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SUMMARY

Exploiting Hessian information greatly enhances the conver-
gence of full waveform inversion. A theoretically simple way
to incorporate these second-order derivatives is to minimize
the misfit using Newton methods. In practice however the pure
Newton method is too computationally intensive to implement,
because it requires inverting the Hessian operator. In addition,
the misfit is not necessarily quadratic, thus the exact Newton
direction is not necessarily appropriate. Consequently, it is nat-
ural to turn to inexact Newton methods, where the search direc-
tion is constructed iteratively to approximate the pure Newton
direction. The bottleneck of these methods lies in the com-
promise to find between a direction built in few iterations, but
which hardly takes the Hessian into account and a nearly ex-
act direction which is very expensive to compute. In this work
we present an inexact Newton method based on a particular
trust-region algorithm, in the context of frequency-domain full
waveform inversion. A numerical test is performed on the
Marmousi model to compare convergence speeds with a line
search based inexact Newton algorithm. This illustrates that
the trust-region method is more robust and provides faster con-
vergence for an adequate choice of trust-region parameters.

INTRODUCTION

Full waveform inversion is a data fitting technique whose aim
is to recover some model parameters by minimizing the dis-
crepancy between recorded data and data simulated by solv-
ing wave propagation problems. By nature these data are os-
cillatory and consequently the misfit quantifying the discrep-
ancy features local minima (Mulder and Plessix, 2008). Global
optimization techniques should ideally be used but the typi-
cally very high dimensions of the search space prohibits their
use and only local optimization tools can practically be used,
with care. A straightforward direction to iteratively update the
model properties is of course the (preconditioned) gradient, i.e.
the direction of steepest decrease. However it is well-known
that the inverse Hessian plays a crucial role in the reconstruc-
tion in addition to offering the possibility to account for cou-
pling effects between parameter classes for multi-parameter
inversions (Pratt and Shin, 1998). While state-of-the-art meth-
ods rely on the quasi-Newton l-BFGS algorithm, which im-
plicitly builds an approximation of the inverse Hessian opera-
tor from l saved previous gradients and model parameters, it
has been illustrated that on some specific cases, inexact New-
ton methods can provide faster convergence. These methods
compute the descent direction through few iterations of a linear
system involving the Hessian operator (the Newton system).
One advantage over l-BFGS is the locality of the quadratic
approximation: such methods do not rely on the convergence
history of the algorithm, which might yield inaccurate inverse
Hessian approximation for non quadratic misfit functions.

To implement an inexact Newton scheme, one can rely either
on line search algorithms, or on trust-region methods. In the

former case, once a direction is chosen, the outer iteration is
completed by finding the optimal length of the step that should
be performed along that direction. Among the non linear opti-
mization community, it is sometimes argued however that line
search is not well suited with Newton directions, especially
when the Hessian is nearly singular. Indeed when the Hes-
sian is nearly singular, the Newton direction becomes exces-
sively long such that the quadratic approximation implicitly
made when computing it ceases to hold. Much computational
effort must then be made by the line search procedure to reduce
the step size (Nocedal et al., 2006). Stopping the iterative solu-
tion of the Newton system earlier appears as a solution to this
problem. For example Eisenstat and Walker (1996) proposes
to relax its convergence requirements such that they reflect the
accuracy of the quadratic approximation.

In this contribution we propose a trust-region method, which
instead limits the length of the Newton direction, also depend-
ing on the quadratic approximation accuracy.

THEORY

Full waveform inversion consists in finding the optimal model
parameter m∗ whose corresponding wave field u, defined through
a wave propagation operator F , matches the recorded data set
d after a projection R onto receivers

Ru = d with F(m∗)u = f , (1)

through the minimization of a distance dist(·, ·)
m∗ = arg minJ(m), with J(m) := dist(Ru(m),d). (2)

Local optimization techniques are based on a local expansion
of the misfit J around the current model estimate

J(m+δm)≈ J(m)+{DmJ}(δm)+
1
2
{D2

mmJ}(δm,δm). (3)

This expansion can also be written in terms of the gradient j′

and the Hessian operator H once an inner product 〈·, ·〉M is
chosen for the model space M

J(m+δm)≈ J(m)+
〈

j′,δm
〉

M +
1
2
〈Hδm,δm〉M . (4)

Resulting from this expansion, the pure Newton direction pN
is defined as the solution of the linear system

H pN =− j′. (5)

The large-scale nature of this linear system requires the use
of Hessian-free iterative methods. The Hessian operator being
symmetric, the conjugate gradient method is the ideal candi-
date. An additional safeguard is however added to exit prema-
turely when directions of negative curvature are encountered.
Such directions exist because the full Hessian is not necessar-
ily positive definite, especially far from the global minimum.

The choice of the inner product plays a central role in the inver-
sion as it defines both gradients and Hessians and is actually
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equivalent to preconditioning them (Zuberi and Pratt, 2017).
Basically, a different choice for the inner product does not
modify the pure Newton direction, but does modify the sub-
space constructed by the conjugate gradient method. A good
choice can thus lead to better convergence or to better direc-
tions if the convergence criterion cannot be met, for example
because of negative curvature or trust region violation.
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Figure 1: Gradient for different inner product choices: (a) con-
ventional; (b) first term of (6); (c) both terms of (6).

Here we chose an inner product composed of two terms

〈·, ·〉M :=
〈

h̃1/2
diag ·, h̃

1/2
diag ·

〉
+ ε

〈
~∇·,~∇·

〉
. (6)

The first term is related to the diagonal part of the Gauss-
Newton Hessian h̃1/2

diag and compensates for the geometrical
spreading (Pan et al., 2017) while the second term, related
to spatial derivation, increases the norm of directions that are
rapidly varying and prevents the inner product from being in-
sensitive in regions where the diagonal Hessian is close to zero.
This inner product is very similar to the one introduced by Zu-
beri and Pratt (2017), except that the Gauss-Newton diagonal
Hessian is used in addition. The stabilizing parameter ε can be
expressed in terms of a characteristic length lc

ε := h̃thres(lc/2π)2, (7)

with h̃thres a threshold value for the diagonal Hessian. In re-
gions where the diagonal Hessian is close to the threshold, then
directions with details smaller than this characteristic length lc
are penalized with respect to smoother directions. From the
point of view of preconditioning, this inner product generates a
depth-scaling and a Laplacian filtering. The effect of this inner
product is illustrated in Figure 1 on the first gradient computed
during the inversion described in the application section.

Line search
Newton methods can be combined with a line search proce-
dure. In that case a direction p is first found by solving the
Newton system approximately with the conventional conjugate
gradient method (Algorithm 1). Over-solving is here avoided
through the forcing term η , which is not systematically close
to zero but which is instead chosen to reflect the accuracy of
the second-order expansion. Eisenstat and Walker (1996) de-
scribed and studied three possible choices for this sequence.
These three choices were then compared in the context of acous-
tic imaging by Métivier et al. (2013), who advise to use the
forcing sequence

η =
‖ j′(mn)− j′(mn−1)− γn−1H(mn−1)pn−1‖M

‖ j′(mn−1)‖M
. (8)

If the accuracy of the local quadratic approximation is good
then this forcing term is close to zero and the Newton system is
solved accurately. If not, then iterations are truncated sooner.
Additional safeguards are also added to prevent this forcing
term to decrease too fast.

Algorithm 1 Conventional conjugate gradient
p← 0, r← j′, q←− j′

loop
if 〈Hq,q〉M ≤ 0 then return p
ξ ← 〈r,r〉M
α ← ξ

〈Hq,q〉M
, p← p+αq, r← r+αHq

if ‖r‖M < η ‖ j′‖M then return p

β ← 〈r,r〉M
ξ

, q←−r+βq
end loop

An appropriate length γ is then given to this direction p, ide-
ally the global minimum along the line m+ γ p. In practice
however less stringent satisfactory conditions are used instead
(e.g. Wolfe conditions) to spare expensive wave problem res-
olutions (Nocedal et al., 2006). The outer loop is finally ob-
tained by repeating these two steps until convergence.

Trust region
When the Newton method is associated with a trust-region
technique, both the direction and its length are found simul-
taneously by solving the Newton system with an additional
constraint

H pN =− j′ with ‖pN‖M ≤ ∆. (9)

This new problem can be solved approximately with a slightly
modified version of the conjugate gradient method (Algorithm
2) due to Steihaug (1983). Basically there are only two modifi-
cations compared to Algorithm 1. First, the inner iterations are
cropped to the trust region radius ∆ when the unconstrained so-
lution increases beyond it. Second, directions of negative cur-
vature are followed up to the boundary of the trust region while
these directions are never investigated in the conventional ver-
sion. The convergence criterion is unchanged but here the forc-
ing term is kept constant.

The size of the trust region is actually controlled by the outer
iterations. The decision of modifying the trust region is based
on the accuracy of the second-order expansion. When the ex-
pansion is accurate but the updates are limited by the length
constraint, then the trust region radius is increased. At the op-
posite, when the updates are out of the range of validity of the
expansion, then the trust region radius is decreased.
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Algorithm 2 Steihaug conjugate gradient
p← 0, r← j′, q←− j′

loop
if 〈Hq,q〉M ≤ 0 then

Find τ∗ > 0 such that ‖p+ τ∗q‖M = ∆

return p+ τ∗q
end if
ξ ← 〈r,r〉M
α ← ξ

〈Hq,q〉M
if ‖p+αq‖M ≥ ∆ then

Find τ∗ > 0 such that ‖p+ τ∗q‖M = ∆

return p+ τ∗q
end if
p← p+αq, r← r+αHq
if ‖r‖M < η ‖ j′‖M then return p

β ← 〈r,r〉M
ξ

, q←−r+βq
end loop

The quality of the expansion is quantified by the ratio ρ be-
tween the actual decrease δJa := J(m+ p)− J(m) and the de-
crease predicted by the second-order expansion δJp := 〈 j′, p〉M
+0.5〈H p, p〉M

ρ :=
δJa

δJp
. (10)

This ratio is close to one when the expansion is accurate. It
plays a similar role as the forcing sequence (8). It is however
based on an expansion of the misfit while the forcing sequence
(8) is based on an expansion of the gradient. Standard trust-
region methods directly control the radius ∆. However it is
an absolute quantity, in the sense that it is compared to ‖p‖M ,
which depends on the inner product. Thus, it seems more natu-
ral to control this radius relatively to the gradient norm, which
provides a length reference for the Newton system. In this
way, even when the Newton system changes scale from one it-
eration to another, the trust region remains relevant. This par-
ticular variant (Algorithm 3) has been first introduced by Fan
et al. (2016).

Algorithm 3 Fan trust region
Require: 0≤ ρ0 < ρ1 < 1 and 0 < c0 < 1 < c1

µ ← 1
loop

p← Algorithm 2 with ∆ = µ ‖ j′‖M
δJa = J(m+ p)− J(m)
δJp = 〈 j′, p〉M +0.5〈H p, p〉M
ρ = δJa/δJp
if ρ ≥ ρ0 then m← m+ p else m← m
if ρ < ρ1 then µ ← c0µ

else if ρ ≥ ρ1 and ‖p‖M > 0.5∆ then µ ← c1µ

else then µ ← µ

end loop

APPLICATION

In this section we present a standard numerical test case to
which both methods presented above are applied. Final details
of their implementation are also introduced.

Numerical tests are performed on the 2D Marmousi acoustic
model (Versteeg, 1994) (Figure 2(a)) in the frequency domain.

It is here chosen that the subsurface is described by the slow-
ness squared s2 [s2/km2], thus the forward operator writes

F(p,s2) = ∆p+ω
2s2 p. (11)

Three frequencies (4, 6 and 8 [Hz]) are inverted sequentially
from the lowest to the highest to avoid local minima (Bunks
et al., 1995). Their spacing is chosen following the guidelines
from Sirgue and Pratt (2004) regarding wavenumber coverage.
We used three stabilizing parameters ε , corresponding to three
characteristic lengths lc (0.8 [km], 0.5 [km] and 0.4 [km]), one
for each frequency. A surface acquisition system composed
of 122 equally spaced (72 [m]) emitters-receivers is used and
the misfit J is chosen as the conventional least-square distance
between simulated and recorded data

J(s2) =
1
2

∑
e

∑
r

∣∣∣pe(xr;s2)−der

∣∣∣2 . (12)

For each frequency, outer iterations are stopped when the con-
vergence criterion J(s2) < 3× 10−3 is reached. A smoothed
version of the exact Marmousi model is used as an initial guess.
This initial model is computed with a Laplacian filter s2

init =

(1+(lc/2π)2∆)−1s2
exact with lc = 2 [km] (Figure 2(b)).

Slowness squared and pressure fields at the three frequencies
are discretized on a square grid (36 [m]) by hierarchical finite
elements, respectively of order 1 and of order 2, 3, 4. A wa-
ter layer (216 [m]) is also added at the top of the model but it
is kept constant during the inversion. The model is spatially
truncated by Sommerfeld boundary conditions (Schot, 1992).
Any gradient or the Hessian vector product is computed using
the (second-order) adjoint state method (Métivier et al., 2013).
Recorded data are generated synthetically using the same hier-
archical finite elements setting than for the inversion, to reduce
numerical errors.

Line search
We choose a line search algorithm that satisfies strong Wolfe
conditions and accepts steps very easily (Algorithm 3.2 from
Nocedal et al. (2006) with c1 = 10−4, c2 = 0.9 and α0 = 1).

Trust region
Three sets of values for ρ0, ρ1, c0, and c1 have been tested. The
first one (a) is very similar to what was originally proposed
by Fan et al. (2016). The other two (b,c) are more cautious
because they modify the radius more rarely and when they do,
it increases by a smaller factor. These parameters sets are given
in Table 1. The forcing term is constant for all trust-region
methods (η = 0.4).

ρ0 ρ1 c0 c1
(a) 10−4 0.25 0.2 5.
(b) 10−4 0.75 0.25 2.
(c) 10−4 0.9 0.5 2.

Table 1: Parameter sets for Fan trust-region algorithm

RESULTS

The squared slowness estimated with trust-region (c) method
is shown in Figure 2(c). From a relatively low resolution initial
guess (Figure 2(b)), full waveform inversion indeed provides
a high resolution estimation of the exact model (Figure 2(a)).
The images obtained with the other methods do not differ sig-
nificantly.
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Figure 2: (a) Marmousi model (b) Initial guess (c) Inversion
results (trust-region (c))

Some interesting quantities concerning the optimization algo-
rithms are given in Table 2. For the sake of comparison, results
obtained with a standard preconditioned gradient descent are
also reported.

gd ls tr (a) tr (b) tr (c)
Wave sol. (tot) 1303 432 400 310 340
Outer it. (tot) 630 42 42 33 41
Inner it. (avg) (1.) 3.81 3.76 3.7 3.15
Rejected (%) .04 .24 .21 .03 .07
Constrained (%) - - .83 .85 .93

Table 2: Statistics related to the different inversion algorithms.

Among these indicators lies the percentage of direction refusal
(rejected). Such a denial yields an additional cost because ei-
ther other step length γ must be tried (line search) or the en-
tire outer iteration must be restarted with a smaller radius ∆

(trust-region). The overall computational time is not propor-
tional to the number of outer iterations (outer it.) because the
computational cost of these iterations is highly dependent on
the number of conjugate gradient iterations (inner it.). Instead
each outer iteration is quantified by the number of wave prop-
agation problems it requires to solve (wave sol.). As detailed
in Métivier et al. (2013), for a given model, a misfit evalua-
tion requires one wave solution, the associated gradient one
more and any Hessian vector product still requires two more.
Therefore the additional cost of each inner iteration is only two
wave propagation problems. The misfit is plotted against this
measure of computational complexity in Figure 3.

Not surprisingly second-order methods converge orders of mag-
nitude faster than the preconditioned gradient descent, while
the average number of inner iterations is not much higher than
one. Line search and trust region (a) methods give comparable

results because both actually reject directions equally often. A
rejected direction is potentially a heavy efficiency loss if lots
of inner iterations were necessary to compute it. Plateaus ap-
pearing in the convergence curves are a consequence of these
refusals. Trust-region (b) shows the best convergence, closely
followed by trust-region (c). Their good performance is due to
the fact that both almost do not reject any step and therefore
do not waste computing time. In effect, the convergence slope
looks the same for all second-order methods if plateaus are
omitted, and the advantage of the trust-region method lies in
reducing the number of rejected directions and thus the num-
ber of plateaus.
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Figure 3: Misfit against the number of wave problem solved.
(a) 4 [Hz] (b) 6 [Hz] (c) 8 [Hz].

CONCLUSION

We introduced a trust-region Newton method and compared its
computational performance with a line search Newton method,
in the context of full waveform inversion in the frequency do-
main. In particular we showed that the trust-region method
significantly reduces over-solving and thus yields faster con-
vergence.
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