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Abstract

Accurate electromagnetic modeling of the head of a subject is of main interest in the fields of source reconstruction
and brain stimulation. Those processes rely heavily on the quality of the model and, even though the geometry of
the tissues can be extracted from magnetic resonance images (MRI) or computed tomography (CT), their physical
properties such as the electrical conductivity are difficult to measure with non intrusive techniques. In this paper,
we propose a tool to assess the uncertainty in the model parameters, the tissue conductivity, as well as compute
a parametric forward models for electroencephalography (EEG) and transcranial direct current stimulation (tDCS)
current distribution.

1 Introduction

Accurate electromagnetic modeling of the head is of
main interest for electrophysiological source reconstruc-
tion techniques (EEG/MEG) and brain stimulation
(tDCS/tMS). Such modeling must capture both the spa-
tial distribution of the tissues and their physical proper-
ties like their electrical conductivity. The former can be
extracted from different anatomical imaging techniques as
magnetic resonance imaging (MRI) and computed tomog-
raphy (CT) but the latter is very difficult to measure in
vivo on a subject basis, even if some properties can be de-
rived from specific MRI sequences (Tuch et al., 2001; Wu
et al., 2018).

Anatomically realistic models must therefore rely on
values of physical parameters reported in the literature.
The electrical conductivity of biological tissues have been
studied since the last century (Burger and Milaan, 1943;
Geddes and Baker, 1967; Gabriel et al., 1996a,b,c; Latikka
et al., 2001; Goncalves et al., 2003) and new methods are
still published to measure them accurately for each sub-
ject (Akalin Acar et al., 2016). The reported values have
been shown to vary both inter- and intra-subject due to
temperature, health status, age, or depending on the ac-
quisition method and environment, e.g. in vivo vs. ex vivo
(McCann et al., 2019).

Due to the variability in the published values, the in-
fluence of the chosen parameters and geometric models
on the results of the simulations have been studied for
the past decades and shown to induce erroneous electric
field and potential estimations (Haueisen et al., 1995, 1997;
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Vallaghe and Clerc, 2009; Jochmann et al., 2011; Montes-
Restrepo et al., 2014; Cho et al., 2015; Akalin Acar and
Makeig, 2013; Wolters et al., 2006; Vorwerk et al., 2019;
Saturnino et al., 2019). Errors in the localisation of the
reconstructed dipoles of up to 20 mm have been reported
for basal brain locations (Lanfer et al., 2012; Akalin Acar
and Makeig, 2013). Indeed, inaccuracies on the physical
parameters directly result in errors in the forward mod-
els, and thus in the reconstructed sources localization or
current flow.

In order to mitigate the variability in the results, differ-
ent models for the skull have been proposed (Sadleir and
Argibay, 2007; Dannhauer et al., 2011; Lanfer et al., 2012;
Montes-Restrepo et al., 2014) since it acts as an electrical
insulator, in EEG and tDCS, due to its low conductiv-
ity compared to the other tissues. While it is generally
modeled as a single compartment, partly due to the fact
that further segmenting it into spongy and compact bone
is still not included in most of automated segmentation
pipelines, models differentiating these two compartments
have recently been proposed (Puonti et al., 2020; Taberna
et al., 2021). Conductivity tensors have also been consid-
ered where the radial and tangential conductivity differ
(Fuchs et al., 2007).

The same approach applied to white matter lead to dif-
ferent models of its anisotropy which have been first cor-
related with the water self diffusion tensor derived from
diffusion weighted MR images (DWI) (Tuch et al., 2001).
Later, the equilibrium, volume fraction and electrochem-
ical models have been proposed (Wu et al., 2018). The
influence of such anisotropy on EEG forward and inverse
problems have also been studied (Güllmar et al., 2010;
Bashar et al., 2010). Conductivity tensor imaging is still
an open topic with promising advances (Ziegler et al.,
2014; Sajib et al., 2016; Katoch et al., 2019).

In the past, sensitivity analysis have been mainly con-
ducted as the final goal of the studies. However, quanti-

1

ar
X

iv
:2

10
3.

08
16

4v
2 

 [
ph

ys
ic

s.
m

ed
-p

h]
  1

4 
Fe

b 
20

22

https://orcid.org/0000-0001-5549-1861
https://orcid.org/0000-0001-9970-358X
https://orcid.org/0000-0002-4990-425X


fying uncertainty in individual models could help better
understand the observed inter-subject variability in brain
stimulation and source reconstruction in broader studies.
This is why we introduce shamo, a Python open source
package1 dedicated to stochastic electromagnetic model-
ing of the head and sensitivity analysis of the results.

This toolbox aims at providing a unique solution for
electromagnetic head modeling in both source reconstruc-
tion and brain stimulation problems. While tools already
exist for each of these fields separately, for example Brain-
storm (Tadel et al., 2011) or MNE (Gramfort et al., 2013)
for EEG and SimNIBS (Thielscher et al., 2015) or ROAST
(Huang et al., 2019) for tDCS to only name a few, shamo
offers an integrated solution. Moreover shamo provides a
single, easily extendable, API to perform mesh generation,
simulation and sensitivity analysis.

To highlight the mechanisms involved in our package
and demonstrate its usability and flexibility on actual
cases, we apply it to the EEG forward problem and to
trans-cranial direct current stimulation (tDCS) simula-
tion. Both analyses are performed on a realistic finite
element model (FEM) derived from the MIDA model (Ia-
cono et al., 2015). To evaluate the impact of different
geometries for the skull, we build three different models,
considering either one, two or thee layers for the skull,
with different electrical conductivity values for the inner
and outer tables for the latter.

The sensitivity is then assessed through the computa-
tion of Sobol indices (Sobol, 2001). The random input
parameters considered are the values for the electrical con-
ductivity of the tissues. To model their probability den-
sity functions, we use the truncated normal distribution
published in the recent review from McCann et al. (2019)
as well as a unique uniform distribution, in a worst case
scenario. In the process, we compute surrogate models
that, for the EEG forward problem, results in a parametric
leadfield matrix that can be used to generate new forward
models for any set of electrical conductivity and, for the
tDCS simulation, generates a model that can compute the
current density in a region of interest for the same ranges
of electrical conductivity.

2 Materials and methods

In order to simulate the current flow inside the brain, a
mathematical model is required. It must account for both
the geometry of the tissues and their properties. This
section covers the model generation, its parametrization,
and sensitivity analysis.

2.1 Finite element model generation

To begin with, we focus on the geometrical aspect of the
models, for which several construction methods have been
proposed (Hallez et al., 2007): going from a simple multi-
shell sphere to a fully fledged finite element model (FEM).
Two key features of FEM are its ability to capture complex
shapes and to allow for anisotropic conductivity (in the

1https://github.com/CyclotronResearchCentre/shamo

form of a finite element field). Pipelines have been devel-
oped to help researchers produce these models (Windhoff
et al., 2013; Nielsen et al., 2018; Huang et al., 2019; Vorw-
erk et al., 2018). As described by Huang et al. (2019), most
of the available solutions for automated segmentation rely
either on Matlab, through SPM ’s “Unified Segmentation”
tool (Ashburner and Friston, 2005) and its toolboxes or
on FSL and FreeSurfer (Smith et al., 2004; Fischl et al.,
2004). The ensuing model generation step is generally tied
to this specific segmentation method. Unfortunately this
prevents geometries for atypical non-healthy subjects or
simply to include other tissue types.

In shamo, we consider a FEM approach and mesh gen-
eration but eschew the segmentation step. In effect the
mesh is produced directly from a segmented volume, i.e.
where voxels are labeled as being of one of any number
of tissue classes. This allows us to work with more in-
tricate structures and even to model atypical cases, e.g.
with prosthesis or abnormal tissue distributions (lesions,
tumor, resection,...), by using manually segmented vol-
umes or custom automated segmentation pipelines.

For this work, we start from the multimodal imaging-
based detailed anatomical model of the human head and
neck (MIDA) (Iacono et al., 2015): a 350× 480× 480 ma-
trix of 0.5 × 0.5 × 0.5 mm3 voxels including 116 different
structures. Based on this model, we define three geome-
tries with 5 to 7 different tissues (see Table 1), differing in
how the skull is modeled.

First we merge the structures of the MIDA model to
keep only the main head tissues: white matter, gray mat-
ter, cerebrospinal fluid, scalp and the different parts of
the skull. Then in model 1, the upper part of the skull is
represented as a single isotropic volume; for model 2, the
upper part of the skull is separated into spongia and com-
pacta; for the model 3, the latter is further divided into
outer and inner tables. Note though that the lower part
of the skull is the same for all our models and is modelled
as a homogeneous tissue class. The resulting models are
illustrated in Figure 1.

To generate the FEM tetrahedral mesh, we use CGAL
(The CGAL Project, 2020) with the labeled image of
model 3. The resulting mesh, with 1.355 × 106 tetrahe-
dra, then serves as a base for the other 2 models that only
require the merging of some skull sub-compartments. This
merging is performed with Gmsh (Geuzaine and Remacle,
2009), which is also used to annotate the mesh by specify-
ing the names of the tissues and adding the electrodes on
the scalp. For the EEG forward problem we consider the
63 electrodes of the international 10-10 system (Nuwer,
2018) including the fiducial markers for the nose, the left
and right ears and the inion. The latter is considered as
the reference for the rest of this work. For tDCS, we use
a subset of these electrodes: P3, TP9, C3, P1 and O1)
where P3 is the current injector.

2.2 Electromagnetic modeling

Since capacitive effects can be neglected in the brain tis-
sues for the frequency range involved in brain activity
(Plonsey and Heppner, 1967), the so called quasi-static
approximation applies: the electromagnetic fields at time

2
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Tissue Parameters (Sm−1) Model
Name Abbr. Color Min. Max. Mean Std. 1 2 3

Scalp SCP 0.1370 2.1000 0.4137 0.1760
Skull (Whole) SKL 0.0182 1.7180 0.0160 0.0190
Skull (Spongy) SKL SPG 0.0012 0.2890 0.0497 0.0735
Skull (Compact) SKL CPT 0.0024 0.0079 0.0046 0.0016
Skull (Outer table) SKL OCPT 0.0008 0.0078 0.0049 0.0029
Skull (Inner table) SKL ICPT 0.0028 0.0129 0.0068 0.0036
Cerebrospinal fluid CSF 1.0000 2.5100 1.7100 0.2981
Gray matter GM 0.0600 2.4700 0.4660 0.2392
White matter WM 0.0646 0.8100 0.2167 0.1703
Extended EXT - 0.0008 2.5100 - - - - -

1

Table 1: The tissues used in this work with the parameters of the corresponding electrical conductivity distributions from McCann et al.
(2019). The last three columns show which tissues are included in each model.

(a) (b)

(c) (d)

1

Fig. 1: Sagittal cuts of (a) the segmented images for model 1 where
skull is a single isotropic compartment, (b) for model 2 with spongy
and compact bone differentiated, (c) for model 3 where the outer
and inner tables of the skull are differentiated and (d) the mesh
corresponding to model 3. In (a), (b) and (c), the lower part of the
skull is the same.

t only depend on the active sources at this time. In such
conditions, Maxwell’s equations reduce to a generalized
Poisson equation (Malmivuo and Plonsey, 1995; Hallez
et al., 2007) that provides a relationship between the elec-
tric potential in any point of a volume conductor and
the current sources. We first define the current density j
(Am−2) and the source volume current density ρs (Am−3)
(Schimpf, 2007). They are linked together by the expres-
sion

∇ · j = ρs. (1)

The current density j is linearly related to the electric

field e (Vm−1) through Ohm’s law

j = σe (2)

where σ, the conductivity, can be a tensor field.
Anisotropy of the white matter has been shown to influ-
ence source reconstruction (Haueisen et al., 2002; Güllmar
et al., 2010) and the pipeline allows for anisotropic tissues
yet, in this work, σ is considered isotropic because no dif-
fusion weighted images (DWI) is available in the MIDA
data. The quasi-static conditions described above allow
us to write the relationship between the electric field and
the electric potential field v (V) as

e = −∇v. (3)

Then combining Equations (1), (2) and (3) leads to the
generalized Poisson equation:

∇ · (σ∇(v)) = −ρs. (4)

Finally a homogeneous Neumann boundary condition is
set on the interface between the conductor volume and the
air, and a Dirichlet condition is added to set the reference
electrode. We use GetDP (Geuzaine, 2007) as a solver for
the finite element model described in section 2.1. GetDP
is an industrial grade solver and is at the heart of some
popular tools for head electromagnetic modeling (Huang
et al., 2019) and our implementation of the forward prob-
lem have already been analytically validated by Ziegler
et al. (2014).

2.3 Electrical conductivity of tissues

As stated in Equation (4), electrical conductivity plays a
major role in the computation of the electric potential and
the other related fields. Unfortunately, determining the
exact electrical conductivity σ (Sm−1) of the biological tis-
sues in a non-intrusive manner is an open issue. Multiple
methods have been developed to measure it either in vitro,
ex vivo or even in vivo but struggle to provide an accu-
rate and reliable value (Burger and Milaan, 1943; Geddes
and Baker, 1967; Gabriel, 1996; Gabriel et al., 1996a,b,c;
Latikka et al., 2001; Goncalves et al., 2003). McCann
et al. (2019) reviewed the values acquired with different
techniques and under specific conditions and derived a re-
alistic underlying probability distribution in the form of
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a truncated normal distribution for the main tissues com-
posing the head. We use these distributions with the 3
models described in Section 2.1, which we label Models
1a, 2a and 3a.

In addition, we define a uniform distribution spanning
the whole range of the reported conductivity values for all
the tissue classes, and refer to it as the extended distri-
bution (EXT). This represents a worst case scenario with
no prior information on the conductivity of the different
tissues. This uniform distribution is also used with the 3
FEMs, which we label Models 1b, 2b and 3b. The range
and distribution of conductivity values for the tissues con-
sidered in each model are summarized in Table 1.

The goal of the sensitivity analysis, see Section 2.5, is
to determine the parameters that drive the variability in
the results. Comparing the sensitivity to the two sets of
conductivity values, realistic and extended, will allow us
to assess the effect of the prior knowledge added by the
truncated normal distributions, especially for the tissues
with the narrowest distributions.

For the sake of clarity, we use lowercase letters to indi-
cate a known deterministic value whereas uppercase letters
refer to random values. For instance, the tissues conduc-
tivities are denoted by the vector σ = [σ1, σ2, . . . , σd] and
Σ = [Σ1, Σ2, . . . , Σd] corresponds to the vector contain-
ing the random parameters modeled by the distributions.
Thus for each geometry i, we consider two sets of conduc-
tivity distributions: either those introduced in (McCann
et al., 2019), giving Σa = [ΣWM, ΣGM, . . . , ΣSCP], or the
same extended distribution for each of the tissues, i.e.
Σb = [ΣEXT, ΣEXT, . . . , ΣEXT] as shown in Table 1.

2.4 EEG and tDCS forward problem

When carrying out EEG source reconstruction analysis,
one attempts to recover the underlying brain activity in-
ducing the observed signal at the scalp level. This electri-
cal activity is generally modeled by one or more equivalent
current dipoles characterized by their coordinates in space
r = [rx, ry, rz] and their dipole moment p = [px, py, pz]
(Am). In practice, a set of discrete sources is considered
rather than the full continuous volume of the gray mat-
ter. This set is called a source space and defines potential
dipole locations.

The relation between the source space containing n
sources and the electric potential measured on m elec-
trodes at the scalp level is given by the expression

[l] · s+ ε = v, (5)

where s = [p
(x)
1 , p

(y)
1 , p

(z)
1 , . . . , p

(x)
n , p

(y)
n , p

(z)
n ]T is the source

vector and p
(k)
j is the dipole moment of the source located

in the j-th site along k-axis,
ε = [ε1, . . . , εm]T and v = [v1, . . . , vm]T are respectively
the additive noise component vector and the vector of elec-
trodes potentials (V), and [l] is equally referred to as the
”leadfield” or gain matrix. This matrix looks like this

[l] =


l
(x)
1,1 l

(y)
1,1 l

(z)
1,1 . . . l

(x)
1,n l

(y)
1,n l

(z)
1,n

...
...

...
. . .

...
...

...

l
(x)
m,1 l

(y)
m,1 l

(z)
m,1 . . . l

(x)
m,n l

(y)
m,n l

(z)
m,n

 , (6)

where each element l
(k)
i,j corresponds to the electric po-

tential v measured on the i-th electrode due to a current
dipole with unitary dipole moment located on the j-th
site and oriented along k-axis (VA−1m−1). This model
encompasses all the geometric information and the physi-
cal properties of the head tissues. In the rest of this paper,
the notation [l(σ)] is used when highlighting the depen-
dencies of the leadfield matrix on the values set for the
electrical conductivity.

Following the method described by Weinstein et al.
(2000) based on the reciprocity principle, we actually have
to solve the tDCS forward problem in order to generate
the EEG leadfield. Indeed, to compute [l] on an element
basis, the reciprocity principle states that to estimate the
voltage difference between two points due to a single cur-
rent dipole, one needs to compute the electric field e at
the coordinates of the dipole resulting from the injection
of a 1 A current i between the two points, which is the
definition of a tDCS forward problem.

v1 − v2 =
e · p
i

(7)

The technique then consists in setting a reference elec-
trode, iteratively injecting a 1 A current through the m
active electrodes, and estimating the electric field on the
source space in the i-th row of the matrix [l]. This step
of the process is achieved in GetDP with the generalized
minimal residual method (GMRES) configured with a tol-
erance of 10−8 and an incomplete factorization (ILU) pre-
conditioner.

Given that the current sources should only exist in the
gray matter, that the mesh for that tissue is made of about
368000 tetrahedra, and that we have a setup of 59 active
electrodes, the whole leadfield matrix [l]full would theo-
retically have a size of 59 × (3 × 368000), which is too
large for practical use. Therefore we arbitrarily fix the
average interval between two sources at 7.5 mm, result-
ing in 2127 sources and a leadfield matrix [l] ∈ R59×6381

which is more manageable. This source-to-source distance
influences both the the computational resources required
to perform the source reconstruction, since it is directly
linked to the size of the leadfield matrix, and the num-
ber of potentially reconstructed dipoles. In their paper,
Michel and Brunet (2019) state that the definition of the
spatial resolution is a sensitive problem but that increas-
ing it does not lead to a linear increase of the accuracy.
In fact, the accuracy has a limit due to the fact that the
amount of information provided to the inverse problem
remains constant since the number of electrodes is fixed.

2.5 Sensitivity analysis

As defined by Saltelli (2008), sensitivity analysis is the
study of how variation in the input parameters of a pro-
cess influences the variation in the output. In this field,
two cases are differentiated. The local sensitivity focuses
on the uncertainty at a specific coordinate of the param-
eters space Ω whereas the global sensitivity captures the
variation across the whole space.

One of the most used and studied global sensitivity anal-
ysis techniques is the computation of the so called Sobol
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indices (Sobol, 2001; Saltelli et al., 2010). Let us consider
a model Y = Y (X) where Y is the random output vari-
able and X = [X1, . . . , Xnp

] is the vector of np random
input variables. The first and total order Sobol indices for

the i-th input variable, si and s
(t)
i are defined by

si =
VXi

(EX\i(Y | Xi))

V(Y )
, (8)

s
(t)
i =

EX\i(VXi(Y |X\i))
V(Y )

, (9)

where X\i is the vector of all the random inputs but Xi,
si corresponds to the variance in the output explained by
Xi alone, VXi(EX\i(Y | Xi)) is the variance explained
by the i-th parameter, also referred to as its main effect,

and s
(t)
i is the output variance explained by Xi and all its

interactions with the other input parameters.
To compute Sobol indices, we follow the method pre-

sented by Saltelli et al. (2010) and implemented in the
python package SALib (Herman and Usher, 2017) that

provides a way to compute both si and s
(t)
i from the same

set of evaluations of the model, thus reducing the amount
of computation required. This technique relies on nd ob-

servations {(y(d)i ,x
(d)
i , i = 1, . . . , nd} where each y

(d)
i =

y(x
(d)
i ) is the output of the model for a set of inputs x

(d)
i =

[x
(d)
i,1 , . . . , x

(d)
i,np

]. Let us define y(d) = [y
(d)
1 , . . . , y

(d)
nd ]T the

vector of outputs and [x](d) = [x
(d)
1 , . . . ,x

(d)
nd ]T the matrix

of inputs.
The matrix [x](d) is built of np + 2 sub-matrices: [a],

[b] and the matrices [ab]
(i) where all the columns are the

same as in [a] except the i-th one coming from [b]. All
these matrices have nr rows and np columns. The in-

put vectors x
(d)
i composing the independent matrices [a]

and [b] are drawn from the parameters space Ω using the
Saltelli extension of Sobol quasi-random sequence (Sobol,
1967, 1976). Such sequences are described in section 2.6.

Based on these samples, the numerators of Equations
(8) and (9) are computed with

VXi
(EX\i(Y | Xi))

=
1

nr

nr∑
j=1

y([b])j

(
y([ab])

(i)
j − y([a])j

)
,

(10)

and

EX\i(VXi
(Y |X\i))

=
1

2nr

nr∑
j=1

(
y([a])j − y([ab])

(i)
j

)2
.

(11)

2.6 Surrogate model

The computation of the sensitivity indices described in
section 2.5 requires a large number of model evaluations.
When the estimation of the actual model (here the com-
putation of the leadfield matrix) is computationally heavy,
a simpler model, referred to as the surrogate model, can
be used instead. This simpler version must behave almost
like if it were the real one but its evaluation should require
less computing power.

Building such a model is the goal of all the super-
vised learning techniques. Those methods start from a

set of nd observations y(d) = [y
(d)
1 , . . . , y

(d)
nd ]T of the ac-

tual model at different points of the parameters space

[x](d) = [x
(d)
1 , . . . , x

(d)
nd ]T where y

(d)
i = y(x

(d)
i ) with y(x)

the real model. From this relatively small amount of eval-
uations of the model, the surrogate model ŷ(x) is built so
that ŷ = ŷ(x) ≈ y(x) for any vector x ∈ Ω that is not in
the training set [x](d).

The first step for building the surrogate model is then to

draw nd vectors x
(d)
i to build the matrix [x](d). This can

be performed with various methods but here we consider
quasi-random sequences. Those sequences, compared to
real random sequences, take into account the previous
points that have been drawn. They are used to cover the
space as efficiently as possible. In section 2.5 the Saltelli
extension of Sobol sequence is used to define the coordi-
nates and here, to produce the training set for the surro-
gate model, we use a Halton sequence (Halton, 1960) as
implemented in chaospy (Feinberg and Langtangen, 2015).

In shamo, the generation of the surrogate model is car-
ried out with “Gaussian Processes Regression” (GPR)
(Rasmussen and Williams, 2006). Let us define the nota-
tion for a multivariate normal distributionN (µ, [γ]) where
µ = [µ1, . . . , µnp

] is the vector of means along each axis
and [γ] is the covariance matrix where each γi,i is the vari-
ance of the i-th random parameter and the elements γi,j
are the correlation between the i-th and the j-th variables.

To predict the nt values y(t) = [y
(t)
1 , . . . , y

(t)
nt ]T on the

test points [x](t), GPR handles the problem as Bayesian in-
ference. Under these conditions, the learning samples are
treated as random variables following a multivariate nor-
mal distribution P (y(d) | [x](d) = N (µ(d), [γ](d)). Here,
the mean of this distribution is set to the mean of the
learning outputs. To consider the test points, this expres-
sion becomes

P (y(d),y(t) | [x](d))

= N
(
µ(d),

[
[γ](t) [γ](t,d)

[γ](d,t) [γ](d) + ε[i]

])
,

(12)

with ε an added noise.
Next, the conditional distribution

P (y(t) | y(d), [x](d)) = N (µ∗, [γ]∗) is obtained with

µ∗ = µ(d) + [γ](t,d)([γ](d))−1(y(d) − µ(d)), (13)

[γ]∗ = [γ](t) − [γ](t,d)([γ](d))−1[γ](d,t). (14)

Finally, the mean values µ∗i and the standard deviation
γ∗i = [γ]∗i,i are obtained by the marginalisation of each
random variable. The values µ∗i are the predictors corre-
sponding to the test points.

During the training step, the hyper-parameters of the
kernel are optimised by maximising the log-marginal like-
lihood (LML) (Schirru et al., 2011). When the model out-
puts more than one scalar, the process can be applied sep-
arately to each of the outputs, giving one Gaussian process
by output variable. Here, we use the implementation of
the GPR from scikit-learn (Pedregosa et al., 2011) and fol-
low the recommendations from Chen et al. (2016). Thus,
the regression part of the GPR is set to the mean of the
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output variable and the kernel is obtained by the product
of a constant kernel and a stationary Matérn kernel with
the smoothness parameter ν = 2.5, thus resulting in the
covariance function

k(x1,x2) =

(
1 +

√
5

l
d(x1,x2) +

5

3l
d(x1,x2)r

)

· exp

(
−
√

5

l
d(x1,x2)

)
.

(15)

3 Applications

We demonstrate the application of shamo on EEG and
tDCS forward problems.

3.1 EEG forward problem

As described in section 2.4, the computation of the EEG
forward model is of main interest in source reconstruction
but is highly dependent on the geometry and the physical
properties of the tissues.

To build the surrogate model, we generate a set of lead-
field matrices [l(σ(i))] for 100 conductivity vectors σ(i)

drawn from the parameters space Ω using a Halton se-
quence. This step results in a leadfield matrix where each
element is actually a Gaussian process, which gives us the
ability to quickly construct any new matrix [l̂(σ)] for a
specific conductivity vector σ.

The sensitivity indices defined in Equations (8) and (9)
are only valid for a model with a single scalar output.
Therefore we choose to study the sensitivity of the whole
matrix to the values of σ with a distance measure m(σ)
relative to a reference leadfield matrix [l]ref, obtained with
a fixed σ = σref

m(σ) = ‖[l(σ)]− [l]ref‖F , (16)

where σref is the mean value for each tissue (See Table 1)
and and ‖. . . ‖F is the Frobenius norm.

A surrogate model m̂(σ) is thus built for this function
based on the same training data as the parametric matrix
introduced above. Next, the first and total order Sobol
indices are computed from two sets of 40000 evaluations
of the Gaussian process for the six models of this study,
as defined in Section 2.3. The resulting indices are shown
in Figure 2.

Clearly, for both the truncated distributions and the
extended uniform ones, the parameter with the largest in-
fluence on the metric is the gray matter conductivity σGM.
Whether one uses the narrow truncated normal (models
2a/3a) or the extended uniform (models 2b/3b) distribu-
tions for the compact skull and the outer and inner tables
has little influence on the Sobol indices.

Another interesting point is the increasing influence of
the CSF conductivity when the uniform distribution is
used. While both its first and total order Sobol indices in
models 1a to 3a are very small, the value of s

(t)
CSF for models

1b to 3b are non negligible meaning there are interactions
between parameters.

(a) Model 1a

SC
P

SK
L

CS
F

GM W
M

0

20

40

60

80

100

(%
)

(b) Model 1b

SC
P

SK
L

CS
F

GM W
M

0

20

40

60

80

100

(%
)

(c) Model 2a

SC
P

SK
L

SK
L
SP

G

SK
L
CP

T
CS

F
GM W

M

0

20

40

60

80

100

(%
)

(d) Model 2b
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(e) Model 3a
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(f) Model 3b
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Fig. 2: First (%) and total order Sobol indices of the metric m(σ)
for each tissue of each model. In the left column, the values for Σ
are the truncated normal distributions from McCann et al. (2019)
and int the right column, the extended uniform distribution is used.

3.2 Evaluation of the electrodes potential

To illustrate the actual effect of the sensitivity described in
the above application, we calculate the electrical potential
measured on the scalp due to a single left frontal source
located 17.8mm under F3. Model 3 with the σref was
used as a reference (Figure 3b) then the conductivity of
GM was also set to the minimal and maximal value found
in the literature (See Table 1) leading to slightly modified
electrical potential scalp maps (Figure 3a, c). The scalp
map differences of the latter two with the reference one is
shown in Figure 3 d, e.

3.3 Transcranial direct current stimula-
tion (tDCS) simulation

Using the same formulation as for the EEG forward prob-
lem, we can model tDCS and obtain the current density,
electric potential and electric field accross the whole head.

To illustrate this aspect, we consider a HD-tDCS exper-
iment where electrode P3 was set as a 4 mA injector and
electrodes TP9, C3, P1 and O1 were set to ground. We
used the mesh from model 3 and the truncated normal
conductivity distributions as in model 3a for this simula-
tion. As a metric to assess the sensitivity of the model with
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(a) v (V)
σGM = 0.06

−1 −0.5 0

(b) v (V)
σGM = 0.466

−1 −0.5 0

(c) v (V)
σGM = 2.47

−1 −0.5 0

(d) v − vref (V)
σGM = 0.06

−0.4 −0.2 0 0.2

(e) v − vref (V)
σGM = 2.47

−0.4 −0.2 0 0.2

1

Fig. 3: (a) the scalp potential (V) computed for σGM = σGM,min =
0.06 (Sm−1), (b) the scalp potential (V) obtained for σGM =
σGM,ref = 0.466 (Sm−1) and (c) the scalp potential (V) measured
with σGM = σGM,max = 2.47. (d) and (e) show the difference be-
tween the computed scalp potential and the reference one (V) re-
spectively for σGM = σGM,min and σGM = σGM,max.

regard to the conductivity values, we chose the mean of
current density norm in a small region of 368 mm3 located
22.6 mm under CP3. The results of these simulations are
shown in Figure 4. As an extra feature for researchers
in neuroscience, the estimated fields can also be directly
exported as a standard multidimensional NifTI image.

As visible in Figure 4, current density is highest in the
scalp tissue between the electrodes but also spreads dif-
fusely throughout the head volume. The tissues with the
highest Sobol index are the scalp, followed by the spongy
compartment of the skull. This comes as no surprise as
electrical current follows the path of least resistance.

4 Discussion

The pipeline presented in this work uses several well es-
tablished methods. Here, we discuss the added value of
such tool and technical choices and compare it to estab-
lished solutions such as SimNIBS (Thielscher et al., 2015)
or BrainStorm (Tadel et al., 2011).

First, the generation of a realistic subject specific head
model is generally a tedious task involving the segmenta-
tion of the head volume, based on MR or CT images, then
the delineation of the tissue interfaces. This step often
requires further ad hoc cleaning to ensure the surfaces are
two dimensional manifold, i.e. they are completely closed
and thus have an inside and an outside. Then, those sur-
faces must be integrated into a single mesh and the so
defined volumes filled with tetrahedral elements.

Several automated pipelines are now available is the
most common toolboxes (Thielscher et al., 2015; Huang
et al., 2019; Nielsen et al., 2018) using either SPM (Ash-
burner and Friston, 2005) or FSL/FreeSurfer (Smith et al.,
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Fig. 4: (a) A view of the scalp potential induced by the set elec-
trodes surrounded in white, (b) the first (%) and total order Sobol
indices of the mean current density in the ROI for each tissue conduc-
tivity, (c) a cut of the current density inside the head resulting from
the injection of current inside the reference model where σ = σref

and (d) the same information in the form of a NIFTI file with a
representation of the small mask used to compute the mean of the
norm of the current density.

2004; Fischl et al., 2004) to segment the structural im-
ages. While this greatly simplifies model generation, since
it takes care of both the segmentation and meshing steps,
it also prevents the user from using non standard segmen-
tations.

Here the FEM mesh is directly built from a 3D image
made with labeled voxels. This approach not only pro-
vides more control on the refinement of the final mesh but
also allows the any number of tissues, even with complex
configurations. In practice, this opens the path for more
specific cases such as modeling prosthetic, metallic plates
or any other unusual head geometry. Moreover one can
freely choose the segmentation tool to use or could even
proceed manually for difficult cases.

As explained previously, the model presented in this
paper does not consider the anisotropy of white matter
because no tensor information is provided with the orig-
inal data. However any kind of field can be included in
the model and handled by the solver, GetDP, without ex-
tra burden from the point of view of the user. Besides
GetDP already powers other similar tools like SimNIBS
(Thielscher et al., 2015) and ROAST (Huang et al., 2019)
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and the forward problem implementation used in shamo
have been validated by (Ziegler et al., 2014).

Here we only considered two conductivity dependent
electrostatic problems, EEG and tDCS. Nevertheless,
thanks to GetDP ’s simple formalism, shamo could be di-
rectly extended to electromagnetic modeling processes, in-
cluding MEG and TMS. Indeed this only requires the def-
inition of the equations related to the problem, which are
explicitly stored in a problem file for GetDP. Nowadays
other tools, like SimNIBS, also include modules for the
quantification of the effect of tissue conductivity uncer-
tainty (Saturnino et al., 2019), showing the importance of
such analysis for tDCS applications. Still, beyond electri-
cal conductivity, the sensitivity analysis could also focus
on other parameters, e.g. the injected current in HD-
tDCS, through python classes available in shamo to ex-
pose the needed parameters. Importantly, by definition,
the Sobol indices rely on a single scalar output function,
whose choice is thus critical but also lets the user focus
on any feature of interest. Thereby shamo’s flexible im-
plementation allows one to define his own processes and
sensitivity analysis.

Regarding the surrogate models, we decided to use
Gaussian process because they provide information on the
confidence over the solution through the standard devia-
tion on each predicted point. This can be used to obtain
more in-depth understanding of the model. Such regres-
sor also has the advantage of not requiring huge amounts
of training data. Considering the fact that an evaluation
of the actual model can take several hours, reducing the
number of observations can drastically lower the compu-
tation time required. To further reduce this time, the tool
provides an easy way to evaluate each sample point sep-
arately, thus allowing the use of high-performance com-
puting (HPC) equipment like computer clusters. In the
present work, observations were computed by batches of
100, each on a single core on the CÉCI clusters2.

Overall the goal of shamo is to provide a single tool to
perform three major steps, namely FEM creation, model
estimation, and sensitivity analysis. This operated with
few dependencies that are all established, in an open
source software working out of the box on any major op-
erating system or on HPC platforms.

5 Conclusion

In this paper, we presented a python pipeline for accurate
electromagnetic modeling of the head which allows for sen-
sitivity analysis and surrogate model building, bringing to-
gether similar features as some established software, such
as SimNIBS (Thielscher et al., 2015) or ROAST (Huang
et al., 2019) for tDCS and Brainstorm (Tadel et al., 2011)
or MNE (Gramfort et al., 2013) for EEG, unified with a
single API. This tool, called shamo (Grignard, 2021a), and
the full documentation (Grignard, 2021b) are available on
Github under GPL-v3 license. A set of examples are also
available in the form of jupyter notebooks.

We showed a use-case for the EEG forward problem
where a parametric leadfield matrix is computed and can

2http://www.ceci-hpc.be/

then be used to generate any new matrix for a specific
set of tissue conductivity values and another application
to tDCS where the current density in a certain region is
obtained and can be studied with regard to the electrical
sensitivity. Those are only two possible applications but
shamo could easily be extended to magnetic stimulation
or TMS.

Considering the abstraction level of the tool and the
outcome that can be obtained from it, one can use our tool
to perform finite element analysis and sensitivity analysis
without having to dig into those fields, letting the user
employ the toolset of his choice for further analysis. shamo
could be used in various studies to assess the sensitivity
of the results to some parameters or to build parametric
models for complex physical fields that, otherwise, should
be evaluated every time a new value is needed.

Data availability

The data that support the findings of this study are avail-
able from the IT’IS foundation3 but restrictions apply to
the availability of these data, which were used under li-
cence4 for the current study, and so are not publicly avail-
able. Data are however available from the authors upon
reasonable request and with permission of the IT’IS foun-
dation.

Information sharing

The source code of shamo is available on Github5 under
GPLv3 license and is fully documented6. It can be in-
stalled from PyPI7. In addition, jupyter notebooks are
also available on Github8 and show how to conduct simi-
lar studies.
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funded by the Fonds de la Recherche Scientifique de Bel-
gique (F.R.S.-FNRS) under Grant No. 2.5020.11 and by
the Walloon Region, Belgium.

Conflict of interest

The authors declare that they have no conflict of interest.

3https://itis.swiss/virtual-population/

regional-human-models/mida-model/
4https://itis.swiss/assets/Downloads/VirtualPopulation/

License_Agreements/LicenseAgreementMIDA.pdf
5https://github.com/CyclotronResearchCentre/shamo
6https://cyclotronresearchcentre.github.io/shamo/index.

html
7https://pypi.org/project/shamo/
8https://github.com/CyclotronResearchCentre/

shamo-tutorials

8

http://www.ceci-hpc.be/
https://itis.swiss/virtual-population/regional-human-models/mida-model/
https://itis.swiss/virtual-population/regional-human-models/mida-model/
https://itis.swiss/assets/Downloads/VirtualPopulation/License_Agreements/LicenseAgreementMIDA.pdf
https://itis.swiss/assets/Downloads/VirtualPopulation/License_Agreements/LicenseAgreementMIDA.pdf
https://github.com/CyclotronResearchCentre/shamo
https://cyclotronresearchcentre.github.io/shamo/index.html
https://cyclotronresearchcentre.github.io/shamo/index.html
https://pypi.org/project/shamo/
https://github.com/CyclotronResearchCentre/shamo-tutorials
https://github.com/CyclotronResearchCentre/shamo-tutorials


References
Zeynep Akalin Acar and Scott Makeig. Effects of forward model

errors on EEG source localization. Brain Topography, 26(3):378–
396, 2013. ISSN 08960267. doi: 10.1007/s10548-012-0274-6. URL
http://link.springer.com/10.1007/s10548-012-0274-6.

Zeynep Akalin Acar, Can E. Acar, and Scott Makeig. Simultane-
ous head tissue conductivity and EEG source location estimation.
NeuroImage, 124:168–180, January 2016. ISSN 10538119. doi:
10.1016/j.neuroimage.2015.08.032. URL https://linkinghub.

elsevier.com/retrieve/pii/S1053811915007442.

John Ashburner and Karl J. Friston. Unified segmentation. Neu-
roImage, 26(3):839–851, July 2005. ISSN 10538119. doi: 10.1016/
j.neuroimage.2005.02.018. URL https://linkinghub.elsevier.

com/retrieve/pii/S1053811905001102.

M. R. Bashar, Y. Li, and P. Wen. Uncertainty and sensitivity
analysis for anisotropic inhomogeneous head tissue conductiv-
ity in human head modelling. Australasian Physical & Engi-
neering Sciences in Medicine, 33(2):145–152, June 2010. ISSN
0158-9938, 1879-5447. doi: 10.1007/s13246-010-0015-7. URL
http://link.springer.com/10.1007/s13246-010-0015-7.

H. C. Burger and J. B. van Milaan. Measurements of the specific
Resistance of the human Body to direct Current. Acta Medica
Scandinavica, 114(6):584–607, 1943. ISSN 0954-6820. doi: 10.
1111/j.0954-6820.1943.tb11253.x. URL https://onlinelibrary.

wiley.com/doi/abs/10.1111/j.0954-6820.1943.tb11253.x.
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.0954-

6820.1943.tb11253.x.

Hao Chen, Jason L. Loeppky, Jerome Sacks, and William J. Welch.
Analysis Methods for Computer Experiments: How to Assess
and What Counts? Statistical Science, 31(1):40–60, Febru-
ary 2016. ISSN 0883-4237. doi: 10.1214/15-STS531. URL
http://projecteuclid.org/euclid.ss/1455115913.

Jae-Hyun Cho, Johannes Vorwerk, Carsten H. Wolters, and
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Makris, Florent Ségonne, Brian T. Quinn, and Anders M. Dale.
Sequence-independent segmentation of magnetic resonance im-
ages. NeuroImage, 23 Suppl 1:S69–84, 2004. ISSN 1053-8119.
doi: 10.1016/j.neuroimage.2004.07.016.

Manfred Fuchs, Michael Wagner, and Joern Kastner. Development
of volume conductor and source models to localize epileptic foci.
Journal of Clinical Neurophysiology: Official Publication of the
American Electroencephalographic Society, 24(2):101–119, April
2007. ISSN 0736-0258. doi: 10.1097/WNP.0b013e318038fb3e.

C Gabriel, S Gabriel, and E Corthout. The dielectric properties of
biological tissues: I. Literature survey. Physics in Medicine and
Biology, 41(11):2231–2249, November 1996a. ISSN 0031-9155,
1361-6560. doi: 10.1088/0031-9155/41/11/001. URL https:

//iopscience.iop.org/article/10.1088/0031-9155/41/11/001.

Camelia Gabriel. Compilation of the Dielectric Properties of Body
Tissues at RF and Microwave Frequencies.:. Technical report,
Defense Technical Information Center, Fort Belvoir, VA, January
1996. URL http://www.dtic.mil/docs/citations/ADA303903.

S Gabriel, R W Lau, and C Gabriel. The dielectric properties of
biological tissues: II. Measurements in the frequency range 10
Hz to 20 GHz. Physics in Medicine and Biology, 41(11):2251–
2269, November 1996b. ISSN 0031-9155, 1361-6560. doi: 10.
1088/0031-9155/41/11/002. URL https://iopscience.iop.org/

article/10.1088/0031-9155/41/11/002.

S Gabriel, R W Lau, and C Gabriel. The dielectric properties
of biological tissues: III. Parametric models for the dielectric
spectrum of tissues. Physics in Medicine and Biology, 41(11):
2271–2293, November 1996c. ISSN 0031-9155, 1361-6560. doi:
10.1088/0031-9155/41/11/003. URL https://iopscience.iop.

org/article/10.1088/0031-9155/41/11/003.

L. A. Geddes and L. E. Baker. The specific resistance of biologi-
cal material–a compendium of data for the biomedical engineer
and physiologist. Medical & Biological Engineering, 5(3):271–293,
May 1967. ISSN 0025-696X. doi: 10.1007/BF02474537.

C. Geuzaine. GetDP: a general finite-element solver for the
de Rham complex. PAMM Volume 7 Issue 1. Special Issue:
Sixth International Congress on Industrial Applied Mathemat-
ics (ICIAM07) and GAMM Annual Meeting, Zürich 2007, 7(1):
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