### Full waveform inversion in the frequency domain A trust-region Newton method





#### X . Adriaens<sup>1</sup>, L. Métivier<sup>2</sup> and C. Geuzaine<sup>1</sup>

<sup>1</sup>Université de Liège <sup>2</sup>Université Grenoble Alpes

September 2021





#### Consider

- $\blacktriangleright$  a model m
- $\blacktriangleright$  a wave propagation operator F
- $\blacktriangleright$  a wavefield u
- $\blacktriangleright$  a mesurement operator R
- $\blacktriangleright$  a dataset d

Full wave inversion consists in finding  $m^*$  such that

$$R(u) = d$$
 with  $F(m^*)u = f$ 

through the optimization problem

$$m^* = \arg\min_m J(m) \triangleq \arg\min_m \operatorname{dist}(R(u(m)), d)$$

### Newton methods

e



Newton methods are **local optimization techniques** that originate from successive **second order expansions** of the misfit

$$\begin{split} J(m+\delta m) &\approx J(m) + \{D_m J\}(\delta m) + \frac{1}{2} \{D_{mm}^2 J\}(\delta m, \delta m) \\ &\approx J(m) + \left\langle j', \delta m \right\rangle_M + \frac{1}{2} \left\langle H \delta m, \delta m \right\rangle_M \end{split}$$

The optimal search direction w.r.t. this expansion is called the **pure Newton direction**  $p_N$ . It is defined as the **solution of a linear system** 

$$Hp_N = -j'$$

According to Newton methods, the model is **updated iteratively** along an **approximation of this pure direction**.

#### 1. Newton methods: Inner product Preconditioner



Equivalence bewteen both expansions is granted by the gradient  $j^\prime$  and the Hessian operator  ${\cal H}$  definitions

$$\langle j', \delta m \rangle_M \triangleq \{ D_m J \} (\delta m), \forall \delta m$$

and

$$\langle H\delta m_1, \delta m_2 \rangle_M \triangleq \{D_{mm}^2 J\}(\delta m_1, \delta m_2), \, \forall \delta m_1 \, \forall \delta m_2$$

that strongly depend on the chosen inner product  $\langle \cdot, \cdot \rangle_M$ .

Changing the inner product is equivalent to **applying a preconditioner** to both kernels<sup>1</sup>. Preconditioning does not change the pure Newton direction but does change approximate solutions.

<sup>&</sup>lt;sup>1</sup>Zuberi and Pratt, "Mitigating nonlinearity in full waveform inversion using scaled-Sobolev pre-conditioning".

1. Newton methods: Inner product

### Example I: conventional



The standard choice is a **least squares inner product**, which yields the conventional gradient and Hessian operator.



#### 1. Newton methods: Inner product

### Example II: spatially scaled



An appropriate **spatial weight** is often applied, *e.g.* the diagonal of the Gauss-Newton Hessian<sup>2</sup>  $h_a(x)$ .



contributions everywhere.

 $<sup>^2 \</sup>rm W.$  Pan, Innanen, and Liao, "Accelerating Hessian-free Gauss-Newton full-waveform inversion via I-BFGS preconditioned conjugate-gradient algorithm".

#### 1. Newton methods: Inner product

### Example III: spatially smoothed



A **regularization term** penalizing rough models can also be added. Kernels w.r.t this inner product are therefore smoother.



 $^{3}\mathsf{Zuberi}$  and Pratt, "Mitigating nonlinearity in full waveform inversion using scaled-Sobolev pre-conditioning".

### Truncated Newton methods



Approximate solution are here obtained by solving the Newton system iteratively with an accuracy reflecting the expansion quality. Hessian-free iterative methods such as the conjugate gradient algorithm are preferred because the linear system is typically large.

Conventional conjugate gradient (Alg. 1a)

$$\begin{array}{l} p \leftarrow 0, \ r \leftarrow j', \ q \leftarrow -j' \\ \hline \textbf{loop} \\ & \quad \textbf{if} \ \langle Hq, q \rangle_M \leq 0 \ \textbf{then return} \ p \\ & \quad \xi \leftarrow \langle r, r \rangle_M \\ & \quad \alpha \leftarrow \frac{\xi}{\langle Hq, q \rangle_M}, \quad p \leftarrow p + \alpha q, \ r \leftarrow r + \alpha Hq \end{array}$$

 $\begin{array}{l} \text{if } \left\|r\right\|_{M} < \eta \left\|j'\right\|_{M} \text{ then return } p \\ \beta \leftarrow \frac{\langle r, r \rangle_{M}}{\xi}, \quad q \leftarrow -r + \beta q \\ \text{end loop} \end{array}$ 

(Safeguard for negative curvature)

(Convergence criterion)

#### 2. Truncated Newton methods Line search



Over-solving is avoided by **relaxing the convergence criterion** depending on the expansion quality<sup>4,5</sup>

$$\eta = \frac{\|j'(m_n) - j'(m_{n-1}) - \gamma_{n-1} H(m_{n-1}) p_{n-1}\|_M}{\|j'(m_{n-1})\|_M}$$
 ( $\diamond$ )

An appropriate length  $\gamma$  is given to this direction p, *e.g.* satisfying Wolfe conditions<sup>6</sup>. The outer loop is finally obtained by repeating these two steps until convergence.

Eisenstat line search (Alg. 2a)  
loop  
$$p \leftarrow Alg. 1 \text{ with } \eta = (\diamond)$$
  
 $m \leftarrow m + \gamma p$   
end loop

<sup>4</sup>Métivier et al., "Full Waveform Inversion and the Truncated Newton Method".
 <sup>5</sup>Eisenstat and Walker, "Choosing the forcing terms in an inexact Newton method".
 <sup>6</sup>Nocedal, Wright, and Robinson, *Numerical Optimization*.



Over-solving is avoided by **adding a length constraint** on the Newton system approximate solution

## $\|p\|_M \leq \Delta$

This new problem can be solved approximately with a slightly modified version of the conjugate gradient method<sup>7</sup>.

<sup>&</sup>lt;sup>7</sup>Steihaug, "The Conjugate Gradient Method and Trust Regions in Large Scale Optimization".

# $\begin{array}{c} \mbox{2. Truncated Newton methods} \\ \hline Trust \ region \ II \end{array}$



Steihaug conjugate gradient (Alg. 1b)  $p \leftarrow 0, r \leftarrow j', q \leftarrow -j'$ loop if  $\langle Hq,q\rangle_M < 0$  then return  $p + \tau^* q$ end if  $\xi \leftarrow \langle r, r \rangle_M, \ \alpha \leftarrow \frac{\langle r, r \rangle_M}{\langle Ha, a \rangle_M}$ if  $\|p + \alpha q\|_M > \Delta$  then Find  $\tau^* > 0$  such that  $\|p + \tau^* q\|_M = \Delta$ return  $p + \tau^* q$ end if  $p \leftarrow p + \alpha q, r \leftarrow r + \alpha H q$ if  $||r||_M < \eta ||j'||_M$  then return p  $\beta \leftarrow \frac{\langle r,r \rangle_M}{\epsilon}$ ,  $q \leftarrow -r + \beta q$ end loop

(Safeguard for negative curvature)

(Trust region constraint)

(Convergence criterion)



The trust region radius is controlled by the outer loop, again depending on the expansion quality<sup>8</sup>.

Radius evolution depends on the ratio between the actual decrease and the predicted decrease

$$\rho := \frac{\delta J_{\mathrm{a}}}{\delta J_{\mathrm{p}}}$$

with

$$\begin{cases} \delta J_{\rm a} &= J(m+p) - J(m) \\ \delta J_{\rm p} &= \left\langle j', p \right\rangle_M + 0.5 \left\langle Hp, p \right\rangle_M \end{cases}$$

<sup>&</sup>lt;sup>8</sup>Fan, J. Pan, and Song, "A Retrospective Trust Region Algorithm with Trust Region Converging to Zero".

# $^{\rm 2.\ Truncated\ Newton\ methods}$ Trust region IV





## Application

#### 3. Application Marmousi 2D (acoustics)



Algorithms are compared on the Marmousi 2D acoustic case<sup>9</sup>



- 122 emitters and 122 receivers on the surface
- ▶ 3 frequencies (4, 6, 8 [Hz]) inverted sequentially
- data distances measured by the least square norm

<sup>&</sup>lt;sup>9</sup>Versteeg, "The Marmousi experience: Velocity model determination on a synthetic complex data set".



(gd)

(ls) (tr)

Three algorithm are compared

- A gradient descent method
- A line search truncated Newton method
- A trust region truncated Newton method

For the trust region implementation, three parameter sets are compared

|     | $ ho_0$   | $\rho_1$ | $c_0$ | $c_1$ |                                  |
|-----|-----------|----------|-------|-------|----------------------------------|
| (a) | $10^{-4}$ | 0.25     | 0.2   | 5.    | Radius increases rapidly         |
| (b) | $10^{-4}$ | 0.75     | 0.25  | 2.    | Radius increases more cautiously |
| (c) | $10^{-4}$ | 0.9      | 0.5   | 2.    | Radius increases very cautiously |

# 3. Application







3. Application

#### Convergence



Computational complexity is quantified by the **wave solution count**, which is the **number of forward problem solved**.

|            |       | gd   | ls   | tr (a) | tr (b) | tr (c) |
|------------|-------|------|------|--------|--------|--------|
| Wave sol.  | (tot) | 1303 | 432  | 400    | 310    | 340    |
| Outer it.  | (tot) | 630  | 42   | 42     | 33     | 41     |
| Inner it.  | (avg) | (1.) | 3.81 | 3.76   | 3.7    | 3.15   |
| Rejected   | (%)   | .04  | .24  | .21    | .03    | .07    |
| Constraine | -     | -    | .83  | .85    | .93    |        |







#### 3. Application Conclusion



- 1 Truncated Newton methods converge faster than gradient methods.
- 2 Line search and trust region implementations are very similar.
- 3 Line search and loose trust region perform similarly.
- 4 Tighter trust region reduces over-solving and converge even faster.
- 5 Trust region are known for being robust.It still needs to be verified in the context of full wave inversion.

#### 3. Application Conclusion



- 1 Truncated Newton methods converge faster than gradient methods.
- 2 Line search and trust region implementations are very similar.
- 3 Line search and loose trust region perform similarly.
- 4 Tighter trust region reduces over-solving and converge even faster.
- 5 Trust region are known for being robust.It still needs to be verified in the context of full wave inversion.

### Thank you for your attention