemical abnormalities during high-intensity
endurance exercise, which may reflect adverse consequences on

cardiac structure (33). It is possible that the discordance rise is
a consequence of the training status of the athletes, a kind of
physiological adaptation, in line with one of our previous studies
with marathon runners (41).

Note that despite the emergence of these markers as indicators
of fibrosis and cardiac remodeling, they have not been associated
with clinical cardiac fibrosis reported with MRI in athletes.

Other Biomarkers
A novel finding is that most of these biomarkers (see Table 2)
reached their maximal values at Mid-, displaying a biphasic
pattern that is similar to what has been previously reported
for cardiac fatigue (30) and postural control (30). This biphasic
response seems specific to this type of extreme MUM as the
pattern is not for shorter endurance events (e.g., marathon,
triathlon). This is most likely because it takes a certain amount of
time for the release of the biomarkers into the blood to levels that
can be detected. During the shorter distance races, the maximum
release may not be observable at the mid-point of the race.

Many mechanisms may explain the initial rise of biomarkers
(Pre- to Mid-) including myocardial damage due to mechanical
stretch or increased membrane permeability, leading to
the increase in troponins, CK, HFABP. Moreover, hypoxia
activates the neuro-endocrine system, leading to hemodynamic
modification (overload and/or impaired left ventricular
relaxation) and consequently to the over-expression of NT-
proBNP (33). Similar increases to that observed in the initial
(Pre- to Mid-) section of the present MUM have been observed
in marathons for the NT-proBNP (42–45). Moreover, it is
possible that a physiological remodeling of the myocardium as
an adaptation to exercise could explain why athletes have bigger
hearts with smaller troponin increase post-exercise (38–40).

The decrease or plateau in most of these biomarkers
during the second half (Mid- to Post-) of the MUM, despite
accumulating fatigue, is likely caused by the low exercise
intensity shown by the running velocity (11), consequence of
the combination of extreme distance and sleep deprivation. The
mean intensity during the TDG was measured as ∼50 % of
VO2max (46), much lower than the 65–85%measured on shorter
distances such as the marathon. Moreover, the intensity during
this MUM was estimated to be 20–25% lower in the second half
than in the first (20). This leads to specific hemodynamic changes,
specific kinetics in HR and to transient cardiac dysfunction that
was observed at Mid- but not at Post- (11).

For the inflammatory responses, we observed that the highest
increases in serum hsCRP concentration coincided with the
highest levels of serum protein observed at Mid- followed by
a slow decrease. For the estimation of the renal function, Cr,
URS, and GFR were used. We observed only increases of Cr
and URS between Pre- and Mid- but these were not clinically
significant as to describe a renal failure. The concentration
of Cr did not meet the risk criteria for acute kidney injury,
as previously described over a shorter (200 km) MUM (47).
Muscle damage rarely causes adverse consequences for athletes
during a MUM. However, the release of excessive amounts of
intramuscular proteins into circulation can negatively affect renal
function mainly in conditions of heat, dehydration, body mass
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decrease, or use of non-steroidal anti-inflammatory drugs during
the race (48, 49). The impact of the hydration was negligible as
the maximal value of the HCT ratio between Pre- and the other
times was 1.13, so it was not clinically significant according to the
biological variation of the different biomarkers.

Oxidative Stress Biomarkers
The available scientific literature describes the effects of high-
intensity exercise on the increase of oxygen consumption and
production of its reactive forms (50–52). In the current study, the
most significant result for oxidative stress is the increase in lipid
peroxide. Literature is scarce about lipid peroxidation in ultra-
endurance sports but oxidation of HDL and decrease of oxidation
of LDL have been documented (53). The POXL increase could
be explained by the increase of oxidized HDL (53), induced by
exercise, accelerating the transport of lipid oxidation products
by HDL (53, 54). For the other stress biomarkers, we did not
observe any significant change, suggesting that the athletes had
training-induced adaptation (55).

Individual Approach
The individual approach is very interesting. Indeed, if we have
a closer look at Mid- for different subjects, we can observe that
one subject showed a CK concentration of 34,874 UI/L with a
CKMB concentration of 228 UI/L and an NT-proBNP of very
high concentration 2,202 ng/L. Three other subjects also had very
high concentrations of CK >23,000 UI/L with high CKMB also
correlated with an NT-proBNP around 1,200 ng/L. Of note, it
was not the same subject who showed the high hsTnT. So, it
appears that there is no link between CK increase and TnThs. In
this subject, only one subject had a CKMB/CK ratio >4% with
a CK of 961 UI/L and a CKMB of 31 UI/L suggestive of cardiac
injury. However, his hsTnT concentration of 8 ng/L was not very
elevated. Interestingly, ST2 and NT-proBNP of this subject were
low: 33 ng/ml and 87 ng/L, respectively.

This means that different mechanisms are involved. The
subjects with high ST2 and NT-proBNP concentrations probably
suffered from a myocyte stress phenomenon and perhaps the
onset of cardiac remodeling, whereas the subject with the
highest troponin concentration probably suffered from at least
transient ischemia.

The highest increase observed for ST2 was associated with a
high level of CK but was not observed for the subject showing
the highest increase of CK and NT-proBNP. ST2 increase seems
independent of these other cardiac damage markers. Finally,
we observed a link between increased CK and hsCRP. Indeed,
the highest hsCRP increase was observed for the subjects with
the highest increase of CK, proof of muscle damage, and
subsequent inflammation.

Furthermore, there might be many different factors that
influence the marked variation among individuals in the release
of exercise-associated cardiac biomarkers (14, 56–58). Keep in
mind that analytical variation remained relatively moderate
as we group measured all the samples. However, one could
not eliminate the inevitable biological variation, which must
be considered for the interpretation of results. We observed
high inter-subject variability in all biochemical factors despite
similar mean age and BMI. The relationship between exercise,

damage/adaptation, and biomarker fluctuation is very complex,
due to a number of variables involved, including the type of
sport practiced, intensity, duration of exercise, and training
(59). However, our results are strengthened by the homogeneity
between subjects with similar training loads and running
experience. In the present study, each participant was his own
control to reduce the bias.

A limitation of the study is that Mid-point does not coincide
with the maximum value of one of the markers, such as troponin.
It was impossible to draw blood more often and therefore the
peak may have occurred earlier during the race. This may explain
why the values were lower than those observed in marathons, for
example. Another explanation would be the slower pace achieved
by the athletes, due to themuch longer distance of theMUM (60).

CONCLUSIONS

The clinical significance of changes in cardiac biomarkers is
debated. By investigating the kinetics of these biomarkers during
an extreme MUM known to induce larger cardiac fatigue during
the first half than the second half of the event, one may report
their kinetics and test their significance. Our conclusions support
the biphasic kinetics (i.e., most of the cardiac biomarkers being
higher at Mid- than at Post-) that seemed specific to this type
of event. Of importance is that the ST2 and Gal-3 (markers of
fibrosis and cardiac remodeling) changes are in line with the
assumption that MUM may be less deleterious than shorter and
more intense endurance events. In further studies, these markers
of cardiac fibrosis may be used to highlight the risk to develop
myocardial fibrosis (already described in endurance athletes) and
correlated to MRI observations in order to predict myocardial
fibrosis development.
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