
Probabilistic Engineering Mechanics
 

To: Prof. P.D. Spanos, Editor
--Manuscript Draft--

 
Manuscript Number:

Article Type: Full Length Article

Keywords: state formulation, complex eigenproblem, multiiple timescale spectral analysis,
resonant component, loading component, background, inertial

Corresponding Author: Margaux Geuzaine
University of Liège
Liège, BELGIUM

First Author: Margaux Geuzaine

Order of Authors: Margaux Geuzaine

Aksel Fenerci

Ole Andre Øiseth

Vincent Denoël

Abstract: Abstract The determination of the long-term extreme distribution for a wave-loaded
structure requires to compute the second order statistics of the responses and their
time derivatives under various short-term sea states. In a spectral context, these
statistics are typically obtained in the modal basis by integrating the cross-spectral
densities of the corresponding responses over the frequency. In this paper, a semi-
analytical approximation is developed for computing these integrals, in order to reduce
the computational cost of each short-term analysis. To do so, a state-space formulation
is considered for the equations of motion and the general framework provided by the
multiple timescale spectral analysis is implemented. It hinges on the existence of
distinct peaks in the integrands to express the variances and the covariances of the
modal state responses as the sum of two components with simple expressions: the
resonant and the loading component. The proposed approximation is validated on a
minimalistic example first and is then verified on a simplified model inspired by the
Bergsøysund Bridge, an actual floating pontoon bridge.

Suggested Reviewers: George Deodatis
deodatis@columbia.edu

Francesco Foti
francesco.foti@polimi.it

Knut Andreas Kvale
knut.a.kvale@ntnu.no

Antonina Pirotta
antonina.pirrotta@unipa.it

Ioannis Kougioumtzoglou
ikougioum@columbia.edu

Opposed Reviewers:

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



U
ni

ve
rs

it
é

de
Li

èg
e

To: Prof. P.D. Spanos, Editor

Liège, January 19th, 2022.

Re: Paper submission to Probabilistic Engineering Mechanics

Dear Prof. Spanos,

Please consider this submission as an interesting potential paper for the Probabilistic Engi-
neering Mechanics.

As you will readily discover, it concerns the extension of the multiple timescale spectral
analysis to wave-loaded structures. The original formulation of this method has actually
been presented in your journal. It has then been applied to a linear fractional viscoelastic
system in another of your publications. We therefore do believe it is the best medium to
disseminate the results of this work.

For the moment, the multiple timescale spectral analysis has mainly been applied to wind-
loaded structures which are typically excited in their quasi-static and resonant regimes.
The first novelty in this paper is related to the fact that wave-loaded structures are ex-
pected to respond in the inertial regime as well. The second novelty consists in adopting
a state formulation for the equations of motion, meaning that the associated eigenproblem
is complex. The background and the resonant components, which are well known in wind
engineering, are therefore revisited and generalized in this broader context.

We do very humbly and honestly believe this manuscript would be a fair contribution to
the advancement of knowledge in the field of Probabilistic Mechanics. While hoping this
submission will be received with enthusiastic and helpful reviews, of course with the exam-
ination level corresponding to your standards, on behalf of the authors, I wish to warmly
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Abstract8

The determination of the long-term extreme distribution for a wave-loaded structure requires to compute the

second order statistics of the responses and their time derivatives under various short-term sea states. In a spectral

context, these statistics are typically obtained in the modal basis by integrating the cross-spectral densities of

the corresponding responses over the frequency. In this paper, a semi-analytical approximation is developed for

computing these integrals, in order to reduce the computational cost of each short-term analysis. To do so, a state-

space formulation is considered for the equations of motion and the general framework provided by the multiple

timescale spectral analysis is implemented. It hinges on the existence of distinct peaks in the integrands to express

the variances and the covariances of the modal state responses as the sum of two components with simple expressions:

the resonant and the loading component. The proposed approximation is validated on a minimalistic example first

and is then verified on a simplified model inspired by the Bergsøysund Bridge, an actual floating pontoon bridge.

Keywords: state formulation, complex eigenproblem, multiiple timescale spectral analysis, resonant component,9

loading component, background, inertial10

Highlights:11

• The multiple timescale spectral analysis is applied to wave-loaded structures.12

• Semi-analytical approximations are provided for the modal state covariances.13

• They are decomposed into a resonant and a loading component (background/inertial).14

• Resorting to this approach drastically reduces the computational demand.15

1. Introduction16

In the past several decades, the design of very large floating structures has attracted considerable attention17

because they offer viable solutions to respond to many of our needs and problems [41, 14]. For instance, the18

crossing of wide and deep straits, as in Norway [32] and China [31], could not be completed without having recourse19

to floating bridges or tunnels [44, 8]. Floating facilities are also able to provide extensions for coastal areas where20

land reclamations are not economically or environmentally reasonable while floating solar platforms and energy21

hubs are expected to support the energy transition.22
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As long as no significant nonlinearities related to mooring effects or extreme conditions are considered —for23

example when an end-anchored floating bridge with discretely distributed pontoons such as the Bergsøysund Bridge24

in Norway is subjected to ordinary waves— the hydrodynamic analysis of very large floating structures can be25

performed more efficiently in the frequency domain than in the time domain [42, 43]. Indeed, it is no longer26

necessary to measure nor to simulate long time histories with short time steps in order to capture both the slow27

and the fast dynamics of the responses. In a spectral approach, the loading and the structure are defined in the28

frequency domain by means of power spectral densities and frequency response functions whose combined products29

give the power spectral densities of structural responses [29, 12].30

The variances of the response processes and their time derivatives are useful for determining the short-term31

extreme distribution [33] and accumulated damage [37]. They can be obtained by integrating the corresponding32

power spectral densities over frequency. But, even though the analysis is performed in the frequency domain using33

modal truncation techniques, this remains a computationally demanding operation because of two main issues. First,34

heavy computations have to be repeated at each integration point, as for instance the establishment of the matrix35

containing the cross-spectral densities of the loadings applied on the numerous structural degrees-of-freedom, or the36

projection of such large matrices into the modal basis. Second, computing the integral with a sufficient accuracy37

requires to use many closely spaced points, spread over a wide domain because the integrands typically feature38

several sharp and distant peaks related to the resonance of the structure in its multiple modes and to the particular39

energy content of the wave loads. Moreover, these short-term analyses have to be executed for many different40

sea states before being concatenated and weighted by their probability of occurence in order to provide long-term41

evaluations for the extreme distributions [3] and fatigue accumulations [34], which are necessary to ensure that the42

structure is designed properly and is expected to stay safe over its whole lifetime with a sufficiently high probability43

given the possible variation of the sea states in time [33].44

Over the years, many studies have explored the possibility to reduce this computational burden for various45

marine structures, such as floating offshore wind turbines [4] or floating bridges [18], by focusing on the long-term46

analysis and by using for instance the first and second order reliability methods, the inverse reliability method, or47

the environmental contour approach but also surrogate modelling or learning algorithms [17, 21, 45, 30, 22]. Apart48

from that, another way for improving the computational efficiency of the long-term analyses is to accelerate each of49

the many short-term analyses that have to be conducted. To do so, Giske et al. have recently proposed to estimate50

the cross-spectral densities of the loadings by using Fourier series [20]. But, although they are obtained much more51

rapidly than before, they still have to be projected into the modal basis for a lot of frequencies. This latter problem52

is thus tackled in the following paper by deriving semi-analytical approximations for the integrals at stake, which53

allow to drastically reduce the number of times such a time consuming operation is achieved.54

Davenport was the first to formulate such an approximate solution for the variances of the modal responses55

of a structure under buffeting wind loads [7]. Then, Gu [23] and Denoël [9] independently did the same for the56

covariances of the modal responses in a wind engineering context as well, in order to get the variances of the nodal57

responses in an efficient way through a complete quadratic combination scheme. At this point, however, some58

assumptions such as the replacement of the power and cross-spectral densities by a constant (white-noise) were59

not fully justified, mathematically speaking [10]. This was done later on when Denoël hinged on the existence of60
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well separated timescales in the buffeting responses to develop the multiple timescale spectral analysis [12]. This61

general framework is based on the perturbation theory and aims at expressing simple expressions to approximate62

the statistics of the responses very quickly with a controllable discrepancy [25].63

For the moment, though, it has mainly been used to deal with slightly damped wind-loaded structures which64

are typically excited in their quasi-static and resonant regimes, meaning that the statistics can be decomposed65

into a background and a resonant component [24, 11, 13]. The multiple timescale spectral analysis is specialized66

in this paper to the second order statistics of the responses of wave-loaded structures, with the major and new67

specificity that they might respond in the inertial regime as well. A dedicated approximation is therefore derived68

to capture this type of behavior. A second novelty presented in this paper consists in adopting a state formulation69

for the equations of motion as it allows to decouple the modal responses even though the hydrodynamic damping70

is considered [16, 26, 1]. Overall, new expressions are thus established in this paper, not only for the inertial71

component, but also for the background and the resonant components of the modal state covariances. To start,72

governing equations are presented in Section 3. Then, the multiple timescale spectral analysis is introduced, applied73

to the problem at hand and the resulting formulas are verified on a minimalistic example in Section 4. Illustrations74

are finally provided in Section 5 for a simplified 2D model inspired by the Bergsøysund Bridge.75

2. Nomenclature - Notations76

Lowercase and capital bold letters are respectively used for denoting vectors and matrices while italic letters77

are employed for their elements. The superscripts (.)
∗, (.)

ᵀ and (.)
† stand for the conjugate, the transpose and the78

conjugate transpose (hermitian) operators.79

3. Problem Statement80

3.1. State Space Formulation81

The dynamics of a linear elastic structure with N degrees-of-freedom subjected to sea waves is governed by a82

set of N second order differential equations whose Fourier transform reads83

[
Ks + iωCs − ω2Ms

]
x (ω) = fh (ω) (1)

where i is the imaginary unit, ω is the circular frequency, x (ω) and fh (ω) are two N × 1 vectors containing84

the frequency-domain representations of the structural displacements in every degree-of-freedom and the total85

hydrodynamic loads acting on each of them, respectively, while Ks, Cs, and Ms denote the N × N structural86

stiffness, damping and mass matrices which are typically real and symmetric within a finite element modelling87

framework [46, 2].88

Besides the total hydrodynamic actions are generally expressed in the frequency domain by89

fh (ω) = f (ω)−
[
Kh (ω) + iωCh (ω)− ω2Mh (ω)

]
x (ω) (2)

where the first term is due to the undisturbed waves and the other ones are originating from the interactions between90

the relative motion of the fluid and the structure which gives rise to additional elastic, viscous and inertial forces,91

as indicated by the hydrodynamic stiffness, damping and mass matrices, Kh (ω), Ch (ω), and Mh (ω). In numerical92
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studies, their determination frequently relies on the potential theory, which is fundamentally linear and thus allows93

to superimpose the well-known flow fields obtained with the panel method when the body is supposed to oscillate94

in still water or when it is fixed and exposed to sinuisoidal waves of unit height, by assuming that the steepness of95

the waves is small, the fluid motion is irrotational and the water is inviscid and incompressible [15].96

The supplemental stiffness matrix is usually independent of the frequency whereas the added damping and mass97

matrices are not. As a first approximation, though, they can be evaluated at the dominant frequency of the forces98

or of the motions, which is denoted ω0 here, and hence be considered as constant as well provided their frequency99

sensitivity is limited [41, 28, 39]. Under these conditions, Equation (1) becomes100

[
K + iωC− ω2M

]
x (ω) = f (ω) (3)

where the global hydroelastic matrices read K = Ks + Kh (ω0), C = Cs + Ch (ω0), and M = Ms + Mh (ω0).101

The state variables y (ω) =
[

I iωI
]ᵀ

x (ω) and the state forces g (ω) =
[

I 0
]ᵀ

f (ω), with I and 0 being102

respectively the N ×N identity and zero matrices, can be introduced to recast the N second-order equations into103

2N first-order equations as follows104

[A + iωB] y(ω) = g (ω) (4)

where the state matrices are defined by105

A =

 K 0

0 −M

 and B =

 C M

M 0

 . (5)

This form conserves the symmetry and postive definiteness of K, C and M [40, 16, 35].106

Although this formulation doubles the size of the problem, i.e. [A + iωB] versus
[
K + iωC− ω2M

]
, the state107

matrices actually have the advantage to be simultaneously diagonalizable even if the hydrodynamic damping is108

neither classical [26, 5], nor negligible [28, 36]. Resorting to such an approach is therefore necessary to find an109

appropriate projection space in which the modal state responses can be completely decoupled and can thus be110

obtained independently of one another, without requiring any costly matrix inversion.111

3.2. Modal State Decomposition112

To do so, the complex eigenproblem associated to the homogeneous part of the governing equations has first to113

be addressed. Although this operation can be numerically expensive as well, the eigensystem interestingly reads114

iAΘ = BΘΛ (6)

and is thus linear in the eigenvalue matrix Λ instead of quadratic. It can consequently be solved with the help115

of very efficient algorithms in order to get the matrix of eigenfrequencies, Λ = diag (λ1, ..., λm, ..., λ2M ), and the116

matrix of corresponding eigenmodes, Θ = [θ1, ...,θm, ...,θ2M ].117

Moreover, keeping the first 2M � 2N contributing modes allows to considerably improve the computational118

efficiency without sacrificing accuracy. Indeed, higher modes of vibration are generally ignored because they tend119

to be less excited by the hydrodynamic loads and to be more affected by the discretization errors [36, 26].120
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By definition, the mode shapes coming from Equation (6) are orthogonal to each other with respect to both121

state matrices. Also they are normalized to yield122

ΘᵀAΘ = ΛD−1 and ΘᵀBΘ = iD−1 (7)

by selecting the elements of D = diag (D1, ..., Dm, ..., D2M ) in such a way that the real (resp. imaginary) part123

of the eigenvectors of odd rank (resp. even) reach a unit maximum absolute value. Besides, the eigenvalues are124

decomposed as such125

λm = ψm + iυm with ψm = (−1)
m
√

1− ξ2jm ωjm and υm = ξjm ωjm (8)

where ωjm and ξjm are the j -th undamped natural frequency and critical damping ratio of the structure with126

jm =
⌈
m
2

⌉
. These notation, normalization and organization choices eventually imply that the eigensolutions come127

in the following pairs λm = −λ∗m+1 and θm = −iθ∗m+1 when m is odd.128

The modal projection and decomposition of the state forces and responses, p (ω) = Θᵀg (ω) and y (ω) = Θq (ω),129

are then introduced into Equation (4) which is subsequently left-multiplied by Θᵀ and DH (ω) to give130

q (ω) = DH (ω) p (ω) (9)

where H (ω) = diag (H1 (ω) , ...,Hm (ω) , ...,H2M (ω)) is the matrix of generalized frequency response functions.131

Being diagonal, this inverse matrix is not particularly expensive to calculate and Equation (9) can equivalently be132

written133

qm (ω) = DmHm (ω) pm (ω) (10)

with Hm (ω) = (λm − ω)
−1. Each of these modal responses thus appears to be monochromatic, on top of being134

decoupled, because the corresponding frequency response function contains a single pole.135

As a result, the real part of Hm (ω) exhibits a double peak, spiking just left and just right to ω = ψm with a sign136

change in between, while the imaginary part of Hm (ω) displays a single peak located at ω = ψm. The position, the137

height and the width of these peaks are clearly shown on Figure 1-(a) which pictures the real and the imaginary138

parts of Hm (ω) in linear scales, with their signs, whereas Figure 1-(b) gives an overview of what happens far below139

and far above the peaks by presenting the real and the imaginary parts of Hm (ω) in absolute values and logarithmic140

scales. In particular, the slopes of the straight lines drawn at both extremities of this log-log plot indicate that141

< [Hm (ω)] and = [Hm (ω)] are approximately constant when |ω| � |ψm| and behave like monomials of degree (−1)142

or (−2), respectively, when |ω| � |ψm|.143

3.3. Spectral Analysis144

Thanks to the introduction of the state variables and the modal coordinates, the responses of the structure can145

be determined in a very efficient way once forces are defined. In a stochastic analysis context, the probabilistic146

properties of the former processes can thus be derived in a similar fashion based on those of the latters, as detailed147

hereafter.148

Since the static analysis of the structure is performed beforehand to define its reference configuration, the149

undisturbed wave loads have a zero mean. They can in addition be considered as Gaussian when dealing with deep150
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Figure 1: Real and imaginary parts of the m-th frequency response function: (a) with their sign in linear scales, (b) in absolute value
and logarithmic scales.
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Figure 2: Real and imaginary parts of the structural kernel function when ω1 = 3 rad/s, ω2 = 9 rad/s, ξ1 = 0.06, and ξ2 = 0.03: (a)
|ψm| = |ψn| and ψmψn > 0, (b) |ψm| = |ψn| and ψmψn < 0, (c) |ψm| 6= |ψn| and ψmψn > 0, (d) |ψm| 6= |ψn| and ψmψn < 0.
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water waves of moderate heights [28]. In this event, their probabilistic behaviour is fully characterized on the sole151

basis of their cross-spectral densities, Sf,ij (ω). Establishing them is however not the purpose of the present paper,152

see e.g. [19] for that matter, but a few of their peculiarities are worthy to be highlighted for further discussion.153

In brief, they are typically obtained by using a unidirectional wave spectrum whose unified expression reads154

Sw (ω) =

(
ω5
p

ω5

)
exp

(
−5

4

ω4
p

ω4

)
(11)

and whose maximum is reached at ωp in the positive frequency range [6]. Equation (11) is then commonly multiplied155

by other functions of the circular frequency, which include for instance the influence of directional spreading effects,156

spatial correlations, and wave elevation-to-force amplitude operators. Despite these modifications, the cross-spectral157

densities of the hydrodynamic forces ordinarily feature a similar exponential decay as Sw (ω) when the circular158

frequencies are approaching the origin while their energy content remains relatively clustered around ωp which is159

hence referred to as the intrinsic frequency of the loading in the sequel [12].160

After filling the matrix Sf (ω) with these cross-spectral densities, it can be used according to the definition of161

the state forces in the physical coordinates in order to build the matrix162

Sg (ω) =

 Sf (ω) 0

0 0

 (12)

which contains their respective cross-spectral densities, Sg,ij (ω). Equation (12) can afterwards be projected into163

the modal basis to get the cross-spectral density of the m-th and n-th modal state forces, which reads as follows164

Sp,mn (ω) =

N∑
i=1

N∑
j=1

ΘimΘ∗inSf,ij (ω) (13)

when the zeros in Sg (ω) are directly discarded.165

As per Equation (10), this cross-spectral density is then multiplied by the (m,n) structural kernel166

Gmn (ω) = Hm (ω)H∗n (ω) (14)

and the (m,n) normalization constants to give167

Sq,mn (ω) = DmDnGmn (ω)Sp,mn (ω) (15)

which is the cross-spectral density of the m-th and n-th modal state responses. In the end, the cross-spectral168

densities of the nodal state responses can finally be obtained by recombining the modal state response spectra as169

such170

Sy,ij (ω) =

2M∑
m=1

2M∑
n=1

ΘimΘ∗inSq,mn (ω)

and these functions fully describe the responses in a probabilistic sense, given that these processes inherit the171

zero-mean Gaussian nature of the forces when the structure is linear.172

In particular, the covariance between the i-th and the j-th nodal state responses can be obtained by integrating173

the corresponding cross-spectrum over the frequency. In indicial formulation again, it is thus simply expressed as174

Σy,ij =

2N∑
m=1

2N∑
n=1

ΘimΘ∗jnΣq,mn (16)
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which is a linear combination of175

Σq,mn =

+∞∫
−∞

Sq,mn (ω) dω (17)

being the covariances of the m-th and n-th modal state responses.176

The integral of Sq,mn (ω) is, in principle, easier to compute than the integral of Sy,ij (ω) since it features two177

acute peaks at most, and no longer a multitude, which are respectively associated to the resonance of the structure178

in the m-th and the n-th modes, along with some strong variations related to the particular energy content of the179

waves, whose characteristic frequency is usually far above or far below the natural frequencies of the structure.180

However, despite their reduced number, the sharpness and the distinctness of the peaks imply that the integral181

found in Equation (17) requires a large number of closely spaced frequencies spread over a wide range for an accurate182

determination of the modal covariances, and thus the nodal ones.183

4. Extensions of the Multiple Timescale Spectral Analysis184

Whereas the sharpness and the distinctness of the peaks constitute a huge drawback for a traditional frequency185

domain analysis, it can in fact be turned into an advantage as it allows to use the general framework of the multiple186

timescale spectral analysis which has specifically been formulated to reduce drastically the number of points that187

are needed to compute such integrals, and especially avoid to project the cross-spectral density matrix of the forces188

so many times, by deriving semi-analytical approximations for their main components [12]. Coupling this approach189

with Giske’s method [20], which provides a faster calculation for the cross-spectral densities of the nodal state190

loadings, should help to perform the analysis with a significantly lower computational demand.191

In ocean engineering applications though, the fast dynamics are not necessarily linked with the structural mo-192

tions, especially when wave-loaded structures are compliant in surge, as floating offshore wind turbines or floating193

bridges. Such systems might therefore respond in the background and the resonant regimes but also in the iner-194

tial one which is on the contrary hardly ever activated in land-based wind-loaded structures. In addition to the195

consideration of complex eigenfrequencies and eigenmodes which modify the expressions for the background and196

the resonant components of the modal covariances, the multiple timescale spectral analysis is also yet to take the197

inertial components into account. These are hence the two reasons why the method has to be extended and verified198

on a minimalistic example in this section before being finally applied on a more realistic wave-loaded structure in199

Section 5.200

To illustrate these mathematical developments, the cross-spectral densities of the modal state forces are tem-201

porarily defined by using the simplified formula202

Sp,mn (ω) = Pa,mn |Sw (ω)|+ iPs,mnSw (ω) (18)

presented in Appendix A while a more realistic description will be implemented later on to validate the method on203

a pontoon bridge. Anyways, it is interesting to notice that, after projection into a complex basis, the co- and quad-204

spectral densities of the modal state forces, < [Sp,mn (ω)] and = [Sp,mn (ω)], are no longer even and odd, contrary205

to those of real processes.206
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Figure 3: Real and imaginary parts of the structural kernel function when ω1 = 5.5 rad/s, ω2 = 6.5 rad/s, ξ1 = 0.06, and ξ2 = 0.03:
(a) |ψm| = |ψn| and ψmψn > 0, (b) |ψm| = |ψn| and ψmψn < 0, (c) |ψm| 6= |ψn| and ψmψn > 0, (d) |ψm| 6= |ψn| and ψmψn < 0.
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4.1. Preliminary Considerations and Necessary Assumptions207

By looking at Figure 4, then, the major contributions to the covariance of them-th and the n-th modal responses208

presented in Equation (17) are readily identified as being twofold. The first one is due to the peaks of the structural209

kernel and is thus called resonant while the second contribution comes from the peaks of the loading cross-spectrum210

and can therefore be named background if both ωp < ωjm and ωp < ωjn , inertial if both ωp > ωjm and ωp > ωjn , or211

mixed otherwise. These three cases are respectively labelled (i), (ii), and (iii) in Figure 4. Their contribution will212

however be referred to as the loading component in general.213

As it is recommended in [12], these components can be evaluated sequentially by looping around the same steps:214

(a) select one of them, (b) find a local approximation S(.),mn (ω) of the integrand Sq,mn (ω) that is sufficiently215

accurate over the corresponding peak, that is integrable in the far field, and that is simple enough to be integrated216

in an explicit way, (c) subtract the contribution217

Σ(.),mn =

+∞∫
−∞

S(.),mn (ω) dω (19)

from Σq,mn to obtain the remainder Σq̃,mn = Σq,mn − Σ(.),mn which is actually evaluated as the integral of the218

residual function Sq̃,mn (ω) = Sq,mn (ω)−S(.),mn (ω). The sequence (a)-(c) is then repeated with the new integrand219

for the next contribution. Bit by bit, the peaks that have already been treated disappear from the residual function220

until a proper balance is reached between the accuracy and the complexity of the approximate formula. At this221

point, the iterative process is stopped and the last remainder is neglected.222

In step (c), an arbitrary small parameter, ε� 1, is most often introduced together with stretched coordinates,223

in order to find a proper approximation for the analytical functions over the zone of interest which is justified from224

an asymptotic point of view. According to the perturbation theory, ε eventually disappears from the final results225

because it is arbitrarily chosen, even though it usually relates to a particular feature of the problem at hand.226

The existence of these small numbers can typically be linked to the following assumptions, which result from the227

separation of timescales and ensure that the peaks of Sq,mn (ω) are sufficiently distinct to use the multiple timescale228

spectral analysis:229

(i) the cross-spectral density of the loading is varying moderately over the width of the resonant peaks and230

this is conditioned upon the smallness of its derivatives with respect to the extent of the zone considered;231

(ii) the characteristic frequency of the loading is significantly different from the characteristic frequencies of232

the system and this is formalized by acknowledging that the ratios233

αm =
ωp
|ψm|

and αn =
ωp
|ψn|

(20)

are either much lower, either much higher, than one in absolute value.234

Nevertheless, when one or both natural frequencies are close to the characteristic frequency of the waves, dropping235

the loading component should suffice to get a correct estimation for the covariances. Indeed, the peak of the loading236

cross-spectrum is stacked on one or both peaks of the structural kernel in this specific event and the resonant237

component is expected to encompass them all at once.238
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4.2. Resonant Component of the Modal State Covariances239

As stated before, this first component is due to the peaks of the frequency response functions, Hm (ω) and240

H∗n (ω), which can interact differently –sometimes less, sometimes more– depending on how close ψm is to ψn and241

eventually merge if these eigenfrequencies are coalescent, i.e. if the variance is examined (m = n), see Figure 2 and242

Figure 3.243

Fortunately enough, the structural kernel can alternatively be written244

Gmn (ω) = −Hm (ω)−H∗n (ω)

λm − λ∗n
(21)

by being expanded in partial fractions. Details about this operation are provided for the record in Appendix B even245

though it is actually quite straightforward to achieve because the denominator of the kernel is already factorized as246

the product of two first degree polynomials, (λm − ω) and (λ∗n − ω), with single, whereas complex, roots in Equation247

(14).248

As a result, the frequency response functions are subtracted from one another instead of being multiplied and249

the cross-spectral density of the modal responses becomes250

Sq,mn (ω) = − DmDn

λm − λ∗n
[Hm (ω)Sp,mn (ω)−H∗n (ω)Sp,mn (ω)] (22)

where the respective poles of Hm (ω) and H∗n (ω) are now isolated in two different parts of the function to integrate251

without any approximation.252

The stretched coordinate ω = ψm (1 + εη) is then substituted into the first term of Equation (22) in order to253

focus on the pole of Hm (ω) by placing it at η = 0 and by zooming on the contributing area, where η ∼ ord (1),254

thanks to the smallness of the arbitrary parameter, ε� 1, whose value is here related to υm being the half width at255

half height of the peak in = [Hm (ω)] or the half width between the positive and the negative maxima in < [Hm (ω)],256

as indicated in Figure 1-(a).257

Invoking Assumption (i), the derivatives of the loading cross-spectrum are considered small enough to maintain258

the asymptoticness of its Taylor series expansion in the neighborhood of η = 0, or more formally εiηi∂iηSp,mn (ψm)�259

Sp,mn (ψm), see [12]. This cross-spectral density can therefore be replaced by the constant value Sp,mn (ψm) on the260

region spanned by the strained coordinate while the frequency response function is expressed by261

Hm (η) = − εηψm

υ2m + (εηψm)
2 −

iυm

υ2m + (εηψm)
2 (23)

which is already suitable to tackle and which is anyways not possible to simplify on the basis of the hypotheses at262

stake.263

Following the same path for the second term of Equation (22) with another but similar stretched coordinate,264

ω = ψn (1 + εη), it yields265

Sr,mn (ω) = − DmDn

λm − λ∗n
[Hm (ω)Sp,mn (ψm)−H∗n (ω)Sp,mn (ψn)] (24)

for approximating locally the cross-spectral density of the response over the resonant peaks. Being sufficiently266

simple, locally accurate and bounded in the far field, Sr,mn (ω) fits the requirements of the multiple timescales267

11
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Figure 5: Decreasing trends observed in the structural kernel before, between, and after the poles of the frequency response functions:
(a) ψmψn > 0 and |ψm| � |ψn|, (b) ψmψn < 0 and |ψm| � |ψn|, (c) ψmψn > 0 and |ψm| < |ψn|, (d) ψmψn < 0 and |ψm| < |ψn|

spectral analysis and can finally be integrated in an explicit way to give the resonant component of the covariance268

Σr,mn = iπ
DmDn

λm − λ∗n
[Sp,mn (ψm) + Sp,mn (ψn)] (25)

which boils down, as expected, to the formulas derived in [9] and [12] under a few conditions, see Appendix C.269

4.3. Loading Component of the Modal State Covariances270

As explained in Section 4.1, Equation (25) is then subtracted from Equation (17) to give the remainder of the271

modal covariance272

Σq̃,mn = Σq,mn − Σr,mn (26)

which corresponds to the integral of the residual function273

Sq̃,mn (ω) = Sq,mn (ω)− Sr,mn (ω) (27)

whose contribution is now solely due to the two peaks that are coming from the loading cross-spectrum. It seems274

important to notice that, although they are positioned symmetrically with respect to the origin (at ω = ±ωp), they275

are not supposed to reach the same maximum value.276

As before, the change of coordinate ω = ωp (1 + εη) is first introduced to focus on the peak located in the positive277

frequency range. Since this peak typically extends over a relatively large domain in contrast to the resonant ones,278

see Figure 4, the structural kernel cannot necessarily be replaced by a constant across the whole area of interest279
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unless the background regimes are activated in both the m-th and the n-th modes. Indeed, when αm � 1 and280

αn � 1, the strained coordinate actually covers a domain where the frequency response functions are not varying281

much as ωp � |ψm| and ωp � |ψn|, see Figure 5.282

In general, instead, the real and the imaginary parts of the m-th frequency response function can conveniently283

be approximated by a monomial which is equal to the initial function at the considered peak location and which is284

characterized by the same slope in logarithmic scales. These approximations are285

<
[
H̃m (η)

]
=

(
1

1 + εη

)βm

< [Hm (0)] (28)

and286

=
[
H̃m (η)

]
=

(
1

1 + εη

)2βm

= [Hm (0)] (29)

where the tilde symbol is used to indicate it is an approximation and where287

βm =
(
(−1)

m
α−1m − 1

)−1 (30)

tends to 0 or 1 respectively when αm � 1 or αm � 1, the two cases covered by Assumption (ii).288

By comparing Equation (24) to Equation (22), Sr,mn (ω) also appears to be negligible in relation to Sq,mn (ω)289

in the region spanned by the stretched coordinate because Sp,mn (ψm)� Sp,mn (ωp) and Sp,mn (ψn)� Sp,mn (ωp)290

when the ratios αm and αn are either much lower, either much greater than one. If one of these inequalities is not291

verified, however, the loading component drops and even reaches zero in the limit case, i.e. when the cross-spectral292

density function is constant over the whole range of frequencies, meaning that the covariance of the modal responses293

is fully resonant. In order to comply with these observations while simplifying the expressions, Sr,mn (ω) is removed294

from Equation (27) and replaced by the multiplicative form295

Lmn =

(
1− Sp,mn (ψm)

Sp,mn (ωp)

)(
1− Sp,mn (ψn)

Sp,mn (ωp)

)
(31)

which accordingly decreases down to zero when a frequency or a loading cross-spectrum ratio is getting close to296

one.297

Proceeding with the same steps for the second peak by using another but equivalent stretched coordinate,298

ω = −ωp (1 + εη), the local approximation of the residual function eventually reads299

S
(±)
`,mn (ω) = DmDnLmn

4∑
k=1

[
(±ωp)β

(k)
mn G(k)mn (±ωp)S(k)p,mn (ω)

]
(32)

after returning to the circular frequencies. The symbols (+) and (−) are selected in accordance with the sign of the300

frequencies because of the non-symmetric nature of the peaks at stake while G(k)mn (±ωp) is defined in Table 1 and301

S(k)p,mn (ω) = ω−β
(k)
mnSp,mn (ω) (33)

is integrated over the positive or the negative frequency range to yield302

Σ(k)(±)
p,mn = ±

±∞∫
0

S(k)p,mn (ω) dω (34)
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Table 1: Definitions for Equations (32), (33) and (35)

k β
(k)
mn G(k)mn (ω)

1 βm + βn < [Hm (ω)]< [H∗n (ω)]
2 βm + 2βn i< [Hm (ω)]= [H∗n (ω)]
3 2βm + βn i= [Hm (ω)]< [H∗n (ω)]
4 2βm + 2βn −= [Hm (ω)]= [H∗n (ω)]

which is seen as a part of the −β(k)
mn spectral (fractional) moment associated to them-th and n-th modal state forces.303

Interestingly enough, the integration can actually be performed in the nodal basis, before the modal projection in304

order to avoid doing so for the cross-spectral densities of the nodal state loadings at each integration point.305

At last, the loading component of the modal covariance is given in an explicit way by306

Σ`,mn = DmDnLmn

4∑
k=1

[
(+ωp)

β(k)
mn G(k)mn (ωp) Σ(k)(+)

p,mn + (−ωp)β
(k)
mn G(k)mn (ωp) Σ(k)(−)

p,mn

]
(35)

which boils down to the well-known background component when αm and αn are much lower than one (βm =307

βn = β
(k)
mn = 0). This expression however extends in a unified way to the inertial component or to mixed back-308

ground/inertial covariances.309

In a last step, the loading component is subtracted from Equation (26) to yield the next remainder. It can finally310

be neglected straightaway as it corresponds to the integral of a residual function which does no longer contain any311

significant contribution.312

4.4. Verification of the Proposed Decomposition313

To summarize, under Assumption (i) and Assumption (ii), the covariances of the m-th and n-th modal state314

responses can be estimated as follows315

Σq̂,mn = Σr,mn + Σ`,mn (36)

where the resonant and the loading components are respectively derived in Equation (25) and Equation (35). These316

matrices correspond to the integral of the corresponding cross-spectral densities317

Sq̂,mn (ω) = Sr,mn (ω) + S
(±)
`,mn (ω) (37)

which respectively approximate the cross-spectral density of the m-th and n-th modal state responses over the318

resonant and the loading peaks, see Equation (24) and Equation (32). These functions are represented at Figure 6319

and Figure 7 for a few sets of parameters along with the exact cross-spectral density, which is defined in Equation320

(15). The good agreement illustrates the adequacy of the proposed approximation.321

Likewise, Figure 8 compares the covariances obtained with the proposed expression to the reference values322

provided by Equation (15) where the integration is performed numerically, making use of the adaptive algorithm323

which is implemented in Version 12.0.0.0 of Wolfram Mathematica [27] with default parameters. Overall, they324

coincide quite well, except in the shaded area. A more important discrepancy is observed over there, as it was325

to be expected since Assumption (ii) is not verified anymore. Nevertheless, it remains reasonable thanks to the326

multiplicative factor Lmn which ensures that the background component passes by zero when αm = 1, or αn = 1,327

and does not grow unbounded.328
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On the other hand, when Assumption (ii) is met, the loading component is clearly leading over the resonant329

one provided that the natural frequencies of the associated modes are far away from each other as well, while the330

opposite occurs when these natural frequencies are close to each other as in Figure 6, for instance. This figure331

also shows that the interaction between the resonant peaks is conditioned upon the damping ratios. The smaller,332

the sharper but also the more distinct the resonant peaks. Thus, the proximity of the natural frequencies and the333

smallness of the damping ratios is a necessary condition for observing an acute burst in the resonant component,334

as shown in Figure 8-(a), but this is not sufficient, otherwise Figure 8-(b) would exhibit a similar feature.335

The resonance in the m-th and n-th modes additionally needs to be activated by the loading in order to see them336

interacting as in Figure 6. This is however not the case if αm � 1 and αn � 1 because the resonant peaks appear337

in a zone where Sp,mn (ψm) and Sp,mn (ψn) are exponentially small as a result of the exponential decay displayed338

by the loading cross-spectral density when the frequencies are getting much lower than the peak frequency. This is339

also the reason why one, or both, resonant peaks respectively disappear from Figure 7-(b) and Figure 7-(a).340

Apart from that, in Figure 8, the loading component tends towards zero (resp. a non-zero constant value)341

when αn is far below one (resp. far above one) because αm and thus Hm (±ωp) are fixed while ψn increases (resp.342

decreases) and eventually leads over ωp (resp. becomes negligible in relation to ωp) in H∗n (±ωp) which is hence343

dropping towards zero (resp. stabilizing at a constant value) as well.344

5. Case Study: the Bergsøysund Bridge345

The approximate formulations roposed in Section 4 are now validated on a simplified 2D model, considering346

the horizontal displacements and rotations only. This example is inspired by the Bergsøysund Bridge which crosses347

a 100-m deep strait in Norway and is one of the longest end-anchored floating bridges in the world with its total348

length of 933 m. As shown in Figure 9, it is composed of 7 pontoons linked together by steel truss segments of 105349

m long, which are modelled as single equivalent beams with 10 elements of equal length by section for the sake of350

the illustration in this paper.351

Their properties are given in Table 2 and have been chosen, regardless of realisticness, to illustrate the capabilities352

of the proposed formulation, by activating all possible combinations of responses in the background and the inertial353

regimes. The resulting natural frequencies, damping ratios and mode shapes are listed in Table 3. For the same354

reason, the pontoons and the forces are defined as in [28] but using as the one-dimensional wave spectral density a355

two-parameter Pierson-Moskovitz spectrum356

Spm (ω) =
5hs

16ωp

(
ω5
p

ω5

)
exp

(
−5

4

ω4
p

ω4

)
(38)

with hs = 2.4 m being the significant wave height and ωp = 2.2 rad/s being the peak frequency at which the357

hydrodynamic matrices are evaluated, as explained in Section 3. A spreading parameter of 3 is also selected358

because it allows to neglect the correlations between the forces applied on different pontoons.359

The power and cross-spectral densities of the modal state responses appear to be correctly approximated by360

the proposed formulation, see Figure 10 and Figure 11, respectively. In Figure 10-(a) and Figure 11-(a), the modal361

responses are activated in their inertial regime by the loading. The resonant components consequently disappear,362

as in Section 4.4, due to the particular shape of the loading spectra in the low frequencies.363
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Figure 6: Cross-spectral densities of the 2nd and 4th modal state responses together with the local approximations provided for the
resonant and the loading components when Pa = (1 + 0.2i), Ps = (i− 0.2), ω1 = 4 rad/s and ω2 = 4.5 rad/s while (a) ξ1 = 5 % and
ξ2 = 5 % or (b) ξ1 = 1 % and ξ2 = 1 %. Red lines illustrate the reference function, Sq,mn (ω). Blue lines represent the proposed
approximation, Sq̂,mn (ω). Dashed and dotted lines respectively correspond to the resonant and the loading components, Sr,mn (ω) and
S
(±)
`,mn (ω). Notice that their lack of symmetry properties is due to use of complex mode shapes.

Parameter Value [unit]
Length 10.5 [m]

Moment of Inertia 12.36 [m4]
Young Modulus 2.1010 [N/m2]
Cross-Section 0.6 [m2]

Density 7850 [kg/m3]

Table 2: Geometric and material parameters of the bridge model.
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Figure 7: Cross-spectral densities of the m-th and n-th modal state responses together with the local approximations provided for
the resonant and the loading components when Pa = (1 + 0.2i) and Ps = (i− 0.2) for all (m,n) pairs indicated by yellow lines while
ω1 = 0.1 rad/s and ω2 = 6 rad/s. Red lines illustrate the reference function, Sq,mn (ω). Blue lines represent the proposed approximation,
Sq̂,mn (ω). Dashed and dotted lines respectively correspond to the resonant and the loading components, Sr,mn (ω) and S

(±)
`,mn (ω).

Notice that their lack of symmetry properties is due to use of complex mode shapes.
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Figure 8: Covariances of the m-th and n-th modal state responses, with m and n being even numbers, when ξjm = 1 %, ξjn = 1
%, Pa = (1 + 0.2i), Ps = (i− 0.2), and ωp = 1 rad/s while (a) αm = 0.3 and (b) αm = 3. Red lines illustrate the reference results,
Sq,mn (ω). Blue lines represent the proposed approximation, Sq̂,mn (ω). Dashed and dotted lines respectively correspond to the resonant
and the loading components, Sr,mn (ω) and S(±)

`,mn (ω). Notice that their lack of symmetry properties is due to use of complex mode
shapes.

Figure 9: Top view of the Bergsøysund Bridge.
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Mode Shape Mode Shape Mode Shape

Table 3: Modal analysis of the bridge model.
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Figure 10: Power spectral densities of the m-th modal state responses together with the local approximations provided for the resonant
and the loading components when m = 2 (left) and m = 18 (right). Red lines illustrate the reference function, Sq,mm (ω). Blue lines
represent the proposed approximation, Sq̂,mm (ω). Dashed and dotted lines respectively correspond to the resonant and the loading
components, Sr,mm (ω) and S(±)

`,mm (ω). Notice that their lack of symmetry properties is due to use of complex mode shapes.

19



-3 0

-6 -3 0 3 6-6 -3 0 3 6

0

     2

     1

00

     3

0

10-5 10-6

     1

     -1

-6 -3 0 3 6

0

-6 0 3 6

0

10-5

     1

     -1

     2

     3

   3

10-5

   6

   9

-6 -3 0 3 6

0

     1

     -1

10-6

-6 -3 3 6

0

     2

     1

     3

10-6

(a)

(b)

(c)

Figure 11: Cross-spectral densities of the m-th and n-th modal state responses together with the local approximations provided for the
resonant and the loading components when (a) m = 2 and n = 8, (b) m = 2 and n = 16, (c) m = 28 and n = 30. Red lines illustrate
the reference function, Sq,mn (ω). Blue lines represent the proposed approximation, Sq̂,mn (ω). Dashed and dotted lines respectively
correspond to the resonant and the loading components, Sr,mm (ω) and S(±)

`,mm (ω). Notice that their lack of symmetry properties is
due to use of complex mode shapes.
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Figure 12: Variances of the modal state responses for the bridge model presented in this section. Red circles illustrate the reference
results, Σq,mm. Blue dots represent the proposed approximation, Σq̂,mm. Dashed and dotted lines respectively correspond to the
resonant and the loading components, Σr,mm and Σ`,mm.
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Figure 13: Correlation coefficients of the modal state responses for the bridge model: (a) results obtained with the numerical integration
(b) results obtained with the proposed approximation, (c) absolute errors between the former results, (d) the loading components and
(e) the resonant components. Diagonal elements in greyscale color represent the weighting factors, γ` and γr.
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Besides, Figure 12 compares the modal state variances computed by means of the proposed approximation to364

the values obtained by integrating numerically the power spectral densities given in Equation (15) when m = n.365

Globally, they agree quite well, except in the shaded area where a larger discrepancy is observed again because366

Assumption (ii) is not respected. Contrary to what the figure suggests, the responses in these modes are actually367

neither mainly resonant, neither loading driven but the timescales associated to each of these two phenomena are368

interacting.369

Being nondimensional and bounded in the interval [−1, 1], the correlation coefficients are more appropriate to370

assess the importance of taking a specific modal state covariance into account. Details about their derivation are371

given in Appendix D. The results obtained with the numerical integration are represented together with the results372

obtained with the proposed approximation in Figure 13-(a) and Figure 13-(b), respectively. Figure 13-(c) then373

shows the absolute error committed between the former and the latter while Figure 13-(d) and 13-(e) illustrate the374

decomposition of the latter into the loading and the resonant component.375

On each of these subfigures, the coefficients are divided into five categories and said partly inertial in the376

bottom-left corners, partly background in the top-right corners, and partly mixed in the two remaining corners,377

bottom-right and top-left, while the loading and resonant peaks interact in the cross-shaped areas. Just as before,378

a good match is observed, with a bit less accuracy in the central zone, between the approximated and the reference379

values. Meanwhile, the computational time has been divided by 20. The proposed approximation is thus shown to380

provide an interesting balance between precision and efficiency.381

Finally, although the modal correlations are often related to the interactions between the resonance in two382

different modes and neglected provided that their natural frequencies are sufficiently distant from each other as it383

is confirmed by looking at Figure 13-(e), they also appear to be significantly influenced by the loading components,384

see Figure 13-(d). They should especially be important when the m-th and n-th modal forces are coherent, which385

happens when the m-th and n-th mode shapes are similar. The 1st and 8th modes, for instance, are both symmetric,386

changing sign at mid-length and possessing two half waves.387

6. Conclusions388

The multiple timescale spectral analysis is implemented in this paper to derive semi-analytical approximations for389

computing more efficiently the variances and the covariances of modal state responses. As a result, they are obtained390

by summing two component with easily understandable expressions: the resonant and the loading component. The391

former component requires to determine the cross-spectral densities of the modal state loadings at the natural392

frequencies of the structure only while the latter component is based on a few of their spectral moments. These393

statistics can actually be evaluated by integrating the loading spectra in the nodal basis first. The few matrices394

they constitute can then be projected into the modal basis. It thus avoids to do so with the loading spectra for all395

the numerous points of integration.396

All in all, it means that the proposed formulation drastically reduces the number of frequencies at which the397

cross-spectral densities of the nodal state loadings have to be projected. In addition to being simple, it thus provides398

accurate results in a significantly lower computational time. In this paper, for instance, it has been benchmarked399

against the heavy integration of the response spectra for a low-dimensional model inspired by the Bergsøysund400
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Bridge. The analysis appeared to be performed 20 times faster without sacrificing accuracy and this computational401

speed up is expected to be even larger for models with up to several thousands degrees-of-freedom.402
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Appendix A: Simple Expression for the Loading Spectra503

As explained in Section 3, the autospectral density found in Equation (??) is commonly multiplied by a few other504

functions of the circular frequencies to include effects which are due to directional spreading, amplitude operators,505

or spatial correlations. But these additional frequency dependencies can first be discarded to get a simple expression506

for the cross-spectral densities of the forces. To illustrate the mathematical developments in Section 4, they are507

thus temporarily written508

Sf (ω) = Fa |Sw (ω)|+ iFsSw (ω)

where the coefficients in the matrices Fa and Fs are chosen as constant, real and such that Fa = Fᵀ
a and Fs = −Fᵀ

s509

in order to ensure that the cross-spectral densities verify the following properties510 < [Sf,mn (ω)] = +< [Sf,mn (−ω)]

= [Sf,mn (ω)] = −= [Sf,mn (−ω)]

(39)

and511

Sf,mn (ω) = S∗f,mn (ω)

according to [38]. In particular, the power spectral densities obtained when m = n are real and positive over the512

whole range of circular frequencies, as it is usual with actual loading processes, since the diagonal elements of the513

matrix Fs are all equal to zero when Fs = −Fᵀ
s . After projection in the modal basis, it gives514

Sp (ω) = Pa |Sw (ω)|+ iPsSw (ω) (40)

where515

Pa = ΘᵀFaΘ
∗ and Ps = ΘᵀFsΘ

∗

are now filled with complex entries, such that Pa = P†a and Ps = −P†s . It implies that the symmetry properties516

listed hereabove do not stand for the generalized cross-spectral densities because their real and imaginary parts517

respectively read518 < [Sp (ω)] = < [Pa] |Sw (ω)| − = [Ps]Sw (ω)

= [Sp (ω)] = = [Pa] |Sw (ω)|+ < [Ps]Sw (ω)

and are given by the sum of symmetric and anti-symmetric functions of the circular frequencies.519
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Appendix B: Partial Decomposition of the Structural Kernel520

The denominator of Gmn (ω) is already factorized as the product of the first degree polynomials (λm − ω) and521

(λ∗n − ω). Its partial decomposition is thus expected to read522

Gmn (ω) =
a

(λm − ω)
+

b

(λ∗n − ω)
(41)

where a and b are constant but complex coefficients. Equation (41) can be solved for b as follows523

b =
1− a (λ∗n − ω)

(λm − ω)
(42)

and the subsequent replacement of ω by λ∗n in this expression yields524

b =
1

(λm − λ∗n)
(43)

which is then reintroduced into Equation (42) to get525

a = −b (44)

after some algebra.526

These two coefficients are substituted back in the initial equation and the partial decomposition of the structural527

kernel is eventually given by528

Gmn (ω) = − 1

λm − λ∗n

[
1

(λm − ω)
− 1

(λ∗n − ω)

]
(45)

or equivalently by529

Gmn (ω) = −Hm (ω)−H∗n (ω)

λm − λ∗n
(46)

in terms of the frequency response functions.530

Appendix C: Specialization of the Proposed Formulation to Former Approximations531

The additional assumptions formulated in [9] and [12] are sequentially implemented in Equation (25) to recover532

the approximations that have already been developed in more restrictive circumstances for the resonant component533

of the covariance between the responses in two different modes and finally end up with the well-known expression534

coming from the background-resonant decomposition of Davenport for the specific case of the variance. All in all,535

the demonstration provided hereafter aims at confirming that the formula derived in this paper is in fact more536

general and can be used in an even broader domain of application. To this aim, odd m and n indices are considered537

in order to look at similar cases as in [12] and [7] where the contributions of the resonant peaks located in the538

positive frequency range are analyzed. The results are then multiplied by 2 in order to account for the peaks539

situated in the negative frequency range as well.540

1. The off-diagonal terms of the modal damping matrix are neglected.541

As a result,542 φm = ϕjm when m is odd

φm = −iϕ∗jm when m is even
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where φm is the top half part of θm and ϕjm is the j-th undamped mode shape. They are obtained by solving the543

undamped eigenvalue problem544

(
K− ω2

jmM
)
ϕjm = 0

and they diagonalize the stiffness and the mass matrices as follows, ΨᵀKΨ = diag (kj1 , ..., kjm) and ΨᵀMΨ =545

diag (mj1 , ...,mjm), where kjm and mjm are referred to as the j-th generalized stiffness and mass of the undamped546

structure. By introducing these expressions into Equation (7), it finally yields547

Dm = λm
(
kjm + λ2mmjm

)−1
for the normalization coefficients while the critical damping ratio is given by548

ξjm =
cjm

2
√
kjmmjm

where cjm is the diagonal element of the generalized damping matrix, ΨᵀCΨ.549

2. The damping ratios are much smaller than one, ξjm � 1 and ξjn � 1.550

Equation (25) therefore becomes551

Σr,mn =
π

4kjmkjn

ωjmωjn
(ξjmωjm + ξjnωjn) + i (ωjn − ωjm)

[Sp,mn (ωjm) + Sp,mn (ωjn)]

after being truncated at leading order in ξjm and ξjn .552

3. The damping ratios are the same in both modes, ξjm = ξjn = ξ.553

The covariance hence reads554

Σr,mn =
π

4kjmkjn

(
ξ − iζ

ξ2 + ζ2

)(
ωjmωjn
ωjm + ωjn

)
[Sp,mn (ωjm) + Sp,mn (ωjn)]

where the parameter555

ζ =
ωjn − ωjm
ωjn + ωjm

as defined in [12] is introduced.556

4. The natural frequencies are close to each other, ωjn = ωjm (1 + 2ζ) with ζ � 1.557

The covariance is finally expressed by558

Σr,mn =
π

4kjmkjn

(
ξ − iζ

ξ2 + ζ2

)(
ωjm + ωjn

2

)(
Sp,mn (ωjm) + Sp,mn (ωjn)

2

)
as in [12].559

5. The indices m and n are equal to each other.560

At last, the resonant component of the variance561

Σr,mm =
πωjm
4ξk2jm

Sp,mn (ωjm)

is also well recovered [7].562
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Appendix D: Correlation Coefficients of the Modal State Responses563

Based on the simple formulas established for the modal state covariances in Section 4, it is possible to write564

the correlation coefficients of the modal state responses as the sum of a resonant and a loading component as well.565

Using the same derivation as in [9], it reads566

ρq̂,mn = γrρr,mn + γ`ρ`,mn

where567

γr =
1√

1 + r−1m
√

1 + r−1n
and γ` =

1√
1 + rm

√
1 + rn

can be seen as weighting factors. They are related to the resonant-to-loading ratios of the corresponding modal568

variances as follows569

rm =
Σr,mm
Σ`,mm

and rn =
Σr,nn
Σ`,nn

and accordingly tend towards unity or zero if the modal responses are predominantly driven by their resonant570

component or their loading component, e.g. γr = 1 and γ` = 0 if both rm � 1 and rn � 1, meaning that the571

responses are fully resonant.572

Substituting the appropriate components of the modal variances and covariances that are coming from Equation573

(25) and Equation (35) in the following expression574

ρ(.),mn =
Σ(.),mn√

Σ(.),mmΣ(.),nn

yields the resonant and the loading correlation coefficients. The former is interestingly given by575

ρr,mn = i

√
υmυn

λm − λ∗n
[Γmn (ψm)Smn + Γmn (ψn)Snm]

which increases if the natural frequencies are getting close to each another and if the values of the coherence function576

Γmn (ω) =
Sp,mn (ω)√

Sp,mm (ω)Sp,nn (ω)

at ω = ψm and ω = ψn grow as well, together with the spectral ratios577

Smn =

√
Sp,nn (ψm)

Sp,nn (ψn)
and Snm =

√
Sp,mm (ψn)

Sp,mm (ψm)

they respectively multiply. The coefficient ρ`,mn is not so easily interpretable unless the loading component is578

quasi-static in both modes, in which case it corresponds to the correlation coefficient of the modal state forces at579

leading order, i.e. ρ`,mn = ρp,mn if αm � 1 and αn � 1.580
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