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2Université Grenoble Alpes

September 2021



Problem statement

Consider

I a model m

I a wave propagation operator F

I a wavefield u

I a mesurement operator R

I a dataset d

Full wave inversion consists in finding m∗ such that

R(u) = d with F (m∗)u = f

through the optimization problem

m∗ = arg minm J(m) , arg minm dist(R(u(m)), d)
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Newton methods
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1. Newton methods

Derivation

Newton methods are local optimization techniques that originate from
successive second order expansions of the misfit

J(m+ δm) ≈ J(m) + {DmJ}(δm) +
1

2
{D2

mmJ}(δm, δm)

≈ J(m) +
〈
j′, δm

〉
M

+
1

2
〈Hδm, δm〉M

The optimal search direction w.r.t. this expansion is called the pure
Newton direction pN . It is defined as the solution of a linear system

HpN = −j′

According to Newton methods, the model is updated iteratively along
an approximation of this pure direction.
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1. Newton methods: Inner product

Preconditioner

Equivalence bewteen both expansions is granted by the gradient j′ and
the Hessian operator H definitions

〈j′, δm〉M , {DmJ} (δm), ∀δm
and

〈Hδm1, δm2〉M , {D2
mmJ}(δm1, δm2), ∀δm1 ∀δm2

that strongly depend on the chosen inner product 〈·, ·〉M .

Changing the inner product is equivalent to applying a preconditioner
to both kernels1. Preconditioning does not change the pure Newton
direction but does change approximate solutions.

1Zuberi and Pratt, “Mitigating nonlinearity in full waveform inversion using
scaled-Sobolev pre-conditioning”.
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1. Newton methods: Inner product

Example I: conventional

The standard choice is a least squares inner product, which yields the
conventional gradient and Hessian operator.

〈·, ·〉M = 〈·, ·〉L2

+max

0 1 2 3 4 5 6 7 8 9

0
−

1
−

2

−max

Balance between shallow and deep contributions is broken.
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1. Newton methods: Inner product

Example II: spatially scaled

An appropriate spatial weight is often applied, e.g. the diagonal of the
Gauss-Newton Hessian2 ha(x).

〈·, ·〉M =
〈
·
√
ha(x),

√
ha(x) ·

〉
L2

+max

0 1 2 3 4 5 6 7 8 9

0
−

1
−

2

−max

This inner product choice restores balance between gradient
contributions everywhere.

2W. Pan, Innanen, and Liao, “Accelerating Hessian-free Gauss-Newton
full-waveform inversion via l-BFGS preconditioned conjugate-gradient algorithm”.
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1. Newton methods: Inner product

Example III: spatially smoothed

A regularization term penalizing rough models can also be added. Ker-
nels w.r.t this inner product are therefore smoother.

〈·, ·〉M =
〈
·
√
ha(x),

√
ha(x) ·

〉
L2

+ µ 〈∇ ·,∇ ·〉L2

+max

0 1 2 3 4 5 6 7 8 9

0
−

1
−

2

−max

Encouraging smooth updates early in the inversion process is a strategy
to avoid local minima trapping3.

3Zuberi and Pratt, “Mitigating nonlinearity in full waveform inversion using
scaled-Sobolev pre-conditioning”.
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Truncated Newton methods
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2. Truncated Newton methods

Approximate solution

Approximate solution are here obtained by solving the Newton system
iteratively with an accuracy reflecting the expansion quality.
Hessian-free iterative methods such as the conjugate gradient
algorithm are preferred because the linear system is typically large.

Conventional conjugate gradient (Alg. 1a)

p← 0, r ← j′, q ← −j′
loop

if 〈Hq, q〉M ≤ 0 then return p
ξ ← 〈r, r〉M
α← ξ

〈Hq,q〉M
, p← p+ αq, r ← r+ αHq

if ‖r‖M < η ‖j′‖M then return p

β ← 〈r,r〉M
ξ , q ← −r + βq

end loop

(Safeguard for negative
curvature)

(Convergence criterion)
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2. Truncated Newton methods

Line search
Over-solving is avoided by relaxing the convergence criterion
depending on the expansion quality4,5

η =
‖j′(mn)−j′(mn−1)−γn−1H(mn−1)pn−1‖M

‖j′(mn−1)‖M
(�)

An appropriate length γ is given to this direction p, e.g. satisfying Wolfe
conditions6. The outer loop is finally obtained by repeating these two
steps until convergence.

Eisenstat line search (Alg. 2a)

loop
p← Alg. 1 with η = (�)
m← m+ γp

end loop

4Métivier et al., “Full Waveform Inversion and the Truncated Newton Method”.
5Eisenstat and Walker, “Choosing the forcing terms in an inexact Newton method”.
6Nocedal, Wright, and Robinson, Numerical Optimization.
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2. Truncated Newton methods

Trust region I

Over-solving is avoided by adding a length constraint on the Newton
system approximate solution

‖p‖M ≤ ∆

This new problem can be solved approximately with a slightly modified
version of the conjugate gradient method7.

7Steihaug, “The Conjugate Gradient Method and Trust Regions in Large Scale
Optimization”.
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2. Truncated Newton methods

Trust region II

Steihaug conjugate gradient (Alg. 1b)

p← 0, r ← j′, q ← −j′
loop

if 〈Hq, q〉M ≤ 0 then
Find τ∗ > 0 such that ‖p+ τ∗q‖M = ∆
return p+ τ∗q

end if
ξ ← 〈r, r〉M , α← 〈r,r〉M

〈Hq,q〉M
if ‖p+ αq‖M ≥ ∆ then

Find τ∗ > 0 such that ‖p+ τ∗q‖M = ∆
return p+ τ∗q

end if
p← p+ αq, r ← r + αHq
if ‖r‖M < η ‖j′‖M then return p

β ← 〈r,r〉M
ξ , q ← −r + βq

end loop

(Safeguard for negative
curvature)

(Trust region constraint)

(Convergence criterion)
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2. Truncated Newton methods

Trust region III

The trust region radius is controlled by the outer loop, again depending
on the expansion quality8.
Radius evolution depends on the ratio between the actual decrease
and the predicted decrease

ρ := δJa
δJp

with {
δJa = J(m+ p)− J(m)

δJp =
〈
j′, p

〉
M

+ 0.5 〈Hp, p〉M

8Fan, J. Pan, and Song, “A Retrospective Trust Region Algorithm with Trust
Region Converging to Zero”.
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2. Truncated Newton methods

Trust region IV

Fan trust region (Alg. 2b)

Require: 0 ≤ ρ0 < ρ1 < 1 and 0 < c0 < 1 < c1
loop
µ← 1
p← Alg. 1b with ∆ = µ ‖j′‖M

δJa = J(m+ p)− J(m)
δJp = 〈j′, p〉M + 0.5 〈Hp, p〉M
ρ = δJa/δJp

if ρ ≥ ρ0 then m← m+ p else m← m

if ρ < ρ1 then µ← c0µ
else if ρ ≥ ρ1 and ‖p‖M > 0.5∆ then µ← c1µ
else then µ← µ

end loop

(Quality ratio)

(Step acceptance)

(Radius update)
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Application
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3. Application

Marmousi 2D (acoustics)

Algorithms are compared on the Marmousi 2D acoustic case9
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with

I 122 emitters and 122 receivers on the surface

I 3 frequencies (4, 6, 8 [Hz]) inverted sequentially

I data distances measured by the least square norm

9Versteeg, “The Marmousi experience: Velocity model determination on a synthetic
complex data set”.
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3. Application

Minimization algorithms

Three algorithm are compared

I A gradient descent method (gd)

I A line search truncated Newton method (ls)

I A trust region truncated Newton method (tr)

For the trust region implementation, three parameter sets are compared

ρ0 ρ1 c0 c1

(a) 10−4 0.25 0.2 5. Radius increases rapidly

(b) 10−4 0.75 0.25 2. Radius increases more cautiously

(c) 10−4 0.9 0.5 2. Radius increases very cautiously
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3. Application

Inversion results
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3. Application

Convergence

Computational complexity is quantified by the wave solution count,
which is the number of forward problem solved.

gd ls tr (a) tr (b) tr (c)

Wave sol. (tot) 1303 432 400 310 340

Outer it. (tot) 630 42 42 33 41

Inner it. (avg) (1.) 3.81 3.76 3.7 3.15

Rejected (%) .04 .24 .21 .03 .07

Constrained (%) - - .83 .85 .93
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3. Application

Conclusion

1 Truncated Newton methods converge faster than gradient methods.

2 Line search and trust region implementations are very similar.

3 Line search and loose trust region perform similarly.

4 Tighter trust region reduces over-solving and converge even faster.

5 Trust region are known for being robust.
It still needs to be verified in the context of full wave inversion.

Thank you for your attention

21/21



3. Application

Conclusion

1 Truncated Newton methods converge faster than gradient methods.

2 Line search and trust region implementations are very similar.

3 Line search and loose trust region perform similarly.

4 Tighter trust region reduces over-solving and converge even faster.

5 Trust region are known for being robust.
It still needs to be verified in the context of full wave inversion.

Thank you for your attention

21/21


	Newton methods
	Inner product

	Truncated Newton methods
	Application

