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Abstract

Knowing how the solution to time-harmonic wave scattering problems depends on medium properties and
boundary conditions is pivotal in wave-based inverse problems, e.g. for imaging. This paper is devoted to
the exposition of a computationally efficient method, called the adjoint state method, that allows to quantify
the influence of media properties, directly and through boundary conditions, in the study of acoustic, electro-
magnetic and elastic time-harmonic waves. Firstly, the adjoint state method is derived for general boundary
value problems. A continuous (rather than discrete) formalism is adopted in order to highlight the role of the
boundary terms. Then, the method is applied systematically to acoustic, electromagnetic and elastic scatter-
ing problems with impedance boundary conditions, making use of the similitude between the three problems.
Finally, numerical examples solved using the finite element method are presented to demonstrate the validity
of the proposed method.

Keywords: adjoint method, boundary sensitivity, time-harmonic wave scattering, optimization, finite
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1. Introduction

The analysis of the influence of medium properties on wave fields is useful in many physical and engineering
problems involving time-harmonic wave propagation. Typical examples are geophysical or medical imaging
by acoustic [19, 22], electromagnetic [5, 23, 26] or elastic [3, 24] waves; invisibility cloaking [4, 15, 17]; or
the optimal design of acoustic liners [25], optical devices [11, 14, 16, 21, 31], vibrating structures [10, 33, 34],
antennas [6, 8] and electromagnetic cavities [1].

Most of these applications are naturally set in unbounded domains and involve complex geometries and multiple
and/or inhomogeneous materials. Specific boundary conditions can however be used to reduce the computa-
tional complexity and make the numerical study tractable, by substituting an equivalent impedance boundary
condition to volume scatterers with complex (or even unknown) properties [1, 4, 11, 15, 17, 19, 25, 31], or by
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truncating unbounded domains with transparent absorbing boundary condition [18, 30, 32]. Boundary condi-
tions contain in this case information about all regions left outside the model, and their influence is therefore
crucial.

For optimization purposes, it is often asked to maximize some objective function of measurable quantities like
pressure, electromagnetic or displacement fields. In imaging applications, the objective can be that predicted
fields match experimental measurements, whereas in design applications, resonant frequencies and eigenmodes
of vibrating structures, antennas or cavities can be tuned to some ideal values. Now, field propagation over the
system can only be controlled through physical parameters like the speed of waves or the geometrical shape
of some regions, and the expression of the relationship between these parameters and the measurable field
requires solving partial differential equations, which is computationally expensive. The very high dimension of
the search space in such problems prohibits using global optimization techniques, and makes gradient-based
algorithms very attractive. Such algorithms require however to compute sensitivities efficiently, with adjoint
methods for instance.

There are two ways of introducing the adjoint state method for problems involving partial differential equations.
The first approach consists in discretizing the problem first, and to compute sensitivities then using the tools
of linear algebra. Advantages of this approach are the simplicity of the formulation and an easy numerical
validation (because of the finite dimension of the problem). With this approach, often referred to as first
discretize, then optimize [12], it is however hard to track the individual influence of the different parameters,
or to distinguish the effect of bulk and boundary terms. The second approach consists in computing sensitivities
analytically at the continuous level before discretizing the problem. This formalism often referred to as first
optimize, then discretize [12], is better suited for an intuitive interpretation of the equations and allows dealing
with boundary and bulk contributions separately.

The algebraic adjoint state method (first discretize, then optimize) with boundary terms has been used in
several shape design applications [1, 6, 8, 16]. In this paper, however, the first optimize, then discretize
approach has been preferred, and an application-independent formalism well-suited for topological variation
in time-harmonic wave scattering problems has been developed. A similar application-independent framework
with partial differential equations constraints has been presented for optimization applications in [12], which did
not however pay any particular attention to the boundary aspects. Extensions to include boundary variations
have been proposed by [9, 11] and applied to shape sensitivities in aerodynamics and optics, respectively. The
formalism proposed in this paper is based on [9, 11], but it is applied to time-harmonic wave scattering problems
in view of practical engineering computations. In the context of such time-harmonic scattering problems,
sensitivities to bulk topological parameters have been analyzed extensively in [3, 5, 19, 22, 23, 24, 35, 36], but
sensitivities to boundary topological parameters have not been investigated yet to the best of our knowledge.
Obtaining gradients from sensitivities is straightforward with the algebraic adjoint state method, but can
be rather more intricate with the first optimize, then discretize approach, especially when dealing with non-
standard gradients like Sobolev gradients [20, 27]. Such developments have been reported in [5, 20, 27, 28, 36]
for bulk sensitivities, and they are extended in this paper to include boundary sensitivities. The use of non-
standard gradients in time-harmonic scattering problems has proven efficient in recent publications [35, 36].
We have chosen to apply it in our framework to wave propagation problems in three distinct physics (acoustics,
electromagnetics and elastics) in order to highlight the vast similarities between them. We shall focus in this
paper on topological parameters rather than shape parameters, which have been studied in [13] from the
perspective of differential forms.

The paper is organized as follows. In section 2, the mathematical framework is made explicit and the quantities
to compute are discussed. The direct method to compute these quantities is given in section 3, then the adjoint
state method is derived for Gâteaux derivatives without and with boundary contributions in section 4.1 and 4.2
respectively, and for gradient kernels in section 4.3. Then in section 5 the results are applied to time-harmonic
acoustic, electromagnetic and elastic wave problems with impedance boundary conditions. A formal link is
established between the three problems and the choices required by the adjoint state method are discussed
simultaneously. Finally in section 6, the method is applied to a complete two dimensional acoustic sensitivity
problem, typical of imaging problems. The correspondence between the adjoint state method and a naive
approach is verified for volume and surface contributions and the results are discussed.
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2. Problem statement

Consider a physical system for which a state space model is known, usually under the form of a set of partial
differential equations. The input m to this model is called model parameter and is a vector belonging to the
model space M . The output u of the model is called state variable and belongs to a function space U(Ω)
called the state space. The latter is assumed to be a sufficiently regular subset of the space of square integrable
function U2(Ω) defined on an open bounded set Ω ⊂ R

n, because the derivatives of the state variable u will
be needed. In the sequel, all spaces of square integrable functions will be denoted with a subscript ‘2’.

The state base model
{

F(u,m) = f,

B(u,m) = g.
(1)

is the physical link that implicitly defines the state u(m) as a function of the input m. This system is assumed

to be well-posed. The first equation involves a direct state operator F : U(Ω)×M → U †
2 (Ω) whose co-domain

is a function space of square integrable functions U †
2 (Ω). This space U †(Ω) is the analog of U(Ω) for the

adjoint state variable (to be defined later), hence the notation. The second equation in (1) involves a direct
state boundary trace B : U(Ω) × M → B2(∂Ω) whose co-domain B2(∂Ω) is again a function space of square
integrable functions, and where ∂Ω stands for the boundary of the domain Ω. For the sake of conciseness, the
model dependency u(m) will not always be indicated explicitly. A state noted u will thus always be assumed
to be a solution of the system (1).

Besides (1), the second element of our theoretical setting is a real-valued functional of the state variable u(m)

J (m) := H(u(m)) +K(C(u(m),m)) (2)

called the performance functional. As for (1), the performance functional J is decomposed into two terms:
a bulk performance functional H : U2(Ω) → R depending on the value of the state variable u(m) in the bulk
of the domain Ω, and a boundary performance functional K : C2(∂Ω) → R depending on a specific trace of
u(m) on the boundary ∂Ω. The trace operator C : U(Ω)×M → C2(∂Ω) is called performance boundary trace
and, similarly to B, its co-domain C2(∂Ω) is a space of square integrable functions. Because this performance
boundary trace might also involve spatial derivatives, it is possible that the state and model spaces must be
chosen to be more regular than what is required by the state base model (1) alone.

Quantifying analytically and numerically the variation of the performance functional J under a perturbation of
the model parameter m is the subject of this work. This variation can be expressed by two different derivatives.
Firstly, given a perturbation δm of the model parameter, the directional derivative or Gâteaux derivative

{DmJ (m)} (δm) := lim
ǫ→0

J (m+ ǫ δm)− J (m)

ǫ
(3)

gives the variation of the performance functional J for an arbitrarily small modification of the model parameter
m in the direction δm [12]. A partial directional/Gâteaux derivative is defined similarly for functionals with
more than one argument. For instance, the performance functional (2) could also be regarded as a functional
with two arguments J (u,m) and the partial Gâteaux derivative with respect to the argument m is then
denoted by {∂mJ (u,m)} (δm) with the usual ∂ symbol.

Considering that the full-fledged notations for Gâteaux total and partial derivatives are rather heavy, short-
hands shall be used in the sequel wherever no confusion is possible. The total derivative of J will be noted
δJ := {DmJ (m)} (δm) with the symbol δ to recall that it represents the Gâteaux derivative of J associated
to the parameter perturbation δm. The mute arguments of the partial Gâteaux derivatives, on the other hand,
might be omitted after their first introduction, e.g., {∂mJ } (δm) := {∂mJ (u,m)} (δm).

Most of the time however, a privileged directions δm does not make sense for the definition of sensitivity. In
that case, the concept of gradient kernel must be preferred. A gradient kernel is an element of the model space
M of which each component quantifies the variation of J for an arbitrarily small perturbation of m along that
particular axis only. Mathematically, these Fréchet-Wirtinger’s gradient kernels, or simply gradient kernels,
are denoted by j′ and defined by [2, 12]

Re 〈j′(m), δm〉M := {DmJ (m)} (δm), ∀δm ∈ M
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where 〈·, ·〉M is an inner product on M . The real part must be taken as the model parameter m (and the
inner product) might be complex-valued while the performance functional is real-valued. For the sake of
compactness, the symbol ‘Re’ is omitted in this paper. By definition, gradients kernels depend thus on the
choice of a specific inner product in the function space under consideration. Conceptually, the gradient kernel
is a vector pointing in the direction of steepest ascent, i.e., the direction that produces the largest increase of
the performance functional among all directions of fixed arbitrarily small lengths. This direction is particularly
relevant in optimization processes, and it can be interpreted as follows in the case of the inner products 〈·, ·〉M
of square integrable functions. Consider that the model parameter m is perturbed at a single point y, i.e.,,
δm = δ(x − y). The derivative δJ is then given by δJ = j′(y), which is indeed the evaluation at point y

of the gradient kernel j′. This is why this derivative can be viewed as a sensitivity to parameter or state
perturbation.

3. Direct approach

The performance functional J (u(m)) depends on the model parameter m through the state u. Consequently,
to obtain the Gâteaux derivative δJ in the direction δm, it is necessary to know the state derivative δu in
that direction. This quantity is implicitly defined by taking the total derivative of (1) with respect to m. One
has

{

{DmF(u,m)} (δm) = 0,

{DmB(u,m)} (δm) = 0,

which writes, in terms of partial derivatives,

{

{∂uF(u,m)} (δu) = −{∂mF(u,m)} (δm),

{∂uB(u,m)} (δu) = −{∂mB(u,m)} (δm).
(4)

This is a boundary value problem that can be solved for δu.

Using now (2), the total derivative δJ of the performance functional reads

δJ : = {DmJ (m)} (δm)

= {DuH(u)} (δu) + {DCK(C(u,m)} (δC)

and using the bulk and boundary performance gradient kernels h′(u) and k′(C(u,m)) as

δJ = 〈h′, δu〉U2(Ω) + 〈k′, δC〉C2(∂Ω) .

The second term can also be differentiated, so that the Gâteaux derivative δJ is explicitly expressed as a
function of the parameter perturbation δm and the solution δu of the boundary value problem (4)

δJ = 〈h′, δu〉U2(Ω) + 〈k′, {∂uC} (δu)〉C2(∂Ω) + 〈k′, {∂mC} (δm)〉C2(∂Ω) . (5)

This way of computing the Gâteaux derivative δJ associated with the direction δm is called the direct approach.

4. Adjoint approach

The direct approach introduced in the previous section is rather straightforward, but it can reveal rather
inefficient for some classes of problems, in which cases the adjoint approach is a powerful alternative. This
approach is first presented without boundary perturbation, in order to establish the fundamental concept of
adjoint operator, and then generalized to problems with boundary perturbations.
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4.1. Without boundary perturbation

The adjoint method is based on the adjoint operator of ∂uF(u,m) in (4), which is defined as the operator
∂†
uF(u,m) fulfilling the integration by parts relationship

〈

u†, {∂uF(u,m)} (δu)
〉

U
†
2
(Ω)

=
〈{

∂†
uF(u,m)

}

(u†), δu
〉

U2(Ω)
+
[

u†, δu
]

∂uF
(6)

where u† is called the adjoint state variable, and where the boundary term
[

u†, δu
]

{∂uF}
is a differential

expression involving δu and u†, integrated over the boundary ∂Ω and that depends only on the operator
∂uF(u,m), here abbreviated ∂uF .

Disregarding boundary terms provisionally, the direct problem defined above reads

{

{∂uF(u,m)} (δu) = −{∂mF} (δm),

δJ = 〈h′, δu〉U2(Ω) ,
(7)

and it is now shown that it admits an equivalent adjoint problem

{{

∂†
uF(u,m)

}

(u†) = h′,

δJ = −
〈

u†, {∂mF} (δm)
〉

U
†
2
(Ω)

.

The equivalence is obvious whenever the boundary term
[

u†, u
]

∂uF
vanishes, as one has then, using (6),

δJ = 〈h′, δu〉U2(Ω) =
〈{

∂†
uF
}

(u†), δu
〉

U2(Ω)

=
〈

u†, {∂uF} (δu)
〉

U
†
2
(Ω)

= −
〈

u†, {∂mF} (δm)
〉

U
†
2
(Ω)

.
(8)

It is here worth noting that the right-hand side of the direct problem appears in the evaluation of δJ in the
adjoint problem, whereas conversely the right-hand side of the adjoint problem appears in the evaluation of
δJ in the direct problem.

Deciding between the direct or the adjoint approach depends now on the respective numbers of performance
functionals and model perturbations. In order to complete the evaluation of δJ , the direct problem (7) needs
be solved once for each direction δm. The adjoint problem (8), on the other hand, needs be solved once for
each value of the gradient kernels h′, i.e., once for each performance functional J . As the direct and the adjoint
problems imply solving linear systems of comparable size and complexity, the adjoint approach is preferred
whenever there are more search directions than performance functionals to evaluate, and the direct approach
is preferred otherwise.

4.2. With boundary perturbation

One now turns to the case of a problem with boundary perturbation. The vanishing of the boundary term
that was assumed in the previous section is in practice a too stringent condition. A less restrictive and more
general condition of existence for the adjoint problem consists in assuming there exist two trace operators

{

∂†
uB(u,m)

}

(·) : U † → C2(∂Ω) and
{

∂†
uC(u,m)

}

(·) : U † → B2(∂Ω) (9)

such that the boundary term in (6) verifies the identity

[

u†, δu
]

∂uF
=
〈{

∂†
uB(u,m)

}

(u†), {∂uC(u,m)} (δu)
〉

C2(∂Ω)

−
〈{

∂†
uC(u,m)

}

(u†), {∂uB(u,m)} (δu)
〉

B2(∂Ω)
. (10)

This is a fairly mild assumption of which the implied mathematical restrictions (i.e., the restrictions applying
on the operators F , B and C) are discussed in detail in [9].

The adjoint state variable u† is now the solution of the adjoint problem with boundary perturbation

{
{

∂†
uF(u,m)

}

(u†) = h′,
{

∂†
uB(u,m)

}

(u†) = k′
(11)
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and the Gâteaux derivative of the performance functional (5) needs be reexpressed in terms of the adjoint
state variable u† and the adjoint operators as follows (9)

δJ = 〈h′, δu〉U2(Ω) + 〈k′, {∂uC} (δu)〉C2(∂Ω) + 〈k′, {∂mC} (δm)〉C2(∂Ω)

=
〈{

∂†
uF
}

(u†), δu
〉

U2(Ω)
+
〈{

∂†
uB
}

(u†), {∂uC} (δu)
〉

C2(∂Ω)
+
〈{

∂†
uB
}

(u†), {∂mC} (δm)
〉

C2(∂Ω)

=
〈

u†, {∂uF} (δu)
〉

U
†
2
(Ω)

+
〈{

∂†
uC
}

(u†), {∂uB} (δu)
〉

B2(∂Ω)
+
〈{

∂†
uB
}

(u†), {∂mC} (δm)
〉

C2(∂Ω)

= −
〈

u†, {∂mF} (δm)
〉

U
†
2
(Ω)

−
〈{

∂†
uC
}

(u†), {∂mB} (δm)
〉

B2(∂Ω)
+
〈{

∂†
uB
}

(u†), {∂mC} (δm)
〉

C2(∂Ω)
(12)

using successively (11), (10) and (4). This way of computing the Gâteaux derivative δJ associated with the
direction δm is called the adjoint approach.

4.3. Gradient kernels

On basis of the last line in (12), one can show that the adjoint state u† and the adjoint trace operators
{

∂†
uC
}

(u†) and
{

∂†
uB
}

(u†) that were introduced in (9) to make the adjoint approach possible can be regarded
as sensitivities to a model perturbation δm. In case of model perturbations δm with a very local influence,
{∂mF} (δm) = δ(x − y) or {∂mB} (δm) = δ(x − y) or {∂mC} (δm) = δ(x − y), the Gâteaux derivative of J
would be δJ = u†(y) or δJ = {{∂uC} (u†)}(y) or δJ = {{∂uB} (u†)}(y), which could indeed be interpreted
as the value of sensitivities at the point of the localized perturbation. But in contrast to h′ in (5), which
represents a sensitivity to a state space perturbation δu expressed in the corresponding model space U2(Ω),
the sensitivities u†,

{

∂†
uC
}

(u†) and
{

∂†
uB
}

(u†) are not expressed in the space corresponding to the perturbation
they represent, i.e., they are not expressed in the model spaceM . This useful property can however be obtained
at the cost of a second dualization. One shall for this work with the adjoint operator of ∂mF(u,m), which is
defined by the identity

〈

u†, {∂mF} (δm)
〉

U
†
2
(Ω)

=
〈{

∂†
mF
}

(u†), δm
〉

M2(Ω)
+
[

u†, δm
]

∂mF
. (13)

Similar to (10), the boundary term
[

u†, δm
]

∂mF
is eliminated by an appropriate definition of adjoint trace

operators
{

∂mB̃(u,m)
}

(·) : M → C2(∂Ω) and
{

∂mC̃(u,m)
}

(·) : M → B2(∂Ω)

such that the boundary term verifies the identity

[

u†, δm
]

∂mF
=
〈

{

∂†
uB
}

(u†),
{

∂mC̃
}

(δm)− {∂mC} (δm)
〉

C2(∂Ω)

−
〈

{∂uC} (u†),
{

∂mB̃
}

(δm)− {∂mB} (δm)
〉

B2(∂Ω)
.

It is interesting to rearrange the terms of the previous equation as follows

〈{

∂†
uC
}

(u†), {∂mB} (δm)
〉

B2(∂Ω)
−
〈{

∂†
uB
}

(u†), {∂mC} (δm)
〉

C2(∂Ω)
+
[

u†, δm
]

∂mF

=
〈

{

∂†
uC
}

(u†),
{

∂mB̃
}

(δm)
〉

B2(∂Ω)
−
〈

{

∂†
uB
}

(u†),
{

∂mC̃
}

(δm)
〉

C2(∂Ω)
(14)

to highlight how the original traces ∂mB and ∂mC have been slightly modified to assimilate the boundary term
[

u†, δm
]

∂mF
introduced by the second dualization, after which the Gâteaux derivative of J reads

δJ = −
〈{

∂†
mF
}

(u†), δm
〉

M2(Ω)

−
〈

{

∂†
uC
}

(u†),
{

∂mB̃
}

(δm)
〉

B2(∂Ω)
−
〈

{

∂†
uB
}

(u†),
{

∂mC̃
}

(δm)
〉

C2(∂Ω)
. (15)

A last step is needed to complete our adjoint theoretical framework with boundary perturbations. The bound-
ary trace operators ∂mB̃ and ∂mC̃ in (15) depend on u and are therefore not suited for the definition of a
sensitivity in the model space M . Again, it would be convenient to move the operators from the second to
the first slot of the scalar products by means of a further dualization in order to isolate δm in the second slot
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in both terms. As these terms are surface terms defined on ∂Ω, the dualization is straightforward provided
the operators are true surface differential operators. Indeed, the definition of the adjoint operator entails no
boundary term in that case because, ∂Ω being a boundary, it has no boundary itself, i.e., ∂∂Ω = 0.

In many cases in practice, without loss of generality, the boundary trace operators ∂mB̃ and ∂mC̃ can be
written as the composition of a trace operator P : M(Ω) → P2(∂Ω) independent of u and m, and true surface

differential operators
{

∂mB̃P(u,m)
}

(·) : P2(∂Ω) → B2(∂Ω) and
{

∂mC̃P(u,m)
}

(·) : P2(Ω) → C2(∂Ω) so that

the last two term in (15) can be rewritten

〈

{

∂†
uC
}

(u†),
{

∂mB̃P

}

(P(δm))
〉

B2(∂Ω)
−
〈

{

∂†
uB
}

(u†),
{

∂mC̃P
}

(P(δm))
〉

C2(∂Ω)

and, equivalently, in terms of the corresponding adjoint operators,

〈{

∂†
mB̃P

}

({

∂†
uC
}

(u†)
)

,P(δm)
〉

P2(∂Ω)
−
〈{

∂†
mC̃P

}

({

∂†
uB
}

(u†)
)

,P(δm)
〉

P2(∂Ω)
.

The Gâteaux derivative of J finally writes

δJ = −
〈{

∂†
mF
}

(u†), δm
〉

M2(Ω)
−
〈{

∂†
mB̃P

}

({

∂†
uC
}

(u†)
)

−
{

∂†
mC̃P

}

({

∂†
uB
}

(u†)
)

,P{δm}
〉

P2(∂Ω)

:= 〈j′Ω, δm〉M2(Ω) + 〈j′∂Ω,P{δm}〉P2(∂Ω) , (16)

with the bulk sensitivity to model perturbations

j′Ω := −
{

∂†
mF
}

(u†), (17)

and the boundary sensitivity to model trace perturbations

j′∂Ω :=
{

∂†
mB̃P

}

({

∂†
uC
}

(u†)
)

−
{

∂†
mC̃P

}

({

∂†
uB
}

(u†)
)

. (18)

These kernels gradients have the same interpretation than h′ and k′ as sensitivities, but now for model per-
turbations δm rather than state perturbations δu.

The classical result
{DmJ } (δm) = 〈j′Ω, δm〉M2(Ω) .

is obtained either when the traces P(δm) vanish, or when the boundary gradient j′∂Ω vanishes.

When the model parameter only lives on the boundary ∂Ω, it is reasonable to consider that the direct operator
F does not depend onm. Moreover the boundary traces ∂mB : M(∂Ω) → B2(∂Ω) and ∂mC : M(∂Ω) → C2(∂Ω)
are in this case purely boundary operators and there is no need to introduce a model perturbation trace. In
this particular case, the directional derivative (12) can be expressed in the model space as

{DmJ } (δm) = −
〈{

∂†
mB
} ({

∂†
uC
}

(u†)
)

−
{

∂†
mC
} ({

∂†
uB
}

(u†)
)

, δm
〉

M2(∂Ω)

:= 〈j′∂Ω, δm〉M2(∂Ω) . (19)

5. Time-harmonic scattering problems

The theoretical concepts introduced so far have been kept general. A methodology to apply them to specific
boundary problems is now presented in this section. In order to cover a broad spectrum of situations, scattering
problems in three different physics are treated in detail. This section is then followed by a numerical illustration
in section 6.

Elastic, electromagnetic and acoustic time-harmonic wave propagation problems obey respectively Navier’s
[3, 33], Maxwell’s [11, 16, 21, 1, 5, 23] or Helmholtz’s [24, 14, 26, 19, 15, 17, 4] equations. Whereas Navier’s
equations are specific to elastic problems and Maxwell’s equations to electromagnetic problems, Helmholtz’s
equations are more generic and could be used to cover problems in any of the three physics, under some
assumptions. In the time-harmonic regime at pulsation ω (with convention +iωt), a wave propagation problem
can be formalized as a boundary value problem with a zeroth order space derivative term proportional to the
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State variable u Model parameter m Direct operator F(u,m)

Helmholtz wave field u slowness squared s2 div (grad (u)) + ω2s2u

Maxwell
electric field

magnetic field

e

h

permittivity

permeability

ǫ

µ





−iωǫ curl ()

curl () iωµ









e

h





Navier displacement field u

1st Lamé parameter

2nd Lamé parameter

density

λ

µ

ρ

div (σ(u)) + ω2ρu

with σ = λtrǫI + 2µǫ

and ǫ = 1
2

(

grad (u) + gradT (u)
)

Table 1: States variables, model parameters and direct state operators for Helmholtz’s, Maxwell’s and Navier’s equations in the
time-harmonic regime at pulsation ω (with convention +iωt).

square of the pulsation, plus a second order space derivative derivative term. State variables, model parameters
and direct operators of the three problems are given in Table 1.

The direct operators listed in Table 1 are all linear in u, i.e., {∂uF(u,m)} (δu) = F(δu,m), and hermitian in
u, i.e., ∂†

uF = ∂uF , where the upper bar denotes complex conjugation. The adjoint operators ∂†
uF (6) are

obtained by making successively two integrations by parts, (see Appendix A.1). On the other hand, the direct
operators in Table 1 are not linear in m, i.e., {∂mF(u,m)} (δm) 6= F(u, δm), and can also not be hermitian as
their co-domain is in general different from their domain. The m-adjoint operators ∂†

mF are given in Table 2.
For Helmholtz’s and Maxwell’s case, they are obtained without integration by parts, as the direct operator
has no spatial derivative of m. In Navier’s case, a single integration by parts is sufficient, due the first order
spatial derivative of the Lamé parameters λ and µ that appears in the operator (see Appendix A.2 for details).

Model parameter m Adjoint operator
{

∂†
mF
}

(u†)

Helmholtz slowness squared s2 ω2 uu†

Maxwell
permittivity

permeability

ǫ

µ

iω e · e†

−iω h · h†

Navier

1st Lamé parameter

2nd Lamé parameter

density

λ

µ

ρ

− div (u) div
(

u†
)

−2 ǫ(u) : ǫ(u†)

ω2 u · u†

Table 2: Adjoint w.r.t the model parameters m of the operators given in Table 1.

It is interesting to note that the m-adjoint operators
{

∂†
mF
}

(u†) (and thus the bulk sensitivities j′Ω, as of
(17)) are, up to a constant factor, always the product of the direct and the adjoint fields. As mentioned
earlier, the adjoint field u†(y) carries information about the effect on J of a normalized local perturbation at
y (i.e., {∂mF} (δm) = δ(x − y) implies δJ = u†(y)), whereas the field u(y) is the actual magnitude of the
corresponding state perturbation. The functional J is therefore sensitive to a model perturbation δm at x if
both u(y) and u†(y) are sufficiently large. The fact that bulk sensitivities are linear in u directly follows from
the fact that F , and thus ∂mF , are linear in u.

5.1. Direct and adjoint boundary conditions

The derivation of the adjoint operators ∂†
uF in Appendix A.1 show that the boundary term

[

u†, δu
]

∂uF
has

the same structure for all three wave equations

[

u†, δu
]

∂uF
=

∫

∂Ω

(

T1(u†) T0(u†)

)





0 −1

1 0









T1(δu)
T0(δu)



 d∂Ω

where the trace operator T1 involves a first order spatial derivatives, whereas the trace operator T0 does not.
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In Maxwell’s case, there exist two equivalent ways to express the boundary term, and hence two definitions for
the traces, according to whether h is regarded as a spatial derivative of e (e-formulation) or the opposite (h-
formulation). Navier’s equations yield two zeroth order traces orthogonal to each other, so that the boundary
term can be split into two parts that can be studied separately. The analytic expressions of these traces are
listed in Table 3 in terms of the standard geometric trace operators defined as follows: the normal derivative
∂
∂n

:= n̂ ·grad (), the normal and tangential components, γn() := n̂ (n̂·) and γT () := −n̂×(n̂×), γn()+γT () =
1, and finally the orthogonal tangential component γt() := n̂×.

T1(u,m) T0(u)
Helmholtz ∂u

∂n
u

Maxwell(-e) γt(h) γT (e)

Maxwell(-h) γt(e) γT (h)

Navier σ(u) · n̂ γT (u) and γt(u)

Table 3: First order trace T1 and zeroth order trace T0 appearing in the boundary term
[

u†, δu
]

∂uF
for Helmholtz’s, Maxwell’s

and Navier’s equations in time-harmonic regime.

The direct, adjoint, m-adjoint and boundary operators being now determined for the three wave propagation
problems at hand, one can proceed and establish the adjoint problem with boundary perturbation (11). It
is first noted that the boundary perturbations ∂uB and ∂uC are dictated by the physics of the considered
problem, and it is customary that they can be expressed as a linear combination of boundary operators T0 and
T1 obtained above. The first step to establish (11) is to find a pair of adjoint boundary operators ∂†

uB and ∂†
uC

that satisfy (10). To that purpose, it is also natural to look for adjoint operators that are linear combinations
of T0 and T1 [9], so that one shall write altogether

∂uB = b1 T1 + b0 T0 and ∂uB† = b†1 T 1 + b†0 T 0,

∂uC = c1 T1 + c0 T0 and ∂uC† = c†1 T 1 + c†0 T 0

These direct and adjoint boundary conditions depend thus on the model parameter m not only through the

b
(†)
k (m) and c

(†)
k (m) coefficients, but also through the first order trace T1 (cf. Table 3).

Using a matrix formalism

T (u) :=
(

T1(u) T0(u)
)T

, b(†) :=
(

b
(†)
1 b

(†)
0

)T

and c(†) :=
(

c
(†)
1 c

(†)
0

)T

,

they can be written compactly

{∂uB} (δu) = bTT (δu) and
{

∂†
uB
}

(u†) = T T (u†)b
†
,

{∂uC} (δu) = cTT (δu) and
{

∂†
uC
}

(u†) = T T (u†)c†

and the boundary term as
[

u†, δu
]

∂uF
=

∫

∂Ω

T T (u†)A T (δu) d∂Ω

with

A =





0 −1

1 0



 .

Condition (10) now reads

[

u†, δu
]

∂uF
=
〈{

∂†
uB
}

(u†), {∂uC} (δu)
〉

C2(∂Ω)
−
〈{

∂†
uC
}

(u†), {∂uB} (δu)
〉

B2(∂Ω)

⇔
∫

∂Ω

T T (u†)A T (δu) d∂Ω =

∫

∂Ω

(

T T (u†)b
†
)

(

cTT (δu)
)

−
(

T T (u†)c†
) (

bTT (δu)
)

d∂Ω

⇔
∫

∂Ω

T T (u†)A T (δu) d∂Ω =

∫

∂Ω

T T (u†)
(

b
†
cT − c†bT

)

T (δu) d∂Ω
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which reduces to a simple matrix equation

A = b
†
cT − c†bT

or explicitly




0 −1

1 0



 =





b
†

1c1 − c†1b1 b
†

1c0 − c†1b0

b
†

0c1 − c†0b1 b
†

0c0 − c†0b0



 . (20)

Specified boundary performance. The operators ∂uB and ∂uC are in general known from the problem statement.
Equation (20) can then be solved to express the coefficients of the adjoint operators in terms of the known
coefficients of the direct operators [9]





c†1 c†0

b
†

1 b
†

0



 =
1

b0c1 − b1c0





c1 c0

b1 b0





so that the adjoint operators are

∂†
uB =

1

b0c1 − b1c0
∂uB and ∂†

uC =
1

b0c1 − b1c0
∂uC,

completing so the formulation of the adjoint problem with boundary perturbation (11) and of the Gâteaux
derivative of J (15).

In the particular cases considered here, further simplifications can be done that follow from the fact that the
operators F and B are hermitian and linear in u. One has thus successively

h
′
=
{

∂†
uF(u,m)

}

(u†) = {∂uF(u,m)} (u†) = F(u†,m)

and similarly for B

k
′
=
{

∂†
uB(u,m)

}

(u†) =
1

b0c1 − b1c0
{∂uB(u,m)} (u†) =

1

b0c1 − b1c0
B(u†,m),

so that the adjoint problem (11) can remarkably be written in terms of the direct operators

{

F(u†,m) = h
′
,

B(u†,m) = (b0c1 − b1c0)k
′
.

Whenever the boundary trace operators are proportional to each other, i.e., ∂uC ∝ ∂uB, one has b0c1−b1c0 = 0
and the system (20) cannot be solved. The degeneracy comes from the fact that the observed trace ∂uC is
actually proportional to the imposed condition ∂uB = −∂mB (see (4)). The observed trace does therefore not
depend on the state perturbation δu, and the definition of an adjoint state on such regions is useless. The
degeneracy is resolved by substituting ∂uB = −∂mB to ∂uC in (5), and then by following the procedure as if
there were no boundary performance functional ∂uC defined on these regions (cf. paragraph below).

Unspecified boundary performance. When the performance functional J has no boundary term, the operator
∂uC is not defined. The system (20) is then under-determined and a supplementary condition can be imposed
arbitrarily. A convenient condition is

b0c1 − c0b1 = 1

since (20) then yields
∂†
uB = ∂uB and ∂†

uC = ∂uC
which also leads to an adjoint problem (11) written in terms of the direct operators.
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5.2. Boundary sensitivity to model parameters

The second step to establish (11) is the derivation of the operators ∂mB and ∂mC appearing in the directional
derivative (12). With the same matrix formalism as above, they read

{∂mB} (δm) = δbTT (u) + bT {∂mT (u)} (δm) and {∂mC} (δm) = δcTT (u) + cT {∂mT (u)} (δm),

and the two boundary terms of (12) can be successively modified as follows
〈{

∂†
uB
}

(u†), {∂mC} (δm)
〉

C2(∂Ω)
−
〈{

∂†
uC
}

(u†), {∂mB} (δm)
〉

B2(∂Ω)

=

∫

∂Ω

(

T T (u†)b
†
) (

δcTT (u) + cT {∂mT (u)} (δm)
)

−
(

T T (u†)c†
) (

δbTT (u) + bT {∂mT (u)} (δm)
)

d∂Ω

=

∫

∂Ω

T T (u†)
(

b
†
δcT − c†δbT

)

T (u) d∂Ω+

∫

∂Ω

T T (u†)
(

b
†
cT − c†bT

)

{∂mT (u)} (δm) d∂Ω

=

∫

∂Ω

T T (u†)
(

b
†
δcT − c†δbT

)

T (u) d∂Ω+

∫

∂Ω

T T (u†)A {∂mT (u)} (δm) d∂Ω.

The boundary term
[

u†, δm
]

∂mF
in (13), on the other hand, vanishes in Maxwell’s and Helmholtz’s cases

whereas it can be written in Navier’s case (cf. Appendix A.2)

[

u†, δm
]

∂mF
=

∫

∂Ω

T T (u†)A {∂mT (u)} (δm) d∂Ω.

Summing up all boundary terms of (12), which are also the left-hand side of (14), one obtains

〈{

∂†
uB
}

(u†), {∂mC} (δm)
〉

C2(∂Ω)
−
〈{

∂†
uC
}

(u†), {∂mB} (δm)
〉

B2(∂Ω)
−
[

u†, δm
]

∂mF

=

∫

∂Ω

T T (u†)
(

b
†
δcT − c†δbT

)

T (u) d∂Ω,

where it is to note that the terms in δm have canceled out. The modified boundary operators can thus be
identified using (14), and they are simply given by

{

∂mB̃
}

(δm) = δbTT (u) and
{

∂mC̃
}

(δm) = δcTT (u).

The coefficients b0(m), c0(m) and b1(m), c1(m) are usually simple functions, i.e., they involve no derivative
on m. Their perturbation are then proportional to δm

δb =
∂b

∂m
δm and δc =

∂c

∂m
δm

and the boundary sensitivity to model perturbation (18) is obtained by factorization

j
′
∂Ω = T T (u†)

(

b
† ∂cT

∂m
− c†

∂bT

∂m

)

T (u)

=
1

b0c1 − b1c0
T T (u†)

(

b
∂cT

∂m
− c

∂bT

∂m

)

T (u),

or explicitly

j
′
∂Ω =

1

b0c1 − b1c0
T T (u†)





b1
∂c1
∂m

− c1
∂b1
∂m

b1
∂c0
∂m

− c1
∂b0
∂m

b0
∂c1
∂m

− c0
∂b1
∂m

b0
∂c0
∂m

− c0
∂b0
∂m

.



T (u). (21)

Similar to the bulk sensitivity j
′
Ω (cf. Table 2), the boundary sensitivity j

′
∂Ω is proportional to the product of

traces of the direct and the adjoint fields. Examples of boundary sensitivities j′∂Ω corresponding to particular
pairs of direct and performance boundary traces B and C are listed in Table 4. The chosen examples correspond
to specific physically or mathematically grounded choices for the coefficients b1(m), b0(m), c1(m) and c0(m),
which cover a large range of the situations encountered in practical modelling problems.
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Unspecified boundary performance. Whenever C is not defined, it can be freely chosen. In the previous subsec-
tion, the additional condition b0c1 − c0b1 = 1 was shown to be a natural choice. Depending on the value of b0
and b1, the boundary sensitivity (21) can be given a more or less compact form if the coefficients c0 and c1 are
chosen appropriately on basis, e.g., of the examples listed in Table 4 for some frequent boundary conditions.

Model parameter m b1 b0 c1 c0 j′∂Ω

Impedance z 1 z 0 −1 + T0(u)T0(u†)

Admittance y y 1 1 0 − T1(u)T1(u†)

Dirichlet z 0 z z−1 0 −z−1
[

T0(u)T1(u†) + T1(u)T0(u†)
]

Neumann y y 0 0 −y−1 y−1
[

T0(u)T1(u†) + T1(u)T0(u†)
]

Mixed α α α (2α)−1 −(2α)−1 α−1
[

T0(u)T0(u†)− T1(u)T1(u†)
]

Table 4: Boundary sensitivities j′
∂Ω

for particular pairs of direct and performance boundary trace B = b1T1 + b0T0 and C =
c1T1 + c0T0, i.e. for given expressions of the coefficients b1(m), b0(m), c1(m) and c0(m) as functions of m.

5.3. Sobolev gradient kernel for scalar model parameters

Bulk (cf. Table 1) and boundary (cf. Table 4) model parameters have been considered in the last two sections.
Both are scalar parameters and, in view of their physical meaning, their distribution can be assumed to belong
to L2(Ω) and L2(∂Ω) spaces respectively, or to more regular subspaces of them. This choice of an appropriate
representation space for model parameters is part of the modelling and three examples are discussed below.

1. If there is no reason for a bulk model parameter m to exhibit a smooth distribution, one is led to choose
M = M2(Ω) = L2(Ω). The boundary trace of the model parameter hardly makes sense in that case,
and the boundary sensitivity thus vanishes. The inner product in M is naturally chosen to be the inner
product in L2(Ω), so that one has by definition of the gradient kernel

δJ = {DmJ } (δm) = 〈j′, δm〉L2(Ω) .

Equation (16) then gives

δJ = 〈j′Ω, δm〉M2(Ω) = 〈j′Ω, δm〉L2(Ω)

and hence, by identification,
j′ = j′Ω. (22)

2. Similarly, the distribution of a not particularly smooth boundary model parameter m will be sought
in M = M2(∂Ω) = L2(∂Ω). The inner product in M is then naturally chosen as the inner product in
L2(∂Ω), so that one has by definition of the gradient kernel

δJ = {DmJ } (δm) = 〈j′, δm〉L2(∂Ω) ,

and (19) gives

δJ = 〈j′∂Ω, δm〉M2(∂Ω) = 〈j′∂Ω, δm〉L2(∂Ω)

so that one ends up, by identification, with

j′ = j′∂Ω. (23)

3. Now if the model parameter m is expected to have regularity, e.g. due to its physical meaning, its
distribution can be sought in the space M = H1(Ω). The inner product in M is then chosen as the
natural inner product in H1(Ω), i.e.,

〈q, p〉M := 〈q, p〉L2(Ω) + α1 〈grad (q) ,grad (p)〉L3

2
(Ω) .
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with α1 a strictly positive parameter. From (16), one has

〈j′, δm〉L2(Ω) + α1 〈grad (j′) ,grad (δm)〉L3

2
(Ω) = 〈j′Ω, δm〉L2(Ω) + 〈j′∂Ω,P(δm)〉L2(∂Ω) ,

which is the weak form of a boundary value problem that can be solved for the gradient j′. Considering
that only the Dirichlet trace of δm is involved, i.e., P(δm) = δm, the Euler-Lagrange equations of this
boundary value problem are







−α1div (grad (j′)) + j′ = j′Ω,

α1
∂j′

∂n
= j′∂Ω.

(24)

Solving (24) can be regarded as a smoothing, or more generally as a preconditioning, of the classical L2

gradients (22) and (23). The obtained solution is called a Sobolev gradient kernel [5, 20, 27, 28, 36].

6. Numerical illustration

This section illustrates the theoretical results exposed above, in the case of the Helmholtz equation. A typical
performance functional in imaging applications is the distance between a predicted wave field u and measure-
ments d recorded at a set of points xr. Choosing this distance as the least square norm, one has

H(u) =
1

2

∑

r

|u(xr)− dr|2 .

This performance functional does however not integrate enough information in practice, and multiple emitters
are often considered successively. The performance functional then becomes

J (s2) =
1

2

∑

e

∑

r

|ue(xr)− de,r|2

where ue denotes the direct wave field associated with the emitter e.

The geometrical setting of this application example consists of a cylinder-shaped inclusion Ωc embedded in a
square background medium Ω0 with emitter/receiver arrays disposed on both sides, Figure 1. (More elaborate
inclusions—non convex, non connected, non smooth—have also been considered. Because the results do not
show different behavior, only the simplest cylinder-shaped inclusion is considered in this paper.) The bulk
model property in this problem is the squared slowness s2, which is by definition the inverse of the wave
squared velocity.

xr

xe

L

HHa

r

Figure 1: Geometrical setting of this application example: ne = 11, xe = 5, Ha = 15, nr = 11, xr = 20, H = 25, L = 25, r = 2.5.
The pulsation ω is set to 2π, so that the reference wavelength is λ̃0 = 1/s̃0 = 1. The background and the cylinder domain overlap,
i.e., Ω0 ∩ Ωc = Ωc.
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The set of direct fields ue are caused by point source emitters located at xe ∈ Ω0, and are the solutions of the
partial differential equation

div (grad (ue)) + ω2s2ue = δ(x− xe).

The unbounded propagation domain is modeled by means of an absorbing boundary condition

∂ue

∂n
+ β0(s

2)ue = 0

imposed on the boundary ∂Ω0 of the computational domain. For simplicity, a zeroth order absorbing condition
has been chosen, for which the relationship β0(s

2) := iω
√
s2 holds. The scattering cylinder can be modeled in

two different ways. If the cylinder is made of a highly penetrable material, the propagation equations is solved
explicitly inside the cylinder, and the computational domain is Ω = Ω0. If on the other hand the cylinder is
made of a weakly penetrable material, it is represented by means of an impedance boundary condition

∂ue

∂n
+ βcue = 0

imposed on the boundary ∂Ωc of the cylinder, and the computational domain is then Ω = Ω0 \ Ωc.

The distribution of bulk model parameters s2c in the cylinder and/or of s20 in the background medium are
unknown, as well as the distribution of the boundary material parameters βc and β0. The minimization of
the performance functional aims at determining the model parameter distribution, both in the bulk and on
the boundaries, that yields the best match of the state space model with measurements. Different modeling
configurations have been considered to highlight the specific role of the bulk and the boundary terms in the
evaluation of the directional derivatives and of the gradient kernels. The unknown model property is either
the homogeneous squared slowness s2c of the cylinder assumed penetrable in section 6.1, the homogeneous
equivalent boundary impedance βc of the cylinder assumed impenetrable in section 6.2, the homogeneous
squared slowness s20 of the background medium knowing all cylinder properties in section 6.3, or finally the
squared slowness distribution s20(x) of the background space with no a priori knowledge of the geometry of
the scattering inclusion in section 6.4.

In this academic illustration of the theory, real measurement data is not available. The measurement values
used in the performance functional J are obtained from the simulation of a reference problem, with specific
values of the material parameters, called true values and denoted with a tilde symbol. In all considered
examples, the systematic steps of the adjoint state method are as follows, in terms of a computational domain
Ω, a bulk model parameter s2 and a boundary model parameter β that are defined case by case:

1. Find the direct states ue obeying the direct problem






div (grad (ue)) + ω2s2ue = δ(x− xe) in Ω

∂ue

∂n
+ βue = 0 on ∂Ω.

2. Find the adjoint states u†
e obeying the adjoint problem (11)















div
(

grad
(

u†
e

))

+ ω2s2u†
e =

∑

r

(ue(xr)− de,r)δ(x− xr) in Ω

∂u†
e

∂n
+ βu†

e = 0 on ∂Ω.

The source term in the adjoint problem is the gradient kernel of the bulk performance functional (h′),
whose computation of is done explicitly in Appendix B.

3. Once the direct and adjoint states are known, the directional derivatives with respect to the different
model parameters can be evaluated, as well as the associated gradient kernels :

• directional derivative w.r.t. β, and associated gradient kernel by identification

δJ = {DβJ (β)} (δβ) =
∑

e

〈

u†
e, δβ ue

〉

L2(∂Ω)
hence j

′
=
∑

e

ueu
†
e

• directional derivative w.r.t s2 and associate gradient kernel by identification

δJ =
{

Ds2J (s2)
}

(δs2) = −
∑

e

〈

u†
e, ω

2 δs2 ue

〉

L2(Ω)
hence j

′
= −ω2

∑

e

ueu
†
e
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• the directional derivative w.r.t s2, with β a function of s2

δJ =
{

Ds2J (s2)
}

(δs2) = −
∑

e

〈

u†
e, ω

2 δs2 ue

〉

L2(Ω)
+
∑

e

〈

u†
e,

∂β

∂s2
δs2 ue

〉

L2(∂Ω)

and the H1-Sobolev gradient j′ as the solution of the boundary value problem



















−α1div
(

grad
(

j
′
))

+ j
′
= −ω2

∑

e

ueu
†
e in Ω,

α1
∂j

′

∂n
=

∂β

∂s2

∑

e

ueu
†
e in ∂Ω.

For the sake of simplicity, the pulsation ω has been set to 2π, so that the wavelength is λ = 1/s. All partial
differential equations are solved using the finite element method with 5th order hierarchical elements, and a
characteristic mesh size of h = 1/4. The measurements d are obtained with the same model, with the true
values of the model parameters and a refined mesh of characteristic size h = 1/5.

6.1. Highly penetrable cylinder in a known background

The true solution of this reference problem is depicted in Figure 2 for a particular source, with s̃2c = 1.2 and
s̃20 = 1 the true value of the slowness squared in the cylinder and the background medium, respectively.

0.05

0.0

−0.05

(a) Re (u)

0.05

0.0

−0.05

(b) Im (u)

Figure 2: True direct field u for a highly penetrable cylinder and for a single source. The background and cylinder slowness
squared are respectively s̃2c = 1.2 and s̃2

0
= 1.

In this first example, it is assumed that geometry and background medium are known, so that only the slowness
squared of the cylinder is left unknown. Assuming it spatially uniform, one has s2c ∈ R

+ and

m(x) := s2(x) =

{

s̃20 for x ∈ Ω0,

s2c for x ∈ Ωc,
and thus δm(x) := δs(x) =

{

0 for x ∈ Ω0,

δs2c for x ∈ Ωc,

where Ω0, which denotes the closure of Ω0, i.e., Ω0 := Ω0 ∪ ∂Ω0, emphasizes the fact that both the bulk of the
background region Ω0 and the transparent boundary condition on ∂Ω0 are depending on the model parameter
s20. In this first example however, the perturbation δs2(x) vanishes on the boundary ∂Ω0, and all boundary
terms in (12) vanish, leaving only the bulk term. The performance functional and its Gâteaux derivative reduce
in this case to the real-valued functions J (m(x)) = J (s2c) and DmJ (m(x)){δm(x)} = Ds2c

J (s2c)δs
2
c , which

are plotted in Figure 3 for a range of values of s2c around the true value s̃2c = 1.2. For validation purposes,
the derivative Ds2c

J (s2c) is computed not only by the adjoint state method, but also by the finite difference
approximation (3) with ǫ = 10−5. The two evaluations give results close to each other. The convergence of
the finite difference approximation is further analyzed in section 6.3.
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Figure 3: Performance functional (•) and its derivative for a highly penetrable cylinder whose slowness squared s2c varies around
the true value s̃2c = 1.2. The derivatives are computed by the adjoint state method (•) and by an approximation of the definition
(3) (with ǫ = 10−5) (×).

6.2. Weakly penetrable cylinder in a known background

In this second example, the cylinder is considered weakly penetrable, and modeled by means of an equivalent
impedance βc := iω

√

s̃2c − iαc where αc ∈ R
+ is a radially constant boundary parameter that dictates the

penetrability of the cylinder. The model parameter writes

m(x) := αc(x) = αc for x ∈ ∂Ωc and thus δm(x) := δαc(x) = δαc for x ∈ ∂Ωc.

In contrast with the previous case, there is here no bulk contribution in (12), because αc is a boundary
parameter.

The true direct field, computed with a true penetrability α̃c = 100, is depicted in Figure 4 for a particular
source. The receiver array and the emitter array are placed on the same side of the cylinder in this case
because, by an effect of shadowing, there is very little signal on the opposite side of the emitters.
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0.0

−0.08

(a) Re (u)

0.08

0.0

−0.08

(b) Im (u)

Figure 4: True direct field u for a weakly penetrable cylinder and for a single source. The background and cylinder slowness
squared are respectively s̃2c = 1.2 and s̃2

0
= 1 while the penetrability is α̃c = 100.

The performance functional and its Gâteaux derivative are plotted in Figure 5 for a range of values of αc

around the true value α̃c = 100.
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Figure 5: Performance functional (•) and its derivative for a weakly penetrable cylinder whose penetrability αc varies around the
true value α̃c = 100. The derivatives are computed by the adjoint state method (◦) and by an approximation of the definition
(3)(with ǫ = 10−5) (×).

6.3. Background medium around a known highly penetrable cylinder

We consider now the case where the background slowness squared s20 is unknown, whereas all properties of the
cylinder are known. One has

m(x) := s2(x) = s20 for x ∈ Ω0 \ Ωc and thus δm(x) := δs2(x) = δs20 for x ∈ Ω0 \ Ωc.

As the absorbing boundary condition β0 = iω
√

s20 on the outer boundary ∂Ω0 also depends on the slowness
squared s0 of the background domain, both the bulk and the boundary terms of the directional derivative (12)
are present in this case. The performance functional and its Gâteaux derivative are plotted in Figure 6 for a
range of values of s20 around the true value s̃20 = 1.0, in the case of a highly (s̃2c = 1.2, top row) and a weakly
(α̃2

c = 100, bottom row) penetrable cylinder.

Figure 6 shows that the boundary contribution is in this example much smaller than the bulk contribution.
Neglecting it would however introduce a non-negligible error in the analytic evaluation of the derivative by
means of the adjoint state method. To show this, the difference between the analytic and the finite difference
evaluations is plotted in Figure 7 for decreasing values of ǫ, with and without the boundary contribution. This
is done for a highly penetrable cylinder (s̃2c = 1.2), and for a weakly penetrable cylinder (α̃c = 100) with a
background slowness squared s20 = 0.93, whereas the true value is s̃20 = 1.0. As the finite difference converges
towards the exact value of the derivative, up to numerical errors, as ǫ tends towards zero, it is indeed observed
that the difference with analytic derivative decreases down to zero only when the boundary term is duly taken
into account. For very small values of ǫ, the finite difference (3) becomes however sensitive to round-off errors,
which explains the increasing tail in Figure 7.

6.4. Unknown geometry

The case is now considered where nothing is a priori known about the inclusion, not even its cylindrical shape.
The measurement data are again obtained from the computation of a true problem with a highly penetrable
cylinder (s̃20 = 1.0 and s̃2c = 1.2). The unknown squared slowness is in this case a distribution over Ω0, and
one is led by physical considerations to consider that this distribution is to be sought in a space of relatively
smooth function, for instance in this example s2 ∈ H1(Ω). Choosing then the natural inner product of H1(Ω),
the gradient j′ is obtained as the solution of the boundary problem (cf. section 5.3)







−α1div (grad (j′)) + j′ = j′Ω in Ω0,

α1
∂j′

∂n
= j′∂Ω

∂β0

∂s2
in ∂Ω0,
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Figure 6: Performance functional (•) and its derivative for a highly penetrable cylinder (s̃2c = 1.2)(top row) or a weakly penetrable
cylinder (α̃c = 100)(bottow row) embedded in a background medium whose slowness squared s2

0
varies around the true value

s̃2
0
= 1.0. The derivatives are computed by the adjoint state method (•, ◦) and by an approximation of the definition (3) (with

ǫ = 10−5) (×). The bulk (•) and boundary (◦) contributions of the adjoint state method are plotted separately.

The bulk and the boundary contributions to the gradient j′ can be evaluated independently by setting suc-
cessively to zero the boundary sensitivity j′∂Ω and the bulk sensitivity j′Ω. Both contributions are depicted
in Figure 8 for different values of the new parameter α1, which defines the relative weight of the zeroth and
the first order terms in the definition of the norm of H1(Ω). The distinctive properties of the Sobolev gra-
dient kernel j′ are here illustrated by computing it at an initial guess, which is here naturally chosen as an
homogeneous empty (i.e. without any inclusion) background, i.e.,

m(x) := s2(x) = s̃20, for x ∈ Ω0.

As in the previous example, the boundary contribution is much smaller than the bulk contribution. It is also
more or less localized near the boundary ∂Ω0, depending on the value of α1. The parameter α1 controls thus
how strongly the sensitivities j′Ω and j′∂Ω are smoothed, as can be seen in Figure 8. This emphasizes the
importance and the practical meaning of the choice of an appropriate inner product. In medium imaging in
the time-harmonic regime, it is well-known that gradients are resolved at the wavelength scale. Consequently,
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Figure 7: Difference between the approximation of (3) and the adjoint state method with (left column) and without (right
column) the boundary contribution for a highly penetrable cylinder (s̃2c = 1.2)(top row) and for a weakly penetrable cylinder
(α̃c = 100)(bottom row) when the unknown background slowness squared is s2

0
= 0.93 while the true value is s̃2

0
= 1.0. The

dashed blue line (−−) is the amplitude of the boundary contribution in the adjoint state method.

the smoothing effect is apparent when the smoothing length defined as lc := 2π
√
α1 is close to the wavelength

λ0 = 1. On the other hand, the gradient tends to become spatially uniform when the smoothing length is
comparable to the size of the domain.

Gradient-based optimization techniques are often used in the context of full waveform inversion. With such
techniques, the model parameterm is iteratively updated in a direction that depends on the evaluated gradient.
An appropriate choice of the inner product is thus pivotal, as it may contribute to select gradients with
interesting properties. For instance, [36] proposes to modify the smoothing length of the gradient during the
optimization process in order to incorporate progressively smaller details of the medium, whereas [35] proposes
to use a non uniform anisotropic inner product to incorporate prior knowledge about the model parameter.

7. Conclusion

The adjoint state method is an elegant tool to compute derivatives efficiently when the performance functional
depends on the model parameters through a state variable, being itself the solution of a partial differential
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problem. Derivatives can indeed be evaluated in that case independently of any model perturbations at the cost
of solving one single extra linear system. We showed in this paper that the adjoint state method can be extended
to the problems where the model parameters modify not only the bulk properties of the computational domain
but also the boundary conditions or boundary terms in the model. We also demonstrated how to evaluate
gradient kernels and Sobolev gradients from Gâteaux derivatives in the presence of boundary perturbations.

Three generic time-harmonic wave scattering problems (acoustic, electromagnetic and elastic waves) with
model dependent boundary conditions have been treated in detail as application examples for the developed
theory. We showed that with appropriate definitions, the adjoint state method can be formulated in a unified
way for the three problems, and for a large family of usual boundary conditions. Finally, the whole approach
has been illustrated with an acoustic numerical test case, with boundary and bulk perturbations acting either
independently or simultaneously. In particular, we showed that the computed derivatives are inexact when
the boundary contribution is neglected.
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Appendix A. Adjoint operators

Appendix A.1. State space

Appendix A.1.1. Helmholtz

The adjoint of the Gâteaux derivative w.r.t u of the Helmholtz’s operator is

∂†
uF = div (grad ()) + ω2s2 = ∂uF

while the boundary term is

[

u†, u
]

∂uF
=

∫

∂Ω

(

∂u†

∂n
u†

)





0 −1

1 0









∂u
∂n

u



 d∂Ω

where ∂
∂n

:= n̂ · grad () denotes the normal derivative.

Indeed

〈

u†, ∂uF{u}
〉

L2(Ω)
=

∫

Ω

u†div (grad (u)) dΩ+

∫

Ω

u†ω2s2u dΩ

=

∫

Ω

div
(

grad
(

u†
))

u dΩ+

∫

∂Ω

(

u† ∂u

∂n
− u

∂u†

∂n

)

d∂Ω+

∫

Ω

u†ω2s2u dΩ

=

∫

Ω

(

div (grad (u†)) + ω2s2u†
)

u dΩ+

∫

∂Ω

(

u† ∂u

∂n
− u

∂u†

∂n

)

d∂Ω.

Appendix A.1.2. Maxwell

The adjoint of the Gâteaux derivative w.r.t u of the Maxwell operator is

∂†
uF =





iωǫ curl ()

curl () −iωµ



 = ∂uF .

while the boundary term is

[

u†, u
]

∂uF
=

∫

∂Ω

(

γt(h
†
) γT (e

†)

)





0 −1

1 0









γt(h)

γT (e)



 d∂Ω (e-formulation)

=

∫

∂Ω

(

γt(e
†) γT (h

†
)

)





0 −1

1 0









γt(e)

γT (h)



 d∂Ω (h-formulation)
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where γT () := −n̂×(n̂×) denotes the tangential component and γt() := n̂× denotes the orthogonal tangential
component.

Indeed

〈

u†, ∂uF(u)
〉

L3

2
(Ω)×L3

2
(Ω)

=

∫

Ω

[

e† · (curl (h)− iωǫe)
]

dΩ+

∫

Ω

[

h
† · (curl (e) + iωµh)

]

dΩ

=

∫

Ω

[

−div
(

e† × h
)

+ curl
(

e†
)

· h− iωǫe† · e
]

dΩ

+

∫

Ω

[

−div
(

h
† × e

)

+ curl
(

h
†
)

· e+ iωµh
† · h

]

dΩ

=

∫

Ω

(

curl (e†)−iωµh†
)

· h dΩ+

∫

Ω

(

curl
(

h†
)

+iωǫe†
)

· e dΩ

−
∫

∂Ω

(

e† × h
)

· n̂ d∂Ω−
∫

∂Ω

(

h
† × e

)

· n̂ d∂Ω

and

[

u†, u
]

∂uF
= −

∫

∂Ω

(

e† × h
)

· n̂ d∂Ω−
∫

∂Ω

(

h
† × e

)

· n̂ d∂Ω

=

∫

∂Ω

e† · γt(h) d∂Ω−
∫

∂Ω

γt(h
†
) · e d∂Ω

=

∫

∂Ω

γT (e
†) · γt(h) d∂Ω−

∫

∂Ω

γt(h
†
) · γT (e) d∂Ω

=

∫

∂Ω

(

γt(h
†
) γT (e

†)

)





0 −1

1 0









γt(h)

γT (e)



 d∂Ω

or by symmetry

=

∫

∂Ω

(

γt(e
†) γT (h

†
)

)





0 −1

1 0









γt(e)

γT (h)



 d∂Ω.

Appendix A.1.3. Navier

The adjoint of the Gâteaux derivative w.r.t u of the Navier operator is

∂†
uF = div (σ()) + ω2ρ = ∂uF .

while the boundary term is

[

u†, u
]

∂uF
=

∫

∂Ω

(

σ(u†) · n̂ γn(u
†)

)





0 −1

1 0









σ(u) · n̂
γn(u)



 d∂Ω

+

∫

∂Ω

(

σ(u†) · n̂ γT (u
†)

)





0 −1

1 0









σ(u) · n̂
γT (u)



 d∂Ω

where γn() := n̂ (n̂·) denotes the normal component and γT () := −n̂×(n̂×) denotes the tangential component.
Indeed

〈

u†, ∂uF(u)
〉

L3

2
(Ω)

=

∫

Ω

u† · div (σ(u)) dΩ+

∫

Ω

ω2ρu† · u dΩ

=

∫

Ω

[

div
(

σ(u) · u†
)

− grad
(

u†
)

: σ(u)
]

dΩ+

∫

Ω

ω2ρu† · u dΩ

=

∫

Ω

div
(

σ(u) · u†
)

dΩ−
∫

Ω

grad (u) : σ(u†) dΩ+

∫

Ω

ω2ρu† · u dΩ
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=

∫

Ω

div
(

σ(u) · u† − σ(u†) · u
)

dΩ+

∫

Ω

div
(

σ(u†)
)

· u dΩ+

∫

Ω

ω2ρu† · u dΩ

=

∫

Ω

(div (σ(u†)) + ω2ρu†) · u dΩ+

∫

∂Ω

n̂ ·
(

σ(u) · u† − σ(u†) · u
)

d∂Ω

because the following identity holds

grad
(

u†
)

: σ(u) = grad
(

u†
)

:
(

λdiv (u) I + µ(grad (u) + gradT (u))
)

= λdiv
(

u†
)

div (u) + µgrad
(

u†
)

: (grad (u) + gradT (u))

= λdiv (u) div
(

u†
)

+ µgrad (u) : (grad
(

u†
)

+ gradT
(

u†
)

)

= grad (u) : σ(u†).

The boundary term can also be expressed as

[

u†, u
]

∂uF
=

∫

∂Ω

u† · σ(u) · n̂− u · σ(u†) · n̂ d∂Ω

=

∫

∂Ω

(

γn(u
†) + γT (u

†)
)

· σ(u) · n̂− (γn(u) + γT (u)) · σ(u†) · n̂ d∂Ω

=

∫

∂Ω

(

σ(u†) · n̂ γn(u
†)

)





0 −1

1 0









σ(u) · n̂
γn(u)



 d∂Ω

+

∫

∂Ω

(

σ(u†) · n̂ γT (u
†)

)





0 −1

1 0









σ(u) · n̂
γT (u)



 d∂Ω.

Appendix A.2. Model space

Appendix A.2.1. Helmholtz

The Gâteaux derivative of the Helmholtz operator w.r.t s2, their adjoints and the corresponding boundary
terms are respectively

{∂s2F} (δs2) = uω2δs2,
{

∂†
s2
F
}

(u†) = ω2uu† and
[

u†, δs2
]

∂
s2

F
= 0.

Indeed

〈

u†, {∂s2F} (δs2)
〉

L2(Ω)
=
〈

u†, uω2δs2
〉

L2(Ω)

=
〈

ω2uu†, δs2
〉

L2(Ω)
.

Appendix A.2.2. Maxwell

The Gâteaux derivative of the Maxwell operator w.r.t ǫ and µ and their adjoints are respectively

{∂ǫF} (δǫ) = −ieωδǫ
{

∂†
ǫF
}

(u†) = iωe · e†
[

u†, δǫ
]

∂ǫF
= 0

and

{∂µF} (δµ) = ihωδµ
{

∂†
µF
}

(u†) = −iωh · h†
[

u†, δµ
]

∂µF
= 0.

Indeed

〈

u†, {∂ǫF} (δǫ)
〉

L3

2
(Ω)×L3

2
(Ω)

=
〈

e†,−ieωδǫ
〉

L3

2
(Ω)

=
〈

iωe† · e, δǫ
〉

L2(Ω)

and

〈

u†, {∂µF} (δµ)
〉

L3

2
(Ω)×L3

2
(Ω)

=
〈

h†, iωhδµ
〉

L3

2
(Ω)

=
〈

−iωh† · h, δµ
〉

L2(Ω)
.
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Appendix A.2.3. Navier

The Gâteaux derivative of the Navier operator w.r.t ρ, λ and µ, their adjoints and the corresponding boundary
terms are

{∂ρF} (δρ) = uω2δρ
{

∂†
ρF
}

(u†) = ω2u · u†
[

u†, δρ
]

∂ρF
= 0

{∂λF} (δλ) = div ({∂λσ} (δλ))
{

∂†
λF
}

(u†) = −div (u) div
(

u†
) [

u†, δλ
]

∂λF
=

∫

n̂ · {∂λσ} (δλ) · u† d∂Ω

and

{∂µF} (δµ) = div ({∂µσ} (δµ))
{

∂†
µF
}

(u†) = −2ǫ(u) : ǫ(u†)
[

u†, δµ
]

∂µF
=

∫

n̂ · {∂µσ} (δµ) · u† d∂Ω

Indeed
〈

u†, {∂ρF} (δρ)
〉

L3

2
(Ω)

=
〈

u†, ω2δρu
〉

L3

2
(Ω)

=
〈

ω2u† · u, δρ
〉

L2(Ω)
〈

u†, {∂λF} (δλ)
〉

L3

2
(Ω)

=
〈

u†, div ({∂λσ} (δλ))
〉

=

∫

Ω

u† · div ({∂λσ} (δλ)) dΩ

=

∫

Ω

div
(

{∂λσ} (δλ) · u†
)

dΩ−
∫

Ω

grad
(

u†
)

: {∂λσ} (δλ) dΩ

= −
∫

Ω

div
(

u†
)

div (u) δλ dΩ+

∫

∂Ω

n̂ · {∂λσ} (δλ) · u† d∂Ω

=
〈

−div (u) div
(

u†
)

, δλ
〉

L2(Ω)
+

∫

∂Ω

n̂ · {∂λσ} (δλ) · u† d∂Ω

and similarly
〈

u†, {∂µF} (δµ)
〉

L3

2
(Ω)

=
〈

u†, div ({∂µσ} (δµ))
〉

=

∫

Ω

u† · div ({∂µσ} (δµ)) dΩ

=

∫

Ω

div
(

{∂µσ} (δµ) · u†
)

dΩ−
∫

Ω

grad
(

u†
)

: {∂µσ} (δµ) dΩ

= −
∫

Ω

2ǫ(u) : ǫ(u†)δµ dΩ+

∫

∂Ω

n̂ · {∂µσ} (δµ) · u† d∂Ω

=
〈

−2ǫ(u) : ǫ(u†), δµ
〉

L2(Ω)
+

∫

∂Ω

n̂ · {∂µσ} (δµ) · u† d∂Ω.

Appendix B. Gradient kernel of the least squared distance

Consider the least square distance

H(u) =
1

2

∑

r

|u(xr)− dr|2 .

Its Gâteaux directional derivative writes

{DuH(u)} (δu) = 1

2

∑

r

(u(xr)− dr) δu(xr) + (u(xr)− dr) δu(xr)

= Re
∑

r

(u(xr)− dr) δu(xr).

Then using the identity

δu(xr) =

∫

Ω

δu(x)δ(x− xr) dx,
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the gradient kernel is found as

{DuH(u)} (δu) = Re
∑

r

(u(xr)− dr)δu(xr)

= Re
∑

r

(u(xr)− dr)

∫

Ω

δu(x)δ(x− xr) dx

= Re

∫

Ω

∑

r

(u(xr)− dr)δ(x− xr) δu(x) dx

= Re

〈

∑

r

(u(xr)− dr)δ(x− xr), δu

〉

:= Re 〈h′, δu〉 .
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