Full waveform inversion in the frequency domain Truncated Newton methods for simultaneous permittivity and conductivity reconstruction

X. Adriaens, C. Geuzaine Université de Liège

Consider

- \blacktriangleright a model m
- \blacktriangleright a wave propagation operator ${\cal F}$
- \blacktriangleright a wavefield u
- \blacktriangleright a mesurement operator ${\cal R}$
- \blacktriangleright a dataset d

Full wave inversion consists in finding m^* such that

$$\mathcal{R}(u) = d$$
 with $\mathcal{F}(m^*)u = f$

through the optimization problem

$$m^* = \arg\min_m \mathcal{J}(m) \triangleq \arg\min_m \operatorname{dist}(\mathcal{R}(u(m)), d)$$

Crosshole radar example

1. Crosshole radar example Model space

The unknown model is here composed of both **permittivity** and **conductivity** distributions, *i.e.*

$$m \triangleq (\epsilon_r(\boldsymbol{x}), \sigma_r(\boldsymbol{x})).$$

Typical distributions¹ features highly contrasted targets ($\epsilon_{r,pipe} = 80$) embedded in a layered background with stochastic fluctuations.

¹Ernst et al., "Full-Waveform Inversion of Crosshole Radar Data Based on 2-D Finite-Difference Time-Domain Solutions of Maxwell's Equations".

1. Crosshole radar example Wavefield space

In electromagnetics (2D TE), the wavefield is an **electric field** whose propagation can be modelled by the **Helmholtz equation**, *i.e.*

Several **emitters** (\circ) are buried in a first hole. Each emitter (\bullet) is successively excited and the response is recorded at all the **receivers** (\times), buried in another hole.

The response is recorded for several frequencies.

A dataset d is thus a $n_s \times n_r \times n_f$ complex-valued matrix, i.e

 $d \in \mathbb{C}^{n_s \times n_r \times n_f}$

which is obtained by **pointwise** measurements at the receivers, *i.e.*

$$[\mathcal{R}(u)]_{s,r,f} \triangleq e_{s,f}(\boldsymbol{x}_r).$$

Minimization problem

Local optimization techniques must be used in practice because the search space is large (*e.g.* $\epsilon_r(\boldsymbol{x})$ and $\sigma_r(\boldsymbol{x})$).

Most algorithms are built on an approximation of the Newton direction

with j' the gradient and \mathcal{H} the Hessian operator.

Both kernels result from the Taylor expansion of the performance functional

$$\begin{split} \mathcal{J}(m+\delta m) &\approx \mathcal{J}(m) + \{D_m \mathcal{J}\}(\delta m) + \frac{1}{2} \{D_{mm}^2 \mathcal{J}\}(\delta m, \delta m) \\ &\approx \mathcal{J}(m) + \left\langle j', \delta m \right\rangle_M + \frac{1}{2} \left\langle \mathcal{H}(\delta m), \delta m \right\rangle_M \end{split}$$

and thus strongly depend on the chosen inner product \langle , \rangle_M .

$$p \approx -\mathcal{H}^{-1}(j')$$

$$(-\delta m) \approx \mathcal{J}(m) + \{D_m \mathcal{J}\}(\delta m) + \frac{1}{2} \{D_{mm}^2 \mathcal{J}\}(\delta m)$$

Gradients and Hessian operators are defined by

$$\{D_m \mathcal{J}\} (\delta m) \triangleq \langle j', \delta m \rangle_M, \forall \delta m$$

and

$$\{D_{mm}^2\mathcal{J}\}(\delta m_1, \delta m_2) \triangleq \langle \mathcal{H}(\delta m_1), \delta m_2 \rangle_M, \, \forall \delta m_1 \, \forall \delta m_2$$

Changing the inner product is equivalent to **applying a preconditionner** to both kernels². Preconditioning does not change the exact Newton direction but does change approximate solutions.

Incorporating **prior knowledge** in this inner product to encourage desired features can thus yield better approximate directions.

²Zuberi and Pratt, "Mitigating nonlinearity in full waveform inversion using scaled-Sobolev pre-conditioning".

Inner product examples

2. Minimization problem: Inner product examples

Example 1: spatial scaling

Consider an appropriate **spatial** weight, *e.g.* the diagonal of the Gauss-Newton Hessian³ $h_a(x)$.

This inner product **restores balance** between gradient contributions everywhere.

³Pan, Innanen, and Liao, "Accelerating Hessian-free Gauss-Newton full-waveform inversion via I-BFGS preconditioned conjugate-gradient algorithm".

Example 2: spatial smoothing

Adding such a **regularization term** penalizes rough models. Kernels w.r.t this inner product are therefore smoother.

Encouraging **smooth updates** early in inversion processes is a strategy to avoid local minima trapping⁴.

⁴Zuberi and Pratt, "Mitigating nonlinearity in full waveform inversion using scaled-Sobolev pre-conditioning".

2. Minimization problem: Inner product examples

Example 3: parameter weighting

⁵Lavoué et al., "Two-dimensional permittivity and conductivity imaging by full waveform inversion of multioffset GPR data: a frequency-domain quasi-Newton approach".

- \blacktriangleright 41 emitters and 41 receivers (spacing \lessapprox background wavelength)
- ▶ 7 frequencies (75, 90, 120, 150, 180, 225, 300 [MHz])
- Individual/Sequential inversion from low to high frequency
- Minimization by a trust-region Newton method⁶
- Scaled, smoothed and weighted inner products
- Distance between data measured using least square norm
- Forward problems solved using finite elements
- Measured data generated synthetically (*i.e* with a numerical model)

⁶Adriaens, Métivier, and Geuzaine, "A trust-region Newton method for frequency-domain full waveform inversion Trust-Region Newton Method".

Results: conductivity

Results: conductivity

Results: conductivity

Results: permittivity

Results: permittivity

Results: permittivity

- 1 Pure Newton methods are attractive but prohibitively expensive
- 2 Truncated Newton methods must be used instead
- 3 Truncated Newton methods however require a preconditioning strategy
- 4 Modifying the inner product is an elegant preconditioning strategy
- 5 Modifying the inner product should be investigated further, especially to retrieve highly contrasted media

- 1 Pure Newton methods are attractive but prohibitively expensive
- 2 Truncated Newton methods must be used instead
- 3 Truncated Newton methods however require a preconditioning strategy
- 4 Modifying the inner product is an elegant preconditioning strategy
- 5 Modifying the inner product should be investigated further, especially to retrieve highly contrasted media

Thank you for your attention