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Problem statement

Consider

I a model m

I a wave propagation operator F
I a wavefield u

I a mesurement operator R
I a dataset d

Full wave inversion consists in finding m∗ such that

R(u) = d with F(m∗)u = f

through the optimization problem

m∗ = arg minm J (m) , arg minm dist(R(u(m)), d)
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Crosshole radar example
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1. Crosshole radar example

Model space

The unknown model is here composed of both
permittivity and conductivity distributions, i.e. m , (εr(x), σr(x)).
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Typical distributions1

features highly
contrasted targets
(εr,pipe = 80) embedded
in a layered background
with stochastic
fluctuations.

1Ernst et al., “Full-Waveform Inversion of Crosshole Radar Data Based on 2-D
Finite-Difference Time-Domain Solutions of Maxwell’s Equations”.
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1. Crosshole radar example

Wavefield space

In electromagnetics (2D TE), the wavefield is an electric field whose
propagation can be modelled by the Helmholtz equation, i.e.

u , e(x) and F(u,m) , ∆e+ k2
(
εr − j σrk

)
e

f = 75 [MHz]
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1. Crosshole radar example

Data space I

Several emitters (◦) are buried in a first hole. Each emitter (•) is
successively excited and the response is recorded at all the receivers (×),
buried in another hole.

s = 0, f = 150 [MHz]
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s = 20, f = 150 [MHz]
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The response is recorded for several frequencies.
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1. Crosshole radar example

Data space II

A dataset d is thus a ns × nr × nf complex-valued matrix, i.e

d ∈ Cns×nr×nf

which is obtained by pointwise measurements at the receivers, i.e.

[R(u)]s,r,f , es,f (xr).
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Minimization problem
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2. Minimization problem

Descent direction I

Local optimization techniques must be used in practice because the
search space is large (e.g. εr(x) and σr(x)).

Most algorithms are built on an approximation of the Newton direction

p ≈ −H−1(j′)

with j′ the gradient and H the Hessian operator.

Both kernels result from the Taylor expansion of the performance
functional

J (m+ δm) ≈ J (m) + {DmJ }(δm) +
1

2
{D2

mmJ }(δm, δm)

≈ J (m) +
〈
j′, δm

〉
M

+
1

2
〈H(δm), δm〉M

and thus strongly depend on the chosen inner product 〈, 〉M .
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2. Minimization problem

Descent direction II

Gradients and Hessian operators are defined by

{DmJ } (δm) , 〈j′, δm〉M , ∀δm
and

{D2
mmJ }(δm1, δm2) , 〈H(δm1), δm2〉M , ∀δm1 ∀δm2

Changing the inner product is equivalent to applying a preconditionner
to both kernels2. Preconditioning does not change the exact Newton
direction but does change approximate solutions.

Incorporating prior knowledge in this inner product to encourage desired
features can thus yield better approximate directions.

2Zuberi and Pratt, “Mitigating nonlinearity in full waveform inversion using
scaled-Sobolev pre-conditioning”.
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Inner product examples
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2. Minimization problem: Inner product examples

Example 1: spatial scaling

〈·, ·〉M =
〈
·
√
ha(x),

√
ha(x) ·

〉
L2

(unscaled σr -gradient)
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(scaled σr -gradient)
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weight, e.g. the diagonal of the
Gauss-Newton Hessian3 ha(x).

This inner product restores
balance between gradient
contributions everywhere.

3Pan, Innanen, and Liao, “Accelerating Hessian-free Gauss-Newton full-waveform
inversion via l-BFGS preconditioned conjugate-gradient algorithm”.
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2. Minimization problem: Inner product examples

Example 2: spatial smoothing

〈·, ·〉M =
〈
·
√
ha(x),

√
ha(x) ·

〉
L2

+ µ 〈∇ ·,∇ ·〉L2

(rough σr -gradient)
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(smooth σr -gradient)
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Adding such a regularization
term penalizes rough models.
Kernels w.r.t this inner product
are therefore smoother.

Encouraging smooth updates
early in inversion processes is a
strategy to avoid local minima
trapping4.

4Zuberi and Pratt, “Mitigating nonlinearity in full waveform inversion using
scaled-Sobolev pre-conditioning”.
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2. Minimization problem: Inner product examples

Example 3: parameter weighting

〈ma,mb〉M = β21 〈εa, εb〉+ β22 〈σa, σb〉
( β1 = β2, σr -gradient)
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( 2β1 = β2, σr -gradient)
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The weight β governs the relative
importance given to
permittivities and conductivities.

By changing its value, it is
possible to reconstruct one
parameter first and again to
avoid local minima trapping5.

5Lavoué et al., “Two-dimensional permittivity and conductivity imaging by full
waveform inversion of multioffset GPR data: a frequency-domain quasi-Newton
approach”.
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Crosshole radar application (synthetic)
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3. Crosshole radar application (synthetic)

Application choices

I 41 emitters and 41 receivers (spacing / background wavelength)

I 7 frequencies (75, 90, 120, 150, 180, 225, 300 [MHz])

I Individual/Sequential inversion from low to high frequency

I Minimization by a trust-region Newton method6

I Scaled, smoothed and weighted inner products

I Distance between data measured using least square norm

I Forward problems solved using finite elements

I Measured data generated synthetically (i.e with a numerical model)

6Adriaens, Métivier, and Geuzaine, “A trust-region Newton method for
frequency-domain full waveform inversion Trust-Region Newton Method”.
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3. Crosshole radar application (synthetic)

Results: conductivity
(true)
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(inverse, β1 = 1.26, β2 = 0.63)
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I Locations are correct

I Amplitudes are wrong

I Background is not resolved

I Background features artifacts

Reconstruction quality depends on β
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3. Crosshole radar application (synthetic)

Results: permittivity
(true)
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3. Crosshole radar application (synthetic)

Results: permittivity
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3. Crosshole radar application (synthetic)

Conclusion

1 Pure Newton methods are attractive but prohibitively expensive

2 Truncated Newton methods must be used instead

3 Truncated Newton methods however require a preconditioning
strategy

4 Modifying the inner product is an elegant preconditioning strategy

5 Modifying the inner product should be investigated further,
especially to retrieve highly contrasted media

Thank you for your attention
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