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Introduction

Antennas design is a major concern when it comes to wireless electromagnetic systems. Power
transfer, mobile communications or object identification (e.g. RADAR and LiDAR) are good ex-
amples among lots of others. For all these applications, it is critical to send the information with
enough energy and only to the location of interest so that energy waste, electromagnetic pollution
and human exposure are limited.
As any electromagnetic system, antennas behaviour is dictated by the Maxwell’s equations. The
behaviour of antennas at a particular frequency being an important parameter, the frequency domain
Maxwell’s equations are considered when possible. Exact solutions to these equations exist only
when the media and the antenna geometry are simple, e.g. for stratified homogeneous media, for
perfectly conducting spheres etc. When the complexity of the media or the antenna is high, numer-
ical simulations become mandatory. However, solving numerically these equations is particularly
difficult in this case as no terms in these equations are negligible, i.e. the full wave solution is
needed as wave propagation is studied. The numerical challenge is that the Maxwell (or Helmholtz)
differential operator is indefinite which implies that iterative solvers for volume finite elements (or
finite differences) do not converge [9]. Expensive direct solver must then be used. The cost of these
methods, typically O(N3) where N is the number of unknowns, makes them impossible to apply
practically for electrically large problem.
Several solutions to this numerical problem have therefore been provided [9]. One of them being the
so called domain decomposition method. As its name indicates, this method consists in dividing the
resolution volume into several (Nd) subvolumes with corresponding subproblems. Then the expen-
sive exact solver is applied for the subproblems of each subvolumes. The challenge is of course to
define subproblems that are equivalent to the overall original problem which can not be done in one
step thus leading to an iterative technique. Using this method, the complexity goes from O(N3) to
O(Ndnit(N/Nd)

3) but the main advantage is that the subproblems can be made independent for each
iterations and thereforee solved by different computers. Aside that a parallel solution is faster, it also
prevents memory problem that could occur when handling all the unknowns on the same computer.
Applying domain decomposition method to antenna design could therefore open new possibilities
as the numerical simulations of complex configurations become possible.

The subject of this work is to apply domain decomposition method to antenna design. It is di-
vided into three parts.
The first part is dedicated to the non-overlapping Schwarz algorithm, a particular type of domain de-
composition method and its application to typical antenna problem formulations. For the simplicity
of the derivation, the particular case of transverse fields is considered. A word is also given on the
finite element implementation of this algorithm.
The second part introduces the antenna geometries that are considered, i.e. phased arrays, and the
optimization problems related to these geometries. Phased arrays have been chosen because they are
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the simplest antennas, because their behaviour is quite intuitive and because the derivation of this
part can be easily generalized to real antennas.
The third and last part applies the results from the two previous ones. First, the error made by the
different approximations on the Maxwell’s equations, and in particular the domain decomposition
algorithm, are quantified on trivial cases. Then the antenna optimization is performed on two cases
representing typical problem of power transfer through human tissue.

The algorithms described in this work are implemented using the finite element framework provided
by gmsh[13], getDP[8] and getDDM[28] while the post-processing is done using Julia[2].
The codes related to this work are available online on the git repository https://github.com/
XavierAdriaens/Phased_arrays.git.
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Part I

Domain decomposition methods applied to
the Helmholtz equation and their finite

element discretization
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Chapter 1

Helmholtz equation in electromagnetism

This chapter introduces the equation to which domain decomposition method is applied, i.e. the
scalar Helmholtz equation, which is a particular case of the more general Maxwell’s equations.

1.1 Maxwell’s equations
Consider the time domain Maxwell’s equations

curl h = j +
∂d

∂t
(Maxwell-Ampère), (1.1)

curl e = −∂b

∂t
(Faraday), (1.2)

div b = 0 (Gauss), (1.3)
div d = ρ (Coulomb) (1.4)

where h [A/m] is the magnetic field, e [V/m] is the electric field, b [W/m2] is the magnetic flux
density, d [C/m2] is the electric displacement field, j [A/m2] is the current density and ρ [C/m3] is
the charge density.
Substituting all these quantities by their Fourier transform1

f =

∫ ∞

−∞
f exp (iωt) dω (1.6)

with ω [rad/s] the pulsation, yields the frequency domain Maxwell’s equations

curl h = j + iωd (Maxwell-Ampère), (1.7)
curl e = −iωb (Faraday), (1.8)
div b = 0 (Gauss), (1.9)
div d = ρ (Coulomb). (1.10)

1f has therefore units [[f ]/(rad/s)]. However for time harmonic fields at pulsation ω0, the frequency domain fields
write as

f =
1

2

(
f ′(ω0)δ (ω − ω0) + f ′

∗
(ω0)δ (ω + ω0)

)
(1.5)

and f ′ has units [[f ]].
In this work f ′ and f (resp. ω and ω0) are used indifferently. The only difference between both is their units.
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Chapter 1: Helmholtz equation in electromagnetism

To complete these equations, consider also the linear and isotropic constitutive laws but possibly
dispersive2

j = jc + ja with jc = σe, b = µh and d = εe, (1.11)

where jc and ja are the conduction and the applied current densities, σ [S/m] is the conductivity, µ
[H/m] is the magnetic permeability and ε [F/m] is the electric permittivity.

Helmholtz equation for the electric field In the particular case where the magnetic permeability
is homogeneous (i.e. constant w.r.t. the position), denoting this permeability µ0, the magnetic field
can be expressed as

h =
−1

iωµ0

curl e (1.12)

using Faraday’s law (Eq.(1.8)). Then injecting this relation into Maxwell-Ampère’s law (Eq.(1.7)),
yields

−1

iωµ0

curl (curl e) = ja + σe+ iωεe. (1.13)

Defining the complex permittivity as
ε̃ , ε+

σ

iω
(1.14)

and the wavenumber k [1/m2] as
k2 , ω2µε̃, (1.15)

Eq.(1.13) becomes (
curl curl − k2

)
e = −iωµ0ja (1.16)

which is called the vectorial non-homogeneous Helmholtz equation for the electric field.

It is common in electromagnetism that polarization losses appear in media. These losses can be
modelled through an imaginary part of the permittivity. The equivalent conductivity is then defined
as

σ̃ , σ + ωIm (ε) . (1.17)

The imaginary part of the permittivity and thus of the wavenumber squared are then negligible if

σ̃

ωRe (ε)
� 1. (1.18)

These kinds of materials are referred to as bad conductors (BC). At the opposite, if

σ̃

ωRe (ε)
� 1 (1.19)

then the imaginary part of the permittivity and of the wavenumber squared are dominant. These
kinds of materials are referred to as good conductors (GC). Finally, if none of the above relations
are satisfied, then the material is referred to as dielectric (D).

2A dispersive quantity is a quantity that depends on the pulsation ω.
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Chapter 1: Helmholtz equation in electromagnetism

Helmholtz equation for the magnetic field Similarly, in the particular case where the equivalent
conductivity and the complex permittivity are homogeneous, denoting them respectively by σ̃0 and
ε̃0, the electric field can be expressed as

e =
curl h− ja

iωε̃0
(1.20)

using Maxwell-Ampère’s law (Eq.(1.7)). Then injecting this relation into the Faraday’s law (Eq.(1.8)),
it yields (

curl curl − k2
)
h = curl ja (1.21)

which is called the vectorial non-homogeneous Helmholtz equation for the magnetic field.

Two dimensions scalar Helmholtz equation In this work, the concepts are explained and applied
to a simpler equation than the two previously introduced. This simpler equation can be obtained
from the vectorial ones, i.e. Eq.(1.16) and Eq.(1.21), by considering either transverse electric (TE)
fields

e = u(x, y)ẑ and − iωµ0ja = f(x, y)ẑ (1.22)

or transverse magnetic (TM) fields

h = u(x, y)ẑ and curl ja = f(x, y)ẑ. (1.23)

Inserting these ansatz into respectively Eq.(1.16) and Eq.(1.21) yields
(
− div grad − k2

)
u = f (1.24)

which is called the scalar non-homogeneous Helmholtz equation.

1.2 Radiation conditions
Both vectorial and scalar non-homogeneous Helmholtz equations introduced previously (i.e. Eq.(1.16),
Eq.(1.21) and Eq.(1.24)) do not have a unique solution and a supplementary condition must be
added to ensure the uniqueness of the solution. In [26] [30], the authors show3 that the solution to
Maxwell’s equations (Eq.(1.8) to Eq.(1.10)) for homogeneous and isotropic medium (µ → µ0 and
ε→ ε0) must verify4

lim
ρ→∞

ρ

(
x̂× h+

√
ε0
µ0

e

)
= 0 (1.25)

and

lim
ρ→∞

ρ

(
x̂× e−

√
ε0
µ0

h

)
= 0. (1.26)

These two conditions are equivalent to

lim
ρ→∞

ρ (x̂× (curl e)− ik0e) = 0 (1.27)

3Actually in [26], the authors stated that not only Eq.(1.25) and Eq.(1.26) have to be verified but also that
limρ→∞ ρe/h must be finite. A condition that has later been showed to be a consequence of the vectorial Helmholtz
equation Eq.(1.16) and Eq.(1.21) by [30].

4ρ =
√
x2 + y2 + z2 = ‖x‖
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Chapter 1: Helmholtz equation in electromagnetism

and
lim
ρ→∞

ρ (r̂ × (curl h)− ik0h) = 0 (1.28)

using Faraday’s law Eq.(1.12) and Maxwell-Ampère’s law Eq.(1.20), with ja = 0 as it is assumed
that applied currents vanish at infinity. These conditions are called Silver-Müller radiation condi-
tions.
For the scalar case in D dimensions, the radiation condition is given by5

lim
ρ→∞

ρ
D−1

2

(
∂u

∂ρ
+ ik0u

)
= 0 (1.29)

which is called the Sommerfeld radiation condition.
The two dimentional radiation condition is very similar to what is obtained by introducing the ansatz
Eq.(1.22) or Eq.(1.23) into the Silver-Müller radiation condition, i.e.

lim
ρ→∞

ρ

(
∂u

∂ρ
+ ik0u

)
= 0. (1.30)

The only difference being that ρ is replaced by
√
ρ as the dimension of the problem decreases from

three to two. This difference comes from the integral representation theorem that is used to derive the
radiation condition. This theorem typically involves the Green function associated to the Helmoltz
equation. In two dimensions, this function decreases as ρ−1/2 while as ρ−1 in three dimensions. In
the following sections, only the scalar system





(
− div grad − k2

)
u = f ∀x ∈ R2,

lim
ρ→∞
√
ρ

(
∂u

∂ρ
+ ik0u

)
= 0.

(1.31)

is considered explicitly but the concepts can be applied to vectorial systems Eq.(1.16) and Eq.(1.28)
or Eq.(1.21) and Eq.(1.28). A treatment of the vectorial case can be found in [28].

1.3 Total, incident and scattered fields
Consider a particular case of Eqs(1.31) where the sources (i.e. regions of the space where f is
non-vanishing) are localized in a closed subset Ωs and where the wave number is homogeneous ev-
erywhere except in another closed subset Ωd (the scatterer), as represented in Figure 1.1.

5ρ =
√
x2 + y2 = ‖x‖
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Chapter 1: Helmholtz equation in electromagnetism

Scattered �eld uscat problem

�s

��

Sources

�

scatterer

Initial total �eld u problem

Incident �eld uinc problem

Equivalent total �eld u problem

1

�

2 2

�

or

Figure 1.1: Illustration of the solution technique decomposing the total field u into an incident and
scattered field uinc and uscat.

In such a case, the solution u can be divided as

u = uinc + uscat (1.32)

where uinc is the incident field and uscat is the scattered field. The incident field is computed as the
solution of 




(
− div grad − k2

0

)
uinc = f ∀x ∈ R2,

lim
ρ→∞
√
ρ

(
∂uinc

∂ρ
+ ik0uinc

)
= 0.

(1.33)

The important point here is that the scatterer, i.e. the non-homogeneous region Ωd, is not considered
(i.e. k = k0, ∀x ∈ R2). The goal of this definition is to be able to formulate a new problem where

8



Chapter 1: Helmholtz equation in electromagnetism

the sources f do not appear anymore and are subsituted by the field uinc they generate. They are two
possibilities to formulate this new problem, in terms of the total field u or in terms of the scattered
field uscat.

Scattered field formulation The equations verified by the scattered field are obtained by introduc-
ing the decomposition uscat = u − uinc in the equations verified by the total field u, i.e. Eqs(1.31).
Using then the definition of the incident field uinc and the linearity of the Helmholtz operator, the
scattered field equation is given by





(
− div grad − k2

)
uscat =

(
k2 − k2

0

)
uinc ∀x ∈ R2,

lim
ρ→∞

ρ

(
∂uscat

∂ρ
+ ik0uscat

)
= 0.

(1.34)

The important point is that the incident field uinc acts as a fictitious source on the scatterer, where
k 6= k0.

Equivalent total field formulation Similarly, a formulation on the total field u where the sources
f do not appear explicitly can be obtain by replacing f by (− div grad − k2

0)uinc in Eqs(1.31).
Sometimes however the incident field does not verify the Sommerfeld radiation condition, the most
common example being the plane wave

uinc = exp (−ik ·x) (1.35)

which is a very good approximation of the field radiated by any source at a point sufficiently far from
it, i.e. in the so called far field. In that case, the total field can not satisfy the Sommerfeld radiation
condition but only the diffracted field can. The system to solve for the total field is then





(
− div grad − k2

)
u =

(
− div grad − k2

0

)
uinc ∀x ∈ R2,

lim
ρ→∞
√
ρ

(
∂u

∂ρ
+ ik0u

)
= lim

ρ→∞
√
ρ

(
∂uinc

∂ρ
+ ik0uinc

)
.

(1.36)

One advantage of these two new formulations is that the considered domain can be restricted to the
neighborhood of the scatterer. Moreover, sources often have the same topology (e.g. dipoles or
windings), their radiating patterns (uinc) are thus known and must not be computed to study every
new scatterer.

1.4 Impenetrable scatterer
A common approximation in electromagnetism are perfect conductors. Inside a perfect conductor,
the electric and magnetic fields e and h vanish. That is the reason why perfect conductors are also
refered to as impenetrable scatterers. When the considered scatterer is a perfect electric conductor
(PEC)(i.e. σ →∞), it can be shown that the electric and magnetic field satisfy

{
n̂× e = 0 ∀x ∈ ∂ΩPEC,

n̂ ·h = 0 ∀x ∈ ∂ΩPEC.
(1.37)

9



Chapter 1: Helmholtz equation in electromagnetism

Physically, these conditions impose that the tangential component of the electric field and the normal
component of the magnetic field are continuous as both fields vanish inside the conductor.
By analogy with the perfect electric conductor, perfect magnetic conductors (PMC) are defined as a
medium inside which fields vanish and such that

{
n̂× h = 0 ∀x ∈ ∂ΩPMC,

n̂ · e = 0 ∀x ∈ ∂ΩPMC.
(1.38)

An important point is that perfect magnetic conductors are only used for mathematical convenience6

and not for modelling real common materials.
For the two dimensional scalar case, using the ansatz e = u(x, y)ẑ or h = u(x, y)ẑ and the modi-
fied Faraday’s and Maxwell-Ampère’s laws Eq.(1.12) and Eq.(1.20) into the PEC or PMC vectorial
boundary conditions leads to the following boundary conditions

e = u(x, y)ẑ h = u(x, y)ẑ
∀x ∈ ∂ΩPEC

u = 0, (1.39) n̂ · grad u = 0, (1.40)

∀x ∈ ∂ΩPMC

n̂ · grad u = 0, (1.41) u = 0. (1.42)

1.5 Mono-dimensional example
To gain some intuition on the effect of the Sommerfeld radiation condition and on the scattered field
formulation, consider the 1D problem of a plane wave uinc = exp (−ik0x) incident on a perfectly
conducting infinite plate stating at x = 0. The equations to consider in this case are given by
Eqs(1.34) with the PEC boundary condition Eq.(1.39), i.e.





(
∂2
xx − k2

0

)
uscat = 0 for x < 0,

uscat = −uinc for x ≥ 0,

lim
x→−∞

(
−∂uscat

∂x
+ ik0uscat

)
= 0.

(1.43)

The solution to the first equation is

uscat = A exp (−ik0x) +B exp (+ik0x) (1.44)

i.e. the sum of an incoming and a reflected plane wave respectively. Physically, it is clear that the
scattered field can only be composed of a reflected wave and thus that B should vanish. This is
actually only the case if the Sommerfeld radiation condition is added, and this is precisely why this
supplementary condition is needed, to prevent mathematical solutions that represents unphysical

6Except for some exotic materials.
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Chapter 1: Helmholtz equation in electromagnetism

situations where a scattered field carry energy from infinity towards the scatterer. Then using the
Dirichlet boundary condition provides the expected solution

uscat = exp ik0x. (1.45)

1.6 Domain truncation

The Helmholtz equation with Sommerfeld radiation condition Eqs(1.31) have to be solved7 for all
x ∈ R2. In the scope of a numerical implementation that discretizes the resolution domain, e.g. finite
element or finite difference methods, this resolution domain can not be unbounded as it would imply
an infinite number of unknowns. Consequently, the resolution domain is restricted to a bounded
open subset Ω ∈ R2 whose boundary is denoted by ∂Ω.
The radiation condition prescribes the asymptotic behavior of the solution at infinity. However, after
domain truncation from R2 to Ω, infinity does not belong to the resolution domain anymore such
that it is impossible to impose the radiation condition explicitly. For the problem to be well-posed,
it is also necessary to impose a boundary condition on the new fictitious surface ∂Ω. Ideally, this
fictitious new boundary (and the related boundary condition) should not influence the solution. That
is, the solution on R2 with exact radiation condition and the solution on Ω with the new boundary
condition (to be determined) should be the same.
In this section, this exact boundary condition and two of its approximation are derived for a trunca-
tion along the y axis. This section is base on [23].

1.6.1 Exact absorbing boundary condition
Consider the scalar Helmholtz equation with Sommerfeld radiation condition Eqs(1.31) for an ho-
mogeneous medium with a real wavenumber k0

8. The unique solution to this system is denoted by
u∗. The domain is truncated to ]−∞, 0[×R (with the x-axis origin chosen such that the sources are
in the half space x < 0) and the boundary condition L(u) = 0 on {0}×R, L being a linear operator,
is added. The considered system is thus





(
− div grad − k2

0

)
u = f in ]−∞, 0[×R,

L(u) = 0 on {0} × R,

lim
ρ→∞,x<0

√
ρ

(
∂u

∂ρ
+ ik0u

)
= 0.

(1.46)

The challenge here is to find a linear operator L such that the solution u of Eqs(1.46) is equal to
the solution u∗ of the original untruncated problem Eqs(1.31). Choosing the operator L such that
L(u∗) = 0 on {0} × R is a choice that has the desired effect. Indeed, in that case u and u∗ both
verify Eqs(1.46). By uniqueness of the solution, one then has u = u∗. Taking L(u) = u − u∗(0, y)
works but it is of course impossible to use practically as u∗ is not known.
Another choice that works by construction is to take9

L = n̂+ · grad + Λ (1.47)

7For all x ∈ R2 \ ΩPEC
⋂

ΩPMC if impenetrable scatterers are present.
8Most of the developments remain correct of the wavenumber as an imaginary part.
9n̂+ = x̂

11



Chapter 1: Helmholtz equation in electromagnetism

where Λ is the Dirichlet-to-Neumann (DtN) operator. This condition is called the exact absorbing
boundary condition. The DtN operator is defined by10

Λ(g) = n̂− · grad w on {0} × R
with w solution of




(
− div grad − k2

0

)
w = 0 in ]0,∞[×R,
w = g on {0} × R,

lim
ρ→∞,x>0

√
ρ

(
∂w

∂ρ
+ ik0w

)
= 0.

(1.48)

(1.49)

Hence
Λ(u∗(0, y)) = n̂− · grad w = n̂− · grad u∗ (1.50)

by unicity as u∗ and w both satisfy Eqs(1.49). One thus has

L(u∗) = 0 on {0} × R (1.51)

with basic manipulations on Eq.(1.50).

As its name indicates, the DtN is an operator that takes the value of the field on the boundary (i.e. a
Dirichlet data) and outputs the normal component of the gradient (i.e. a Neumann data). It is showed
in Appendix B.1 that in this simple case, the DtN takes the form below

Λ(g) = F−1 (λF(g))

with λ the principal symbol of Λ given by

λ(ky) =





√
k2
y − k2

0 for |ky| ≥ |k0| ,

j
√
k2

0 − k2
y for |ky| ≤ |k0|

(1.52)

(1.53)

where F denotes the spatial Fourier transform w.r.t. y and ky the spatial frequency.
The Λ operator is however non local, which means that the computation of Λ(f)|y=y0 depends on
f(y) ∀y ∈ R. This non locality actually comes from the principal symbol λ which involves a square
root of the Fourier variable ky11.
Theoretically, the fact that Λ (and consequently L) are non local is not a problem. It becomes
problematic when considering a discretization of this operator because non local operators typically
generate dense matrices. In the following subsections, two approximations of this exact absorbing
boundary condition, yielding local operators, are presented. The idea to obtain a local operator is to
express the principal symbol λ as a polynomial because

Op(kαy ) = F−1
(
kαyF( · )

)
= i−α

∂α

∂αy
, ∀α ≥ 0 (1.54)

is a local operator.
10n̂− = −x̂
11It is useful here to remember that F−1(ky f̂) =

∂f

∂y
is a local operator and at the opposite, that F−1(k−1y f̂) =

∫ y

−∞
f(y)dy is typically a non local operator.

12



Chapter 1: Helmholtz equation in electromagnetism

1.6.2 Zeroth order absorbing boundary condition
The zeroth order absorbing boundary condition is obtained by considering the zeroth order Taylor
expansion of the principal symbol λ(ky) around ky ≈ 0 which writes

λ(ky) = i
√
k2

0 − k2
y ≈ ik0

⇒ Λ ≈ ik0

⇒ L0(u) = n̂ · grad u+ ik0u. (1.55)

It is interesting to point out that approximation Eq.(1.55) is equivalent to impose the Sommerfeld
radiation condition Eq.(1.29) at a finite distance rather than at infinity.

Reflection coefficient To have some insights of the performance of the approximation Eq.(1.55),
the effect of the absorbing boundary condition on the plane wave

u = exp (−i(kxx+ kyy)) (1.56)

is considered. In the presence of an absorbing boundary condition along the y axis, a fraction of this
wave is reflected such that the solution expresses as (cfr Section 1.5)

u = exp (−i(kxx+ kyy)) + Γ exp (i(kxx− kyy)) (1.57)

where Γ is determined by the boundary condition

L0(u) , n̂ · grad u+ ik0u = 0 on x = 0, y ∈ R. (1.58)

After some manipulations, one obtains

Γ =
kx − k0

kx + k0

(1.59)

which simplifies to

Γ =
cos θ − 1

cos θ + 1
(1.60)

when introducing the incidence angle θ which is such that kx = k0 cos θ and ky = k0 sin θ. The value
of Γ is represented in Figure 1.2. As one can see, the reflection is small for θ ≈ 0, i.e. for normal
incidence. It is important to highlight that it was expected that this absorbing boundary condition
only works for small incidence as the approximation ky/k0 ≈ 0 done in the Taylor expansion is
equivalent to sin θ ≈ 0⇐ θ ≈ 0.

Curved boundaries Eq.(1.55) can be generalized for curved boundaries. The zeroth order absorb-
ing boundary condition then writes [19] as

L0(u) = n̂ · grad u+
(
ik0 +

κ

2

)
u (1.61)

where κ [1/m] is the local curvature. The reflection coefficient of plane waves on for curved bound-
aries is given in Appendix B.2.

Further in this work, the zeroth order boundary conditions are referred to as T0 for plane surfaces
and CT0 for curved boundaries.
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Chapter 1: Helmholtz equation in electromagnetism

1.6.3 Second order absorbing boundary condition
Similarly, the second order absorbing boundary condition is obtained by considering the second
order Taylor expansion of the principal symbol λ(ky) around ky ≈ 0, which writes

λ(ky) = i
√
k2

0 − k2
y ≈ ik0

(
1− 1

2

k2
y

k2
0

)

⇒ Λ ≈ ik0 −
1

2k0i

∂2

∂2y

⇒ L2(u) = n̂ · grad u+ ik0u−
1

2k0i

∂2u

∂2y
. (1.62)

Reflection coefficient As previously, the performance of the approximation Eq.(1.62) can be de-
scribed by its effect on the plane wave Eq.(1.56). In the presence of an absorbing boundary condition
along the y axis, a fraction of this wave is reflected such that the solution expresses again as Eq.(1.57)
where Γ is determined by the boundary condition

L2(u) , n̂ · grad u+ ik0u−
1

2k0i

∂2u

∂2y
= 0 on x = 0, y ∈ R. (1.63)

After some manipulations, one obtains

Γ =
kx − k0 +

k2
y

2k0

kx + k0 − k2
y

2k0

=
cos θ − 1 + sin2 θ

2

cos θ + 1− sin2 θ
2

= −
(

cos θ − 1

cos θ + 1

)2

. (1.64)

The value of Γ is represented in Figure 1.2. As one can see, the reflection is small for θ ≈ 0, i.e. for
normal incidence and as expected, smaller than for first order absorbing boundary condition.

Curved boundaries Eq.(1.62) can be generalized for curved boundaries. The second order ab-
sorbing boundary condition then writes [19] as

L2(u) = n̂ · grad u+

(
ik0 +

κ

2
− κ2

8ik0

− κ3

8k2
0

)
u−

(
1

2ik0

+
κ

2k2
0

)
divΣ gradΣ u. (1.65)

The reflection coefficient of plane waves on curved boundaries is given in Appendix B.2.

Further in this work, the second order boundary conditions are referred to as T2 for plane surfaces
and CT2 for curved boundaries.
For the general Maxwell’s equations, the equivalent for the DtN operator is the Magnetic-to-Electric
(MtE) operator. Details about this operator can be found in [3].
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Figure 1.2: Reflection coefficient Γ for T0 Eq.(1.55) and T2 Eq.(1.62) for plane surfaces.
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Chapter 2

Non-overlapping Optimized Schwarz
algorithms

In the previous chapter, all the mathematical ingredients necessary to formulate typical electromag-
netic waves problems were introduced. These problems can be summarized in the general form





(
− div grad − k2

)
u = f in Ω,

(n̂ · grad + B)u = u∞ on ∂Ω∞,

u = ud on ∂Ωd,

n̂ · grad u = un on ∂Ωn

(2.1)

where u can be both the scattered field or the total field, u∞, ud and un and f are known functions
that can be deduced from results presented in the former chapter. The domain Ω is an open bounded
subset of R2 whose boundary is denoted by ∂Ω. This boundary is composed of three parts ∂Ω∞, ∂Ωd

and ∂Ωn which are respectively the boundary where absorbing, Dirichlet and Neumann boundary
conditions are applied. B is a known (from Chapter 1) linear operator defined on ∂Ω∞ that acts
along its tangential direction only
The aim of this chapter is to present particular solution techniques for Eqs.(2.1) using specific kind
of domain decomposition methods, i.e. non-overlapping Optimized Schwarz algorithms.

2.1 Domain decomposition
Instead of solving Eqs(2.1), non-overlapping domain decomposition methods suggest to solve the
Nd (i.e. ∀i ∈ [0, Nd − 1]) coupled problems





(
− div grad − k2

)
ui = f in Ωi,

(n̂ · grad + B)ui = u∞ on ∂Ω∞i ,

ui = ud on ∂Ωd
i ,

n̂ · grad ui = un on ∂Ωn
i ,

Jiui =
(
Jiuj , gij

)
on Γij, ∀j ∈ Di

(2.2)

where {Ωi ∀i ∈ [0, Nd−1]} is a non-overlapping partition of Ω (i.e. Ω =
⋃
i Ωi

⋃
j Γij but

⋂
i Ωi = ∅)

and where ∂Ω∞i , ∂Ωn
i and ∂Ωn

i are respectively a non-overlapping partition of ∂Ω∞, ∂Ωn and ∂Ωn
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Chapter 2: Non-overlapping Optimized Schwarz algorithms

(i.e. ∂Ω∞i = ∂Ω∞ ∩ ∂Ωi, ∂Ωd
i = ∂Ωd ∩ ∂Ωi and ∂Ωn

i = ∂Ωn ∩ ∂Ωi). Γij = ∂Ωi ∩ ∂Ωj are the
new interfaces created by the decomposition and Ji are the new boundary conditions linking the
solutions of subdomains i and j on this new interface. Di is the list containing the integer related to
neighbouring subdomains of domain i, i.e. Di = {k ∈ [0, Nd − 1] |Γik 6= ∅}. These Nd problems
are thus coupled through their boundaries.
In the following sections, f , u∞, ud, un will be referred to as the physical sources in opposition
to the term Jiuj , gij which represents a source term that appears only because of the domain
decomposition but has no physical meaning and is thus sometimes referred to as the artificial source.
The artificial source term gij is defined on the surface Γij and is an unknown (because it depends on
the volume unknown uj) such that it is also called a surface unknown.

2.2 Equivalent formulation as a surface problem
None of the problems Eqs(2.2) can actually be solved independently as the artificial sources/sur-
face unknowns Jiuj , gij are unknown. In this section, a reformulation of the coupled equations
Eqs(2.2) as a linear system is derived. The unknowns of this linear system are chosen to be the ar-
tificial sources/surface unknowns gij , Jiuj . This choice might be surprising because the quantity
of interest is actually ui, i.e. the volume unknowns. The reason for this choice will be highlighted
later in this section. For now, just notice that knowing gij , Eqs(2.2) become uncoupled and can then
be solved separately.
The first step towards this new system is the introduction of the operatorAji. The inputs of this oper-
ator are card(Di) functions (sim, one for all m ∈ Di) each defined on a different artificial boundary
Γim and its output is a single function Jjw defined on Γij . The action of the operator is defined as

Aji(sim ∀m ∈ Di) = Jjw, (2.3)
with w solution of




(
− div grad − k2

)
w = f in Ωi,

(n̂ · grad + B)w = u∞ on ∂Ω∞i ,

w = ud on ∂Ωd
i ,

n̂ · grad w = un on ∂Ωn
i ,

Jiw = sim on Γim, ∀m ∈ Di.

(2.4)

Physically this operator computes the volume solution w on subdomain i for a given set of artificial
sources sim (one source for each artificial boundary Γim) and outputs Jjw. If the inputs sim are the
surface unknowns gim, then Jjw is the artificial source coming from subdomain i to subdomain j,
i.e. gji. By definition of Aji, Eqs.(2.2) can then be written as the following system

(
Jjui , gji

)
= Aji(gim ∀m ∈ Di), ∀i ∈ [0, Nd − 1] ,∀j ∈ Di (2.5)

whose unknowns are the artificial sources/surface unknowns gij .

Linearization The problem of the above system is that Aji is not linear1 w.r.t. the surface un-
knowns gij because of the physical source terms f , u∞, ud, un. However, the operator A can easily

1Consider for exampleAji
(
s1im + s2im ∀m ∈ Di

)
in the definition ofAji Eq.(2.3) and Eqs.(2.4). It is straightforward

to see that Aji
(
s1im + s2im ,∀m ∈ Di

)
6= Aji

(
s1im ,∀m ∈ Di

)
+ Aji

(
s2im ,∀m ∈ Di

)
unless the physical sources f ,

u∞, ud, un vanish.
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Chapter 2: Non-overlapping Optimized Schwarz algorithms

be decomposed into the sum of its linear part A′ taking into account only the effect of the surface
unknowns, and its constant (w.r.t. gij) part b taking into account only the physical sources.
Using w = wart + wphy in Eq.(2.3) and Eqs.(2.4), A′ji is given by

A′ji(sim ∀m ∈ Di) = Jjwart,

with wart solution of



(
− div grad − k2

)
wart = 0 in Ωi,

(n̂ · grad + B)wart = 0 on ∂Ω∞i ,

wart = 0 on ∂Ωd
i ,

n̂ · grad wart = 0 on ∂Ωn
i ,

Jiwart = sim on Γim, ∀m ∈ Di

(2.6)

(2.7)

and bji by

bji = Jjwphy,

with wphy solution of



(
− div grad − k2

)
wphy = f in Ωi,

(n̂ · grad + B)wphy = u∞ on ∂Ω∞i ,

wphy = ud on ∂Ωd
i ,

n̂ · grad wphy = un on ∂Ωn
i ,

Jiwphy = 0 on Γim, ∀m ∈ Di.

(2.8)

(2.9)

This linear part can also be written compactly as

A′ji(sim) = Aji(sim; f = 0, u∞ = 0, ud = 0, un = 0) (2.10)

and the constant part as
bji = Aji(sim = 0; f, u∞, ud, un). (2.11)

The equation on the surface unknowns Eq.(2.5) then writes

gji = A′ji(gim ∀m ∈ Di) + bji, ∀i ∈ [0, Nd − 1] ,∀j ∈ Di. (2.12)

To simplify the notations, the surface unknowns vector

g , {gij, ∀i ∈ [0, Nd − 1] ,∀j ∈ Di} (2.13)

is introduced such that the linear system for the surface unknowns is23

(I −A′) g = b. (2.14)
2b , {bij , ∀i ∈ [0, Nd − 1] ,∀j ∈ Di}
3A′ , {A′ij , ∀i ∈ [0, Nd − 1] ,∀j ∈ Di}
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Surface equation for a particular transmission condition The transmission operator (cfr section
2.4) Ji is often chosen to be of the form

Ji = n̂i · grad + Si (2.15)

such that Eq.(2.3) becomes

Aji(sim ,∀m ∈ Di) = (n̂j · grad + Sj)w (on Γij)

= (−n̂i · grad − Si + Si + Sj)w
= −Jiw + (Si + Sj)w
= −sij + (Si + Sj)w (2.16)

where the transmission boundary condition of Eqs(2.4) and the fact that n̂i = −n̂j on Γij have been
used.

Difference with the volume unknowns system The previous reasoning could have been done
without introducing the surface unknowns. Indeed, it is possible to write

ui = Avol
i (um ∀m ∈ Di) (2.17)

with

Avol
i (sm ∀m ∈ Di) = w, (2.18)

with w solution of



(
− div grad − k2

)
w = f in Ωi,

(n̂ · grad + B)w = u∞ on ∂Ω∞i ,

w = ud on ∂Ωd
i ,

n̂ · grad w = un on ∂Ωn
i ,

Jiw = Jism on Γim, ∀m ∈ Di.

(2.19)

As for the surface unknowns, the linear system for the volume unknowns would then write as
(
I −A′vol

)
u = bvol (2.20)

and is theoretically equivalent to Eq.(2.14). However when discretizing these equations, e.g. using
finite element or finite difference methods, the size of the system to solve would be much greater
in the case of volume unknowns as there are much more discrete unknowns related to a volume
unknown field than an surface unknown field.

2.3 Iterative schemes
In this section, two iterative methods for solving the linear system Eq.(2.14) are used. The first is the
Jacobi method. This method is presented because its iterative scheme has an intuitive interpretation
and because convergence rates can be derived analytically for a two-subdomain model problem.
The performance of this method are shown in Part III to be bad. That is why a second method is
considered: the GMRES[24], a Krylov subspace method. Only the general principle of this method
is given.
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2.3.1 Jacobi method
The iterative Jacobi method applied to Eq.(2.14) consists in computing sequentially

gn+1 = A′gn + b (2.21)

until the residual4

rn , b− (I −A′) gn (2.22)

is small enough, typically such that

‖rn‖ ≤ εit or
‖rn‖
‖r0‖ ≤ εit (2.23)

where εit is a user defined parameter and ‖ · ‖ is a norm suited to the problem, e.g. the L2(Γij) norm
in this case.

Intuitive interpretation
From the definition ofA,A′ and b, a Jacobi iteration Eq.(2.21) is equivalent to

gn+1 = Agn. (2.24)

Then expliciting theA operator gives

gn+1
ji = Aji(gnim ∀m ∈ Di) = Jjw, (2.25)

with w solution of



(
− div grad − k2

)
w = f in Ωi,

(n̂ · grad + B)w = u∞ on ∂Ω∞i ,

w = ud on ∂Ωd
i ,

n̂ · grad w = un on ∂Ωn
i ,

Jiw = gnim on Γim, ∀m ∈ Di.

(2.26)

The intuitive interpretation of the preceding equation is that, at the n + 1 iteration, first the solution
to the volume problem Eqs(2.26) is computed taking into account the physical sources but also
artificial sources coming from the neighbouring subdomains and resulting from the computation at
the preceding iteration n. Then the surface unknown is updated through Eq.(2.25). The procedure is
then repeated until convergence is reached.
It is important to highlight that Eq.(2.5) and Eq.(2.25) are very different because in the second case,
there is no coupling between the problems to solve on each subdomain as the information from the
preceding iteration is used.
An even more understandable way of writing Eq.(2.24), without any operator or surface unknowns

4In this case, the residual rn = gn+1 − gn. As expected, when the residual vanish gn+1 = gn.
4Numerically, this norm is substituted by the euclidean norm on the nodes unknowns because both norms are equiv-

alent.
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but only the volume unknowns, is




(
− div grad − k2

)
un+1
i = f in Ωi,

(n̂ · grad + B)un+1
i = u∞ on ∂Ω∞i ,

un+1
i = ud on ∂Ωd

i ,

n̂ · grad un+1
i = un on ∂Ωn

i ,

Jiun+1
i = Jiunm on Γim, ∀m ∈ Di.

(2.27)

This system is actually the simplest way of decoupling the original set of volume problems, Eqs(2.2).

2.3.2 Krylov methods

The idea of Krylov subspace methods is to search the solution of system Eq.(2.14) at the nth itera-
tion in a so called Krylov subspace Kn(A′, b). The solution gn ∈ Kn is then chosen such that it
minimizes the residual rn [24]. This Krylov subspace is defined as

Kn(A′, b) , span{b,A′b,A′2b, . . . ,A′n−2
b,A′n−1

b}. (2.28)

This space is actually quite natural for searching the solution [18]. Indeed a corollary of Cayley-
Hamilton theorem states thatA′−1 can be expanded as

A′−1
=

N−1∑

n=0

anA′n (2.29)

and therefore

(I −A′)g = b

⇒ g = (I −A′)
−1
b

⇒ g = b−
N−1∑

n=0

anA
′nb. (2.30)

The GMRES algorithm is detailed in [24] while details about Krylov subspace solver can be found
in [18].

2.4 Transmission condition
The transmission conditions are the supplementary boundary conditions that must be added when
cutting the domain, because new boundaries Γij appear. These conditions are one of the most im-
portant point in domain decomposition methods as they directly influence the convergence rate and
hence the quality of the method. In the previous sections, these conditions were written in the general
form

Jiui =
(
Jiuj , gij

)
on Γij, ∀j ∈ Di. (2.31)

To be able to derive simple analytic conclusions about the transmission conditions, a model example
is used. This section is based on [11].
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Consider the Jacobi iterative scheme applied to the particular case of two semi-infinite homogeneous
subdomains, without impenetrable scatterers, i.e. Ωn

i = Ωd
i = ∅, i = 1 ou 2 and with the original

radiation condition Eq.(1.29). An overlap of d > 0 along x is actually considered to emphasize the
differences between overlapping and non-overlapping methods. Hence

Ω1 =]−∞, d[×R and Ω2 =]0,∞[×R (2.32)

and thus
Γ12 = ∂Ω1 ∩ Ω2 = {d} × R and Γ21 = ∂Ω2 ∩ Ω1 = {0} × R (2.33)

are considered. From the intuitive interpretation of Jacobi iteration Eqs(2.27), the system to solve is




(
− div grad − k2

0

)
un+1

1 = f in Ω1,

lim
ρ→∞,x<0

√
ρ

(
∂

∂ρ
+ ik0

)
un+1

1 = 0

J1u
n+1
1 = J1u

n
2 on Γ12,

(2.34)





(
− div grad − k2

0

)
un+1

2 = f in Ω2,

lim
ρ→∞,x>0

√
ρ

(
∂

∂ρ
+ ik0

)
un+1

2 = 0

J2u
n+1
2 = J2u

n
1 on Γ21.

(2.35)

Subtracting the exact solution to the original (undecomposed) problem u∗ to Eq.(2.34) and Eq.(2.35)
yields5, for {i, j} = {1, 2} and {2, 1},





(
− div grad − k2

0

)
εn+1
i = 0 in Ωi,

lim
ρ→∞
√
ρ

(
∂

∂ρ
+ jk0

)
εn+1
i = 0,

Jiεn+1
i = Jiεnj on Γij,

(2.36)

where εi , ui − u∗ is the error on the solution given by the decomposition method. Eqs.(2.36)
is therefore called the error equation. Applying the exact same treatment as in Appendix B.1, i.e.
taking the Fourier transform w.r.t. y and solving the resulting ordinary differential equation, one
obtains

ε̂n+1
1 = An+1

1 (ky) expλx (2.37)
ε̂n+1

2 = Bn+1
2 (ky) exp−λx (2.38)

where A and B are constant w.r.t. x that can be determined using the transmission conditions.

Convergence rate A scheme is said to be convergent if the error decreases to zero, i.e. if ∀x, ky ∈
R,

lim
n′→∞

∣∣∣ε̂n′i
∣∣∣ = 0 (2.39)

which is equivalent to

lim
n→∞

∣∣∣∣∣
ε̂2ni

ε̂
2(n−1)
i

∣∣∣∣∣

∣∣∣∣∣
ε̂

2(n−1)
i

ε̂
2(n−2)
i

∣∣∣∣∣ . . .
∣∣∣∣
ε̂2i
ε̂0i

∣∣∣∣
∣∣ε̂0i
∣∣ = 0. (2.40)

5As Ji is linear, Ji(ui − u) = Ji(εi) = Ji(ui)− Ji(u)
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Defining the convergence rate6

ρ(ky) ,
ε̂n+1
i

ε̂n−1
i

(
=

(A or B)n+1
i

(A or B)n−1
i

)
, (2.41)

the convergence is ensured for modes (i.e. values of ky) such that

lim
n→∞

∣∣∣∣∣
ε̂2ni

ε̂
2(n−1)
i

∣∣∣∣∣

∣∣∣∣∣
ε̂

2(n−1)
i

ε̂
2(n−2)
i

∣∣∣∣∣ . . .
∣∣∣∣
ε̂2i
ε̂0i

∣∣∣∣
∣∣ε̂0i
∣∣ = lim

n→∞
|ρn|

∣∣ε̂0i
∣∣ = 0, (2.42)

i.e. such that
|ρ(ky)| < 1. (2.43)

Moreover, the smaller the convergence rate, the faster the convergence.

2.4.1 Classical Schwarz operator
The classical Schwarz method [7] suggests to use the simple boundary condition

Ji = I, (2.44)

I being the identity operator. Using this operator in the boundary condition of Eqs(2.36) yields

An+1
1 expλd = Bn

2 exp−λd (2.45)
Bn+1

2 = An1 (2.46)

or

An+1
1 = An−1

1 exp−2λd (2.47)
Bn+1

2 = Bn−1
2 exp−2λd (2.48)

and the convergence rate is thus given for real wavenumber by

ρ(ky) =





exp
(
−2
√
k2
y − k2

0d
)

for |ky| ≥ |k0|

exp
(
−2j

√
k2

0 − k2
yd
)

for |ky| ≤ |k0| .
(2.49)

This convergence rate is represented in blue in Figure 2.1. Propagative (i.e. |ky| < |k0|) and resonant
(i.e. |ky| = |k0|) modes never converge while evanescent modes (i.e. ky > k0) only converge
if there is overlap (i.e. d 6= 0). This method is therefore not suited for non-overlapping domain
decomposition. This transmission condition is referred to as CS.

6The convergence rates for the considered transmission boundary conditions, model problem and iterative scheme
are actually independent of n and x.
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Figure 2.1: Convergence rates |ρ(ky)| for T0BC Eq.(2.59), T2BC Eq.(2.60) and CS Eq.(2.44) with
overlap. k0 = 1, d = 2.
This value of d typically corresponds to a case where the overlap is four finite elements. Indeed
k0 = 1 implies λ = 2π. As the characteristic mesh size h is usually taken as h ≈ λ/12, d = 4h ≈ 2.

2.4.2 Dirichlet-to-Neumann based operators
The family of transmission operators based on the DtN map considers operator Ji of the form

Ji = n̂i · grad + Si (2.50)

where Si is a linear operator acting only along the tangential direction of the interface and is an
approximation of the exact DtN introduced in Appendix B.1. The Fourier transform w.r.t. y of the
boundary condition of Eqs(2.36) then writes as

(∂x + σ1) ε̂n+1
1 = (∂x + σ1) ε̂n2 for x = d, ky ∈ R, (2.51)

(∂x − σ2) ε̂n+1
2 = (∂x − σ2) ε̂n1 for x = 0, ky ∈ R, (2.52)

where σi is the symbol of Si (i.e. such that F
(
Si(εn+1

i )
)

= σ1ε̂
n+1
1 ). These transmission boundary

conditions then yield

(λ+ σ1)An+1 exp (λd) = (−λ+ σ1)Bn exp (−λd) , (2.53)
(−λ− σ2)Bn+1 = (λ− σ2)An, (2.54)

which can be written as

An+1 =
−λ+ σ1

λ+ σ1

λ− σ2

−λ− σ2

exp (−2λd)An−1 (2.55)

Bn+1 =
−λ+ σ1

λ+ σ1

λ− σ2

−λ− σ2

exp (−2λd)Bn−1 (2.56)
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and thus
ρ(ky) =

σ1 − λ
σ1 + λ

σ2 − λ
σ2 + λ

exp (−2λd) . (2.57)

Taking
σi = λ (2.58)

which implies, by definition, that the transmission operator is the DtN map, i.e. Si = Λ, cancels the
convergence rate ρ(ky) ∀ky and is thus the best choice one can find. Such a choice is however often
avoided as the DtN operator is non local (cfr Section 1.6.1). As for absorbing boundary conditions,
Taylor approximations of the DtN operator which are valid for waves of incidence close to the normal
i.e. ky/k0 ≈ 0, are considered. For the following derivations, the case were the wavenumber is real
or complex have been separated. The most pathological case being the real one. Indeed when k has
a complex part, dissipation is present and hence error also dissipates.

(a) Real wavenumber
The wavenumber can be considered real for so called bad conductors (cfr Section 1.1). For real
wavenumbers, it is important to emphasize that the resonant mode, i.e. ky = k0, is never convergent
for a transmission operator of the type Eq.(2.50) because ρ(ky = k0) = 1 (except if σi = λ).

Zeroth order Taylor approximation The zeroth order Taylor expansion of the DtN map is

σT0BC
i = ik0

⇔ ST0BC
i = Op(σT0BC

i ) = ik0. (2.59)

The related convergence rate is represented in Figure 2.1 with overlap and in Figure 2.2 without
overlap. This transmission condition is referred to as T0BC.

Second order Taylor approximation The second order Taylor expansion of the DtN map is

σT2BC
i = ik0

(
1− 1

2

k2
y

k2
0

)

⇔ ST2BC
i = Op(σT2BC

i ) = ik0 −
1

2ik0

∂2

∂2y
. (2.60)

The related convergence rate is represented in Figure 2.1 with overlap and in Figure 2.2 without
overlap. This transmission condition is referred to as T2BC.

As expected, without overlap, only modes with nearly normal incidence, i.e. ky/k0 ≈ 0 converge, at
the opposite of the classical Schwarz scheme. However, with overlap, Taylor approximations yield
convergence for all propagative and evanescent modes. These results will not be discussed further
as only non-overlapping domain decomposition methods are investigated.
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Figure 2.2: Convergence rates |ρ(ky)| for zeroth order Taylor approximation Eq.(2.59), second order
Taylor approximation Eq.(2.60) and optimized second order Eq.(2.61) transmission conditions with
overlap. k0 = 1, d = 0, kmax = 6, kmin = 6/100, k− = k0 − kmin,k− = k0 + kmin. These values
corresponds to a domain of 100 elements of characteristic size h = λ/12.

While Taylor approximations are attractive because they are easy to derive, they are however not
well suited without overlap. Indeed, they cancel the convergence rate for low frequency modes
(ky/k0 ≈ 0) but not for all modes7. In the following paragraph, an optimal transmission condition is
described.

Optimized second order approximation [11] A transmission condition performs well if the con-
vergence rate is close to zero for all modes. [11] proposes to find the second order approximation
that yields the lower convergence rate possible for the particular model problem developed in this
section.
This optimized second order approximation transmission condition is given by

S002BC
i =

α∗β∗ − k2
0

α∗ + β∗
− 1

α∗ + β∗
∂2

∂2y

with

α∗ = i
(
(k2

0 − k2
min)(k

2
0 − k2

−)
)1/4

and

β∗ =
(
(k2

max − k2
0)(k2

+ − k2
0)
)1/4

.

(2.61)

(2.62)

(2.63)

7An intuitive interpretation is that they only transmit waves with nearly normal incidence because waves with non
normal incidence (ky/k0 >> 0) are reflected, as explained in section 1.6 for absorbing boundary conditions. This
reflection once again comes from the bad approximation of the DtN operator.
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The parameters kmin, kmax, k+ and k− are problem dependant. kmax is the largest wave number
representable on the numerical grid. If h is the characteristic mesh size, then a good choice is
kmax = π/h. Similarly for the minimum wave number kmin, if the domain size is L, then a good
choice is kmin = π/L. The parameters k− and k+ are actually two values that must straddle the
resonant frequency k0

8. As explained in [11], taking k− = k0 − kmin and k+ = k0 + kmin is a good
choice because only the resonant frequency is rejected from the minimization of the convergence
rate.
The convergence rates relative to this optimized transmission condition is represented in Figure 2.2.
As expected the convergence is ensured for all modes except the resonant one. This transmission
condition is referred to as OO2BC.

Other transmission conditions such as [4] can also be chosen.

(b) Complex wavenumber
When the wavenumber k is complex i.e. when the medium is either a good conductor or a dielectric,
then dissipation is present (cfr Section 1.1). Results on the convergence rate are still valid but the
approximations slightly differ. Indeed, in such a case, the principal symbol of the DtN becomes

λ =
√
k2
y − k2

=
√
k2
y − ω2ε̃µ0

=
√
k2
y − k2

0 + iωσ̃µ0. (2.64)

An important difference w.r.t. the real case is that the convergence rate Eq.(2.57) is not of modulus
one for any transmission condition (i.e. for any value of σi) at the resonant mode ky = k0.

Good conductor Using the good conductor approximation, the principal symbol of the DtN then
becomes

λ ≈
√
k2
y + iωσ̃µ0 (2.65)

such that the zeroth order Taylor approximation of this symbol gives

σT0GC
i ≈ (1 + i)

√
ωσ̃µ0

2
=

(1 + i)

δ
(2.66)

and the second order Taylor approximation is

σT2GC
i ≈ 1 + i

δ

(
1 +

k2
yδ

2

4i

)
(2.67)

where δ =
√

2
ωσ̃µ0

[m] is the skin depth, a well-known parameter in electromagnetic theory. This
parameter is the characteristic distance that wave can travel inside a good conductor before under-
going a strong attenuation (i.e. as exp

(
−x
δ

)
).

Both related convergence rates are represented in Figure 2.3 for different values of the ratio σ̃
ωRe(ε)

.
These transmission conditions are referred to as T0GC and T2GC.

8This values are actually important in [11] because for a second order approximation, the resonant modes (ky = k0)
is never convergent and this point must thus to be rejected from the minimization problem.
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Optimized zeroth order transmission condition As previously, it is possible to find the best
transmission conditions such that the convergence rate is minimal, for the range of consider wavenum-
bers [kmin, kmax]. In [6], it is proved that this optimal transmission condition is given by

SOO0D
i = (1 + i)

√
kmax

δ
(2.68)

which is very similar to Eq.(2.66). The only difference is actually that Eq.(2.68) minimizes the con-
vergence rate ∀ky ∈ [kmin, kmax] while Eq.(2.66) minimizes the convergence rate only when ky � k0.
The related convergence rate is represented in Figure 2.3 for different value of the ratio σ̃

ωRe(ε)
.

This transmission condition is referred to as TOO0D.

From Figure 2.3, the smoothing of the resonant mode (i.e.ky = k0) provided by dissipation can be
observed, in particular for T0BC and OO2BC where it strongly differs from the case real case.
As expected, T0GC and T2GC only perform well when the hypotheses used to derive the transmis-
sion conditions are satisfied, i.e. when ky � k0 and σ̃

ωRe(ε)
� 1.

OO0D is the best transmission condition when looking at all the possible media. However for di-
electric (i.e. σ̃

ωRe(ε)
≈ 1) and bad conductors (i.e. σ̃

ωRe(ε)
� 1), OO2BC has also a small convergence

rate. The choice between OO2D and OO2BC will therefore depend on the media involved.
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Figure 2.3: Convergence rates |ρ(ky)| for T0BC Eq.(2.59), OO2BC Eq.(2.61), T0GC Eq.(2.66) and
OO0D Eq.(2.68). No overlap is considered. k0 = 1, d = 0, kmax = 6, kmin = 6/100, k− =
k0 − kmin,k− = k0 + kmin. These values correspond to a domain of 100 elements of characteristic
size h = λ/12.
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Chapter 3

Nodal finite element discretization

The two previous chapters introduced some non-overlapping Schwarz algorithms considering con-
tinuous unknowns.
To implement these algorithms, one should be able to compute the action ofA on any input artificial
sources/surface unknown and to compute b. By definition this is equivalent to solve the volume
problem Eqs(2.7) and Eqs(2.9) and to apply the surface equations Eq.(2.6) and Eq.(2.8).
In this chapter only the system forA will be considered as both systems forA′ and b are particular
case of it (as emphasized by Eq.(2.10) and Eq.(2.11)). The solution to this system is obtain using the
finite element method. Other numerical methods such as finite differences could be chosen as well.

3.1 Weak forms
The finite element method is not based on the strong form of the system that was used up to here but
rather on a so called weak form. This weak form is obtained by multiplying the equations to verify
by a test function w̃ or Ãji then by integrating over the space where the equations is verified. It can
be shown that the weak and the strong form are equivalent [1]. The weak form relative to the volume
problem is

∫

Ωi

grad w̃ · grad w dΩi − ω2

∫

Ωi

(
k

ω

)2

w̃w dΩi

+

∫

∂Ω∞i

w̃Bw d∂Ω∞i +
∑

m∈Di

∫

Γim

w̃Sw dΓim

=

∫

Ωi

w̃f dΩi +

∫

∂Ω∞i

w̃u∞ d∂Ω∞i +

∫

∂Ωni

w̃un d∂Ω∞i +
∑

m∈Di

∫

Γim

w̃sim dΓim. (3.1)

The organization of Eq.(3.1) is not random: sources terms are on the right hand side while unknowns
are on the left hand side. The weak form relative to the surface equation is

∫

Γij

ÃjiAji dΓij = −
∫

Γij

Ãjisij dΓij +

∫

Γij

Ãji (Si + Sj)w dΓij. (3.2)

Once again, the unknown functions are on the left hand side and the known functions are on the
right hand side. Indeed this equation is only used when w is known. Derivations details for these
two equations are given in Appendix B.4.
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Chapter 3: Nodal finite element discretization

In the following sections, the boundary and transmission condition operators are chosen to be of the
form

B = a∞ − b∞div∂Ω∞ grad∂Ω∞ and S = aΓ − bΓdivΓ gradΓ (3.3)

as derived in Section 1.6 and 2.4.

3.2 Discretization
To be equivalent to the strong forms, Eq.(3.1) (resp. Eq.(3.2)) must be verified for any test function
w̃ (resp. Ãji). The number of possibilities is infinite and thus impossible to verify in practice. The
idea of finite elements is then to restrict the space to which w and w̃ (resp. Ãji and Aji) belong, to
a finite dimension space such that Eq.(3.1) (resp. Eq.(3.2)) becomes discrete and can then be solved
numerically.
A brief description of the steps required to obtain these discrete equations is given in the following
paragraphs. More complete treatment can be found in litterature, e.g. [1].
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Figure 3.1: Finite element mesh example in the case of a disc divided in two subdomains and their
common boundary.

Mesh generation The first step of a finite element algorithm is to decompose the resolution domain
Ωi (resp. Γij) into smaller simple volumes, e.g. triangles or quadrangles (resp. line segments).
These smaller volumes, denoted by Ev

ν (resp. Es
ν) and called elements, should approximate the true

resolution domain as well as possible, that is

⋃

ν

Eν ≈ Ωi

(
resp.

⋃

ν

Eν ≈ Γij

)
. (3.4)

In the scope of domain decomposition, the mesh must also be splitted. An example of a splitted
mesh is given in Figure 3.1 for a disc.
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Node projection The mesh is the basis for the projection of w and w̃ (resp. Ãji and Aji) into a
finite dimension space. Indeed, in a finite element approximation, these fields are expressed as a sum
of elementary functions related to elementary entities of the elements. Depending on the problem,
these elementary entities can be nodes, edges or surfaces of the elements.
For the scalar two dimensional case that is considered in this work, the fields are expressed as a sum
of hat node functions ψk. These functions are denoted by ψvk for fields that live on Ωi (i.e. w and
w̃) and by ψsk for fields that live on

⋃
j∈Di Γij (i.e. Ãji and Aji). These hat functions are linear per

element and such that

ψvk(xi) =

{
1 i = k,

0 i 6= k ∀k, i ∈ NΩi

(3.5)

or

ψsk(xi) =

{
1 i = k,

0 i 6= k ∀k, i ∈ NΓij

(3.6)

where NΩi and NΓij are respectively the set of nodes belonging to Ωi and
⋃
j∈Di Γij , and xi is the

position of nodes i.
Consequently, each function ψk has a compact support defined by the elements that contained node
k. Other choices of node functions can be made but the compactness of their support over a few
elements around node k must still be ensured. A schematic representation of a node functions is
given in Figure 3.2.

a

�v
� �s

b


i �ij

Figure 3.2: Representation of the hat node functions ψva associated to node a and ψsb associated to
node b.

Using this approximation, fields of the weak forms Eq.(3.1) and Eq.(3.2) then become

w ≈
∑

k∈NΩi

wkψ
v
k, w̃ ≈

∑

k∈NΩi

w̃kψ
v
k, (3.7)
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and
Aji ≈

∑

k∈NΓij

Aji,kψsk, Ãji ≈
∑

k∈NΓij

Ãji,kψsk. (3.8)

For the sake of simplicity, in the following paragraphs, the nodal values wk, w̃k, Aji,k, Ãji,k are
gathered in vectors denoted by

w, w̃, Aij, and Ãij (3.9)

Discrete equations Inserting the approximations Eqs(3.7) and Eqs(3.8) into the weak forms Eq.(3.1)
and Eq.(3.2) yields two discrete systems. The discrete system relative to the volume problem is

w̃TKvv

Ωi
w−ω2w̃TM vv

Ωi
w+
[
a∞w̃

TM vv

∂Ω∞i
w + b∞w̃

TKvv

∂Ω∞i
w
]
+
∑

m∈Di

[
aΓw̃

TM vv

Γim
w + bΓw̃

TKvv

Γim
w
]

= w̃Tf
Ωi

+ w̃Tu∞,∂Ω∞i
+ w̃Tun,∂Ωni

+
∑

m∈Di
w̃TM vs

Γim
sim (3.10)

while the discrete system relative to the surface equation is

ÃTjiM ss

Γij
Aji = −ÃTjiM ss

Γij
sij + 2ÃTji

(
aΓM

sv

Γij
+ bΓK

sv

Γij

)
w. (3.11)

K and M stand respectively for the stiffness and mass matrices. The mass matrix typically involves
the nodes functions while stiffness matrices involve the gradient of these node functions. Explicit
definitions of these matrices are given in Appendix B.5. As these equations must be verified for all
w̃ and Ãji, the systems to solve are then

Kt

i
w = f t

i
+
∑

m∈Di
M vs

Γim
sim (3.12)

and
M ss

Γij
Aji = −M ss

Γij
sij + 2

(
aΓM

sv

Γij
+ bΓK

sv

Γij

)
w, (3.13)

where the total stiffness matrix is defined by

Kt

i
, Kvv

Ωi
− ω2M vv

Ωi
+
[
a∞M

vv

∂Ω∞i
+ b∞K

vv

∂Ω∞i

]
+
∑

m∈Di

[
aΓM

vv

Γim
+ bΓK

vv

Γim

]
(3.14)

and the total physical source term is defined by

f t
i
, f

Ωi
+ u∞,∂Ω∞i

+ un,∂Ωni
. (3.15)

Combining Eq.(3.12) and Eq.(3.13) finally yields the finite element discretisation of the operatorA

Aji = −sij +
∑

m∈Di
2M ss

Γij

−1
(
aΓM

sv

Γij
+ bΓK

sv

Γij

)
Kt

i

−1
M vs

Γim
sim

+ 2M ss

Γij

−1
(
aΓM

sv

Γij
+ bΓK

sv

Γij

)
Kt

i

−1
f t
i
. (3.16)

The solution w to the volume problem is computed as the exact, direct solution of discrete system
Eq.(3.12) while the solution to the surface problem Eq.(2.14) is computed iteratively using the dis-
cretization Eq.(3.13) of the A operator. For this reason, the decomposition algorithm presented in
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this work is qualified as an hybrid solver.
Each time the action ofA′ on an input s of artificial sources/surface unknowns is computed during
Jacobi or Krylov iterations, first Eq.(3.12) is solved for each subdomain, then Eq.(3.13) is computed
for each subdomain too. One advantage of this formulation is that both Eq.(3.12) and Eq.(3.13) are
independent for any subdomain provided s is known. The overall solution can therefore be com-
puted in parallel very easily. Between two iterations, only the artificial sources s, to be used for the
next iterations, must be shared. It is important to point out that the discretization of A′ Eq.(3.16)
is actually not computed explicitly as it requires the knowledge of Kt

i

−1 which is never computed
explicitly, only the solution of Eq.(3.12) is actually computed. More details about the discrete finite
elements equations of Schwarz algorithm can be found in [11].

Matrix assembly Several mass and stiffness matrices have been introduced in the previous para-
graph and their definition is given in Appendix B.5. These matrices are however not computed
directly from their definition. Actually, because of the compact support of the hat node function,
these matrices have only very few non zero entry. Consider for example

[
M vv

Ωi

]
pq

,
∫

Ωi

ψvpψ
v
q dΩi, ∀p ∈ NΩi , q ∈ NΩi . (3.17)

The first step to compute this matrix is to use the geometrical finite elements approximation Eq.(3.4
), i.e. [

M vv

Ωi

]
pq
≈
∑

ν∈EΩi

∫

Eν

ψvpψ
v
q dEν , ∀p ∈ NΩi , q ∈ NΩi , (3.18)

where EΩi is the set of all elements of Ωi.
Then because ψvp (resp. ψvq ) vanishes everywhere outside elements that contain node p (resp. node
q), the term ∫

Eν

ψrψs dEν (3.19)

is non vanishing only if p ∈ NEν and q ∈ NEν . Thus the matrix is computed as

[
M vv

Ωi

]
pq
≈
∑

ν∈EΩi

∫

Eν

ψvpψ
v
q dEν , ∀p ∈ NEν , q ∈ NEν . (3.20)

The matrices involved in the preceding paragraphs are sparse because the hat node function have a
very compact support, increasing the support of these functions would decrease the sparsity of the
matrix. Matrix assembly can actually be further simplified by introducing reference elements [19].
All the stiffness and mass matrices actually depend on the geometry, the mesh and its decomposition
and the node functions but not on the artificial sources s nor on the physical sources f . Therefore
these matrices are computed only once and used for any artificial or physical source.
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Part II

Phased array optimization in heterogeneous
media
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Chapter 4

Phased arrays

In Part I, a solution technique for Maxwell’s equations using domain decomposition for transverse
electric or magnetic wave propagation problems is derived. In this chapter, this solution technique
is applied to the simulation of phased arrays in heterogeneous media. Phased arrays are commonly
used in antenna design [21] as they allow to achieve high and tunable directivity. This chapter first
introduced the most general case of phased arrays then only a simpler case is investigated further.
In particular, asymptotic results in homogeneous medium are given to gain intuition on how phased
arrays work.

4.1 Definition
A phased array is, by definition, a particular distribution of sources that can be written

ja =

Np∑

p=1

jpwp (4.1)

where wp [-] are the elementary source functions, jp ∈ C [A/m2] are their weights and Np is the
number of elementary sources of the array. In practice, the elementary source functions are often
taken to be the same function w shifted by xp, i.e.

wp = w (x− xp) . (4.2)

For simplicity, only transverse electric (TE) fields are considered1. Using the notations of Chapter 1
(in particular Eq.(1.22)), the source term f is given by

f = −iωµ0

Np∑

p=1

jpwp. (4.3)

The Helmholtz equation and the Sommerfeld radiation condition Eqs(1.31) being linear, the solution
for an array of sources can be written by superposition as

u =

Np∑

p=1

jpup (4.4)

1For transverse magnetic (TM) fields, curl ja = f(x, y)ẑ (cfr Section 1.1) such that ja · ẑ = 0 and thus w · ẑ = 0.
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Chapter 4: Phased arrays

where up is the pth elementary solution, i.e. it verifies2





(
− div grad − k2

)
up = −iωµ0j0wp ∀x ∈ R2,

lim
ρ→∞
√
ρ

(
∂up
∂ρ

+ ik0u

)
= 0.

(4.5)

4.2 Point source arrays
In this section, the elementary sources are taken to be Dirac distributions, i.e.

wp(x) = Aδδ (x− xp) with Aδ = 1 [m2]. (4.6)

This kind of sources is chosen to be able to conduct simple analytic studies but also because it has
applications3outside the scope of antennas and because several real elementary sources are equiv-
alent to point source under some assumptions (cfr Section 4.3). The physical interpretation of this
source is a wire carrying a constant current and considered infinitely long along the ẑ-axis (such
that the problem remains two dimensional) and infinitely thin in the x̂− ŷ plane. Using only the qth

source, the qth elementary solution is then called a Green function3 g and is defined as

g (x;xq) , uq (x) [-] for wq(x) = Aδδ (x− xq)
and − iωµ0jpAδ → δpq [-],∀p, q ∈ [1, Np]. (4.7)

Free space Green function In the particular case where the medium is homogeneous, i.e. when
k(x)→ k0, the free space Green function g0(x,x0) is given by4[5]

g0(x,x0) = − i
4
H

(2)
0 (k0 ‖x− x0‖) (4.9)

where H(2)
α is the Hankel function of the second kind of order α, defined as H(2)

α , Jα − iYα, Jα
and Yα being Bessel functions of the first and second kind of order α. A common approximation of
the Hankel function of the second kind is [12]

H
(2)
0 (z) ≈

√
2

πz
exp (−i (z − π/4)) . (4.10)

2j0 = 1 [A/m2].
3The complete knowledge of the Green function (i.e. for any position y of the Dirac distribution) is actually very

useful as it can be shown under some assumptions that the general solution for any source distribution f is then

u(x) =

∫
g(x,y)f(y)dy. (4.8)

This formula is a generalization of the superposition principle used to write Eq.(4.4).
4It is interesting to point out that the Hankel function of the first kind H(1)

0 , J0 + iY0 is also a solution to the
Helmholtz equation alone but this solution does however not satisfy the Sommerfeld radiation condition and must thus
be discarded. Intuitively, the situation is the same than in Section 1.5, the radiation condition prescribes solution that
yields energy coming from infinity towards the source.
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This approximation is especially valid when the dimensionless distance z , k0 ‖x− x0‖ is large.
Physically, it means that x− x0 is much greater than the wavelength λ , 2π/k0 i.e. electrically far
from the source. Hence, Eq.(4.9) with approximation Eq.(4.10) is called the far field generated by
the Dirac source and is denoted by gFF

0 . The Green function Eq.(4.9) and its far field approximation
gFF

0 are represented in Figure 4.1.

0 2 4 6 8 10

z [-]

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

g
(z
)
[-
]

Re (g0(z))

Im (g0(z))

Re
(
gFF0 (z)

)

Im
(
gFF0 (z)

)

Figure 4.1: Exact and far field free space Green function g0 and gFF
0 associated to the two dimensional

scalar Helmholtz equation with Sommerfeld radiation condition. z , k0 ‖x− x0‖.

4.2.1 Far field in free space
Consider a Np-point source array, i.e.

f = −iωµ0

Np∑

p=1

jpAδδ(x− xp). (4.11)

Using the superposition principle Eq.(4.4), the solution in free space then writes

u = −iωµ0

Np∑

p=1

jpAδg0(x,xp). (4.12)

For the sake of simplicity, the weights jp ∈ C are substituted by an amplitude wp ∈ R+ and a
phase αp ∈] − π, π] such that −iωµ0jpAδ = wp exp (−iαp) [V/m] and the dimensionless distances
zp , k0 ‖x− xp‖ are used.
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More intuitive interpretation of this solution can be obtained by inserting the far field approximation
Eq.(4.10) into Eq.(4.12), i.e.

uFF =

Np∑

p=1

wp exp (−iαp)
−i
4

√
2

πzp
exp (iπ/4) exp (−izp)

=

Np∑

p=1

−i
4

√
2

πzp
exp (iπ/4)wp exp (−i(zp + αp)) . (4.13)

When several point sources are present, the far field approximations are

zp � 1 ∀p ∈ [1;Np]. (4.14)

If all the point sources are concentrated in a region of radius xmax (= O (λ)) around the origin then
the approximations reduces to

‖x‖ � xmax. (4.15)

Using a Taylor expansion on the definition of zp then yields

zp , k0

√
‖x‖2 + ‖xp‖2 − 2x ·xp

= k0 ‖x‖
√

1 +

(‖xp‖
‖x‖

)2

− 2
x ·xp
‖x‖2

≈ k0 ‖x‖
√

1− 2
xp ·x
‖x‖2

≈ k0 ‖x‖
(

1− x ·xp
‖x‖2

)

= z

(
1− x ·xp
‖x‖2

)
(4.16)

Physically, this approximation consists in considering that x− xp and x are parallel, as represented
schematically in Figure 4.2 for two point sources. In electromagnetic theory, this approximation is
called the Fraunhofer approximation [21].

�

�

�� ��

�

�� �2

�� �2

�

Figure 4.2: Fraunhofer approximation for two point sources.
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Using the Fraunhofer approximation Eq.(4.16), the far field solution Eq.(4.13) then writes

uFF =

Np∑

p=1

wp exp (−iαp)
−i
4

√
2

πzp
exp (iπ/4) exp (−izp)

≈ −i
4

√
2

πz
exp (iπ/4) exp (−iz)

Np∑

p=1

wp exp (−iαp) exp (ik0x̂ ·xp) . (4.17)

The interesting thing about Eq.(4.17) is that its radial (z) and azimuthal (x̂) dependencies are inde-
pendent. The far field uFF can therefore be written as

uFF = A(z)F (x̂) (4.18)

with the amplitude A defined as

A(z) ,
−i
4

√
2

πz
exp (iπ/4) exp (−iz) (4.19)

and the radiation pattern F defined as

F (x̂) =

Np∑

p=1

wp exp (−iαp) exp (ik0x̂ ·xp) . (4.20)

At any distance z from the point sources, the relative radiation pattern in direction x̂ is therefore

|uFF|
maxx̂ |uFF| =

∣∣∣∣
F (x̂)

Fmax

∣∣∣∣ . (4.21)

The radiation pattern thus dictates in which direction x̂ the field has the largest amplitude. More
importantly, this direction can be changed by tuning the sources weights. These conclusions are
made more explicit in the following paragraph.

2-point source example Consider two point sources at the same distance ‖x1‖ = ‖x2‖ = d from
the origin and with the same weights w1 = w2 = 1, the radiation pattern F becomes

F (x̂) = exp (−iα1) exp (ik0x̂ ·x1) + exp (−iα2) exp (ik0x̂ ·x2)

= exp

(
−iα1 + α2

2

)[
exp

(
−ik0d cos θ − iα1 − α2

2

)
+ exp

(
ik0d cos θ − iα2 − α1

2

)]

= exp

(
−iα1 + α2

2

)
2 cos

(
−k0d cos θ +

∆α

2

)
(4.22)

where ∆α , α2−α1 is the phase difference. The direction in which the radiated field is maximal is
then given by

cos θM =
∆α

2k0d
. (4.23)

Imposing that the phase difference ∆α ∈] − π, π], then choosing d = λ/4 yields that the maximal
radiating direction can be tuned between 0 and π simply by changing the phase difference. This
spacing will thus be considered further in this work. The azimuthal dependency |F (θ)| /Fmax is
represented in Figure 4.3 for different values of ∆α, as expected, the maximal direction of radiation
changes according to Eq.(4.23).
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Figure 4.3: Azimuthal dependency |F (θ)| /Fmax for different phase difference ∆α. θM = 90◦ →
∆α = 0, θM = 60◦ → ∆α = π/2, θM = 150◦ → ∆α = −

√
3

2
π.

4.3 Point source as a physical limit
Point sources are convenient here from the mathematical point of view because the analytical so-
lution in homogeneous space is known. From a physical point of view however, such infinites-
imal sources can not exist. Some physical situations are nevertheless nearly equivalent to point
sources. For these particular physical sources, the elementary solutions are thus close to the non-
homogeneous space Green function.
In this section, two physical approximations of point sources are discussed. These particular sources
are used further in this work. The goal of this section is therefore to emphasize that, from a
mathematical point of view, the phased array optimization is based on the computation of the non-
homogeneous Green function, which can actually only be computed using approximations of point
sources [15] [31].

Mathematically speaking, a point source is called a Dirac distribution. An important property of this
Dirac distribution δ is that it satisfies





δ(x) = 0 ∀x ∈ R2 \ {0},∫

R2

δ dx = 1.
(4.24)

A good approximation should thus also nearly satisfy these conditions and especially, satisfy them
when some small parameter ε tends to zero.
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Constant approximation The first approximation to be considered is the zeroth order polynomial
approximation, or constant approximation

δε,0(x) =





1

πε2
∀ ‖x‖ ≤ ε

0 ∀ ‖x‖ > ε.
(4.25)

This is the simplest approximation that satisfies Eqs.(4.24) when ε→ 0. Physically, it simply means
to replace the infinitely thin wire by a wire with a radius ε and a constant current density.
This approximation is referred to as CST.

Gaussian approximation The second approximation considered is the Gaussian curve

δε,g(x) =
1

2πσ2
exp

(
−1

2

(‖x‖
σ

)2
)

with σ = ε/4 (4.26)

which also satisfy Eq.(4.24) when ε→ 0. As previously, this approximation consists in considering
a circular wire of radius ε but with an exponentially decreasing current.
This approximation is referred to as GSN.

No approximation Another possibility is to consider the source f = δ, i.e. making no approx-
imation. In the finite element framework described in Chapter 3, this source is then discretised in
a hat function that thus depends on the mesh around the point where the Dirac is imposed. This
hat function also converges to the Dirac distribution when the characteristic mesh size tends to zero.
However, this approximation of the dirac distribution is not optimal, one of the reason being that it
is not symmetric. Physically, this approximation consists in a mesh-dependent rectangular wire with
a hat function current density, which makes no sense. This possibility is not considered in this work.
More rigorous and complete treatments of these approximations can be found in [15] [31].

For both approximations, the size ε of the support of the function has to be determined. For these ap-
proximations to yield good results, this parameter must be such that ε� rmin, rmin being the distance
from the point source where the elementary solution begins to differ from the non-homogeneous
space Green function. Indeed, an important result related to the Green functions for linear partial
differential equations is that the solution for any source f can be written as

u =

∫
g(x,y)f(y) dy. (4.27)

If the source f is an approximate Dirac distribution Eq.(4.25) or Eq.(4.26) then one has in free space5

u =

∫

B(0,ε)

g0(x,y)δε(y) dy

≈ g0(x, 0)

∫

B(0,ε)

δε(y) dy (if ε� ‖x‖)

= g0(x, 0) (4.28)

5The last equality is exact for the constant approximation, nearly exact for the Gaussian approximation as a truncation
is performed.
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where B(0, ε) is the centered disc of radius ε. The free space Green function g0(x,y) can actually
be considered constant in the integral because

k0 ‖x− y‖ = k0

√
‖x‖2 + ‖y‖2 − 2x ·y

= k0 ‖x‖
√

1 +

(‖y‖
‖x‖

)2

− 2

(
x ·y
‖x‖2

)

≈ k0 ‖x‖ , ∀y ∈ B(0, ε),∀ ‖x‖ � ‖y‖ . (4.29)

Consequently, the elementary solution for both constant and Gaussian sources is expected to be
close to the non-homogeneous Green functions at distance ‖x‖ greater than their radius ε. Inside
this radius, the elementary solution and the Green function are not necessarily equal.
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Optimization problems

This chapter’s aim is to formulate and solve optimization problems for the source weights of phased
arrays introduced in Chapter 4. Two kinds of optimization problems that can be solved using the
tools described in Part I are introduced.
In Chapter 4, the weights jp were considered to be complex-valued. To be able to formulate the
optimization as real-valued problems, the real and imaginary parts of the weights are splitted as

jp = j0
p + ij1

p . (5.1)

The current density ja then expresses as

ja =
∑

r={0,1}

Np∑

p=1

jrpi
rwp (5.2)

and the solution u as

u =
∑

r={0,1}

Np∑

p=1

jrpi
rup. (5.3)

For the sake of simplicity, in the following sections the source weights jrp ∀r ∈ {0, 1}, ∀p ∈ [1, Np]
are gathered into vectors denoted by j and defined as

jT =
[
j0

1 , j
0
2 , . . . , j

0
Np−1, j

0
Np , j

1
1 , j

1
2 , . . . , j

1
Np−1, j

1
Np

]
. (5.4)

5.1 Problem based on power conservation
Power conservation is expressed through the real part of Poynting’s theorem, which can be obtained
from the frequency domain Maxwell’s equations and takes the following form:

Ps = L+R (5.5)

where Ps is the injected power inside a control volume V , L are the losses inside this same volume
and R is the radiated power through the surface S of this control volume. All these terms are ex-
pressed in [W] for three dimensional fields but in [W/m] for two dimensional cases. Proofs of this
theorem for both three and two dimensional cases and the expressions of Ps, L and R are given in
Appendix B.7.
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Using the particular source configuration of arrays Eq.(5.2), the different terms of Poynting’s theo-
rem can be written in matrix form.
Indeed, the power injected by the source is1

Ps , −
∫

V

Re (uja
∗) dV

= −
∑

r={0,1}

Np∑

p=1

jrp
∑

s={0,1}

Np∑

q=1

jsq

∫

V

Re (irup(−i)swq∗) dV

=
∑

r={0,1}

Np∑

p=1

jrp
∑

s={0,1}

Np∑

q=1

jsq

[
−Re

(
ir(−i)s

∫

V

upwq
∗ dV

)]

,
∑

r={0,1}

Np∑

p=1

jrp
∑

s={0,1}

Np∑

q=1

jsq

[
−Re

(
ir(−i)s

[
P b
s

]
pq

)]
(5.6)

, jTPs j, (5.7)

the total radiated power is

R ,
1

ωµ0

∫

S

Im (ugrad u∗) · n̂ dS

=
∑

r={0,1}

Np∑

p=1

jrp
∑

s={0,1}

Np∑

q=1

jsq
1

ωµ0

∫

S

Im (ir(−i)supgrad uq∗) · n̂ dS

=
∑

r={0,1}

Np∑

p=1

jrp
∑

s={0,1}

Np∑

q=1

jsq

[
1

ωµ0

Im
(
ir(−i)s

∫

S

upgrad uq∗ · n̂ dS
)]

,
∑

r={0,1}

Np∑

p=1

jrp
∑

s={0,1}

Np∑

q=1

jsq

[
1

ωµ0

Im
(
ir(−i)s

[
Rb(S)

]
pq

)]
(5.9)

, jTR(S) j, (5.10)

and the total losses are

L , −ω
∫

V

Im (ε̃) ‖u‖2 dV

= −ω
∫

V

Im (ε̃uu∗) dV

=
∑

r={0,1}

Np∑

p=1

jrp
∑

s={0,1}

Np∑

q=1

jsq

[
−ω

∫

V

Im (ir(−i)s (ε̃upuq
∗)) dV

]

1The submatrix [
Ps

]
pq

,
∫

V

upwq dV (5.8)

is actually symmetric because of the Rayleigh-Carson reciprocity theorem [27] (if wp∗ = ±wp∀p ∈ [1, Np]). Intuitively,
as far as antennas are concerned, this theorem states that emission (when source is p and receiver is q) and reception
(when source is q and receiver is p) involve the same exchange of power.
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=
∑

r={0,1}

Np∑

p=1

jrp
∑

s={0,1}

Np∑

q=1

jsq

[
−ωIm

(
ir(−i)s

∫

V

ε̃upuq
∗ dV

)]

,
∑

r={0,1}

Np∑

p=1

jrp
∑

s={0,1}

Np∑

q=1

jsq

[
−ωIm

(
ir(−i)s

[
Lb(V )

]
pq

)]
(5.11)

, jTL(V ) j. (5.12)

If the control volume V on which the theorem is applied contains all the sources, then all the matrix
are (semi-)positive definite. Indeed, by definition, the loss matrix cannot be negative, then if there
exists a weight vector j such that Ps < 0, it means that the radiated power R is also negative. A neg-
ative radiated power means that power comes from outside the volume towards the sources, which
is not physical because there are no source outside the volume.
The three matrices introduced previously are not symmetric. However, because they appear in
quadratic forms, only their symmetric parts can be considered. Indeed, for any matrix A and vector
x,

xTAx = xT

(
A+ AT

2
+
A− AT

2

)
x = xT

(
A+ AT

2

)
x. (5.13)

Consequently, in the following developments, only the symmetric part of the power related matrices
are considered.

Matrix power conservation In matrix form, the power conservation then writes

jT
(
Ps −R(S)− L(V )

)
j = 0. (5.14)

This statement has of course to be verified for all current distributions, hence for all j. The only
possibility is then that Ps −R− L is skew symmetric.

Global phase invariance Consider u∗ the exact solution to the Helmholtz equation with Sommer-
feld radiation condition for a distribution of sources ja. By linearity the couple

{u∗P exp (−iα) , jaP exp (−iα)} (5.15)

is also a solution for any P > 0 and any α ∈]− π, π]. By definition the latter couples yield the same
injected power Ps, radiated power R and losses L as the original solution if P = 1. Therefore if ja
is found to be an optimal distribution of sources then automatically ja exp (−iα) is also optimal. It
has thus be chosen to fix a phase reference by imposing

j1
Np = 0. (5.16)

The weight vectors have therefore the size 2Np − 1 instead of 2Np.

Using these quantities or related ones, interesting optimization problems can easily be formulated.
For example, it could be interesting to maximize the power radiated through some surface Sr, while
keeping the injected power constant, the problem to solve is then

max
j∈R2Np−1

R(Sr) with Ps = P0. (5.17)
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Similarly in some situations, the dissipated power (i.e. the losses) in a volume Vl must be limited.
The problem then becomes

max
j∈R2Np−1

R(Sr) with Ps ≤ P0 and L(Vl) ≤ L0. (5.18)

This more general problem is however equivalent to the previous one in a important particular case.
Consider R2Np−1

L0
the subset of all losses-compatible

(
R2Np−1
L0

= {j ∈ R2Np−1|L ≤ L0}
)

vectors j

(resp. R2Np−1
P0

the subset of all power-compatible
(
R2Np−1
P0

= {j ∈ R2Np−1|P ≤ P0}
)

vectors j), if

∀j ∈ R2Np−1
L0

(resp. R2Np−1
P0

) Ps � P0 (resp. L � L0) then the constraint on the injected power
(resp. the losses) is invisible and the constraint on the losses (resp. injected power) becomes an
equality constraint. The problem is then equivalent to the previous one. Using the three quantity Ps,
L(Vl), R(Sr), other power budget optimization can easily be formulated.

5.2 Problems based on equivalent arrays
When doing electromagnetic compatibility studies, it is not rare that several complex electromag-
netic components are brought together in a restricted area. The complexity of the whole system is
therefore very high and it can be useful to substitute the complex constituents by equivalent arrays
that have the same radiating properties in the far field. To construct this model, one idea is to look
at the difference between the real radiation pattern and the radiation pattern of the equivalent ar-
ray. This difference can be for example quantified by a single indicator to be the L2 norm of the
difference between the real and the equivalent field, i.e.

D ,
∫

S

‖u− uS‖2 dS. (5.19)

Once again using the superposition principle for the electric field Eq.(4.4) yields

D ,
∫

S

‖u− uS‖2 dS

=

∫

S

‖u‖2 dS − 2Re
(∫

S

uuS
∗ dS

)
+

∫

S

‖uS‖2 dS

=
∑

r={0,1}

Np∑

p=1

jrp
∑

s={0,1}

Np∑

q=1

jsqRe
[
ir(−i)s

∫

S

upuq
∗
]

− 2
∑

r={0,1}

Np∑

p=1

jrpRe
[
ir
∫

S

upuS
∗ dS

]
+

∫

S

‖uS‖2 dS

, jTU j − 2jT s+ c. (5.20)

The related optimization problem is then

min
j∈R2Np−1

D. (5.21)
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5.3 Solution techniques
In this section, solution techniques for problems of the forms Eq.(5.17) or Eq.(5.21) are derived.
Problems of the form Eq.(5.18) are not considered anymore in this work as their solution is not
straightforward and because they can be simplified using physically based arguments.

5.3.1 Pure quadratic equality constrained problems
Consider the optimization problem

max
j∈R2Np−1

jTAj with jTC j = 1 (5.22)

where A and C are positive definite symmetric matrices. Using Lagrange multiplier technique, the
problem Eqs.(5.22) is equivalent to solve

max
j∈R2Np−1, λ∈R

jTAj − λ
(
jTC j − 1

)
. (5.23)

The extremum value of this function cancels the gradient w.r.t. j which yields

Af = λC f. (5.24)

The solution to the generalized eigenvalue problem Eq.(5.24) are denoted by {λn, jn}. The cancel-
lation of the gradient of the cost function w.r.t. λ then gives the metric to normalize the eigenvectors.
Indeed, one has

jn
TC jn = 1. (5.25)

Finally, by inserting these results into Eq.(5.23), the problem reduces to

max
j∈R2Np−1, λ∈R

jTAj − λ
(
jTC j − 1

)
= max

j∈R2Np−1, λ∈R
λjTC j = max

λ∈R
λ. (5.26)

such that the solution to Eqs.(5.22) is the principal eigenvector of C−1A normalized by C. The fact
that the matrices are symmetric positive definite guarantees that all the eigenvalues are real-valued
and positive. Developments are identical if max is substituted by min but the smallest eigenvalue
should then be kept.

5.3.2 Quadratic unconstrained problems
Consider the optimization problem

min
j∈R2Np

jTAj − 2jT b+ c (5.27)

where A is again a symmetric positive definite matrix, b is a vector and c a constant. The minimum
of the cost function cancels the gradient w.r.t. j, i.e.

2Aj − 2b = 0. (5.28)

The solution is then straightforward and is

jm = A−1b. (5.29)
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Chapter 6

Numerical validation of elementary solution

Part I introduces methods to solve, among others, equations similar to Eqs(4.5) whose solutions are
called elementary solutions. The focus of this part is to illustrate the performance of these methods
on simple model problems for which the exact solution is known. In particular, the effect of ab-
sorbing boundary conditions, point source approximation, transmission conditions and the iterative
solver are investigated in this chapter. The quantities of interest to measure the difference between a
numerical solution u and a reference solution u∗ are the relative error e defined as

e =

∣∣∣∣
u− u∗
u∗

∣∣∣∣ (6.1)

and its L2 and L∞ norms, i.e.

L2(e) =

√
1

AΩ

∫

Ω

e2dΩ and L∞(e) = max
x∈Ω

e (6.2)

where AΩ is the area of Ω.

6.1 Absorbing boundary conditions
As emphasized in Section 1.6, the elementary problem Eqs(4.5) cannot be discretized as such but the
Sommerfeld radiation condition must be substituted by an approximate condition at a finite distance.
In this section, the effect of this approximation is briefly studied.

Model Problem I The model problem used here is a single point source, i.e. a 1-source array,
in free space. The latter problem is however not suited to study the performance of the absorbing
boundary conditions alone because a second approximation is required to model the point source.
To get rid of this second approximation, the region around this point source is withdrawn from the
domain and a Dirichlet boundary condition is imposed on the interior surface. The problem solved
in this section is then





(
− div grad − k2

0

)
u = 0 ∀x ∈ Ω,

n̂ · grad u+ Bu = 0 ∀x ∈ ∂Ωex,

u = u∗(x) ∀x ∈ ∂Ωin

(6.3)
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where ∂Ωin and ∂Ωex are two circles of radii a and b and Ω is the region between them. Obviously,
the exact solution to the unbounded problem (with the Sommerfeld radiation condition) is the Green
function u∗ = g0. For the numerical experiments, the wave number k0 is set to 1 such that the
wavelength λ = 2π. The characteristic element size h is taken to λ/50 such that errors due to
the discretisation are small. The geometry of this model problem is given in Figure 6.1a while the
numerical parameters are summarized in Table C.1 (cfr Appendix).

�x

(a) Model Problem I (b) Model Problem II

(c) Model Problem III (d) Model Problem IV

Figure 6.1: Geometries relative to model problems.

Results The map of the error and its norms are given in Figure 6.2 and in Table 6.1 for different
configurations. The absorbing boundary conditions is located at either b = 6 ≈ λ or b = 30 ≈ 5λ.
The point source is considered either at the center of the domain or off-center by xp = −3 ≈ −λ/2.
The inner Dirichlet boundary has a radius a = 0.6 = λ/10.
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(a) b = 30

(b) b = 6

0 1�5

e [�]

0�75

Figure 6.2: Relative error e for two position of the ABC. The point source is off-center by xp = −3.
Second order Taylor absorbing boundary condition are used.
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{xp, yp} = {0, 0} {xp, yp} = {−3, 0}
b = 6 b = 30 b = 6 b = 30

CT0 0.16(0.3) 0.9(1.3) 7.7(17.2) 1.0(1.8)

CT2 0.22(0.3) 0.9(1.3) 0.6(1.2) 0.9(1.5)

Table 6.1: L2(L∞) norm of the relative error e for several configurations. Values are expressed in %.

Discussion When the source is centered, the solution is symmetric and thus the only difference
between both Taylor approximations is terms proportional to the curvature squared because the tan-
gential derivative vanishes, hence the very small difference. When the source is off-center, the
solution is no more constant on the circular boundary. A non negligible difference then appears
between both Taylor approximations. This difference however diminishes for b = 30 and the reason
for that is the same than when the source is centered. Indeed, as it is shown graphically in Figure
6.3, the further the boundary, the smaller the angle between the wavefront and the boundary, and
consequently the closer the solution to the centered case.

x�

b

�

�

Wavefronts

ABC

� = 9��

Figure 6.3: Graphical representation of the wavefronts of the far field Green function.

From Table 6.1 it could be wrongly concluded that there is no interest to set the boundary condition
further from the source as both L2 and L∞ are not strongly affected when CT2 is used. However,
when looking at the error map in Figure 6.2, it can be seen that the error is concentrated near the
boundary. Thus if this boundary is far from the region of interest, i.e. around the source in this case,
then the error locally decreases. It is also interesting to emphasize that the incidence angle θ (i.e. the
angle formed by the normal to the boundary and the circular wavefront) decreases as xp

b
decreases,

for example, when φ = 90◦ then θ = tan−1
(xp
b

)
thus either θ ≈ 6◦ or θ ≈ 27◦1. In Section 1.6, it

1Actually the maximum incidence angle θmax occurs at φmax = cos−1
(
−xp

b

)
and is given by

θmax =
xp

b√
1−

(xp

b

)2 . (6.4)
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is shown that the reflection (and thus the error) increases with the incidence angle θ. Results from
Section 1.6 can however not be applied readily here as a spherical wave is a superposition of plane
waves. As showed graphically in Figure 6.3 the ratio xp

b
explains why the error is nearly symmetric

for b = 30 and not for b = 6. Indeed, for b = 30 the incidence angle is nearly the same in all
directions while this is not the case for b = 6.
As a conclusion, the external boundary should be placed as far as possible and CT2 should be used
to have the most accurate results.

6.2 Point source approximation
In Section 4.3, the link between theoretical point source and two physical sources is introduced.
In this section, the correspondence between free space Green function and elementary solution is
studied.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

z [-]

0.0

0.2

0.4

0.6

0.8

1.0

δ ǫ
,g
(z
)

δ ǫ
,g
(0
)
[-
]

Exact

m = 5

m = 17

Figure 6.4: Gaussian curve approximation with m = 5 and m = 17 points.

Model Problem II The model problem of this section is similar to the preceding one (i.e. Model
Problem I), the only two differences are that the Dirichlet condition is replaced by a physical source
and that this source is always centered. For the sake of simplicity, the constant −iωµ0j0Aδ is set
to 1. For the numerical simulations, the characteristic mesh size is h = λ/50 near the absorbing
boundary condition but hs = ε

m
inside the point source approximation. Indeed, as the characteristic

mesh size should be small w.r.t. the smallest geometric characteristic length, it is therefore risky to
take m = 1. This new parameter m is actually important, especially in the case of the Gaussian
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approximation. By taking a mesh size too large, the Gaussian curve will not be discretised correctly
as can be seen for m = 5 and m = 17 in Figure 6.4. The geometry of this model problem is given
in Figure 6.1b while the numerical parameters are summarized in Table C.1 (cfr Appendix).

Results As previously, L2 and L∞ norms of the error e are given in Table 6.2 for both physical
point source approximations, for m = 5 and m = 17 and for a source radius ε = 0.6 ≈ λ/10 and
ε = 0.3 ≈ λ/20. The map of the error e is given in Figure 6.5.

ε = 0.6 ≈ λ/10 ε = 0.3 ≈ λ/20

m = 5 m = 17 m = 5 m = 17

CST 5.25(96.7) 4.62(96.7) 1.85(94.7) 1.26(94.5)

GSN 1.39(94.2) 1.24(94) 0.45(92.2) 0.39(92)

Table 6.2: L2(L∞) norm of the relative error for several configurations. Values are expressed in %.

0�2 0�4 0�6

e[�]

Figure 6.5: Relative error e for Model Problem II.GSN source with m = 5 and ε = 0.3 ≈ λ/20 are
used. The white region inside the source is off scale, the maximal value inside this white region is
92.2%.

Discussion From Table 6.2, it appears that the maximal error is huge and does not decreases with
m or ε. However this error always appears inside the point source approximation (cfr Figure 6.5)
which makes sense as the exact and approximate problems strongly differ in that region. This max-
imal error is actually expected from Section 4.3. Moreover, as can be seen in Table 6.2 and Figure
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6.5, the error is small and uniform in the region outside the source radius.
The number of points per source radius m does not seem to strongly influence the error. This fact
could be surprising at first sight because of the bad Gaussian approximation that m = 5 yields (cfr
Figure 6.4). The results are actually still good because the approximation of the Gaussian curve (i.e.
the orange curve in Figure 6.4) is also an approximation of a point source.
The source radius allows to efficiently reduce the difference between the free space Green function
and the elementary solution. For the Gaussian approximation, with ε = 0.3 ≈ λ/20 the errors are
of the same order than those obtained with the absorbing boundary conditions only, it is therefore
useless to decrease this radius further.

As a conclusion, the important parameter, as far as convergence towards Green function is concerned,
is the size of the support for both approximations. The m parameter is only important to represent
geometrically physical circular wires. Within the Dirac approximations (i.e. ‖x‖ ≤ ε), the solution is
however far from the Green function. The approximation used can therefore influence any quantities
related to the fields very close to the sources, e.g. the injected power Ps.

6.3 Transmission condition and iterative solver
Now that approximations independent of domain decomposition methods have been discussed, the
performance of the different transmission conditions and of both iterative solvers are investigated.
First the transmission conditions in free space are considered. Then the transmission condition for
complex wavenumber are used on a realistic example.

6.3.1 Real wavenumber
Model Problem III The model problem for real wavenumber consists in a 2-source array. Sources
are separated by d = λ/2 = π and have unitary weights. The domain is divided into Nd = 5 subdo-
mains. The geometry of this model problem is given in Figure 6.1c while the numerical parameters
are summarized in Table C.1 (cfr Appendix).

Results The relative residual fracrnr1 as a function of the number of iterations n is given in Figure
6.6, for both Jacobi and Krylov solvers and for T0BC, T2BC and OO2BC transmission conditions.
The L2 norm of the error e as a function of the tolerance ε on the relative residual for one of the
subdomains is given in Figure 6.7 for Krylov solver and OO2 transmision condition. The whole
map of the error e in the same configuration is given in Figure C.1 (cfr Appendix). Finally, the
solution is given in Figure C.2 (cfr Appendix).

Discussion From Figure 6.6, it can be concluded that OO2BC transmission conditions are the
most efficient for both solvers. Both T0BC and T2BC transmission conditions converge when used
with Krylov solver but do not converge for the Jacobi solver. This observation can be explained
by the convergence rates obtained for the two-subdomain problem in Section 2.4. Indeed, it was
found that modes such that ky ≥ k0 diverge. It is important to highlight that the convergence rates
found in Section 2.4 are strictly valid only for the two-subdomain problem and for Jacobi scheme.
That is why, using Krylov solver, convergence is still reachable for T0BC and T2BC transmission
conditions.
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As the quantity of interest is the volume unknown u, it is necessary to link the tolerance on the
residuals εit (which is computed on surface unknowns) to an estimate of the error on the volume
unknown u. That is precisely what is done in Figure 6.7. As can be seen in that figure, when the
tolerance εit is smaller than 10−3, the error seems not to decrease anymore. This lower bound on
the error is actually of the order of the error found previously in Section 6.1 or 6.2, because of
absorbing boundary conditions or point source approximation. To be sure that there is not peak of
error nowhere in one of the Nd = 5 subdomains, a map of the error e is given in Figure C.1. As
expected, there is no error peak except inside the sources.
Finally the solution is given in Figure C.2. The radiation pattern that is predicted in Section 4.2 is
easily identified.
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Figure 6.6: Relative residual rn
r1

as a function of the number of iterations n for both Jacobi (J-) and
Krylov (K-) solvers and for T0BC, T2BC and OO2BC transmission conditions.

6.3.2 Complex wavenumber
The problem considered here is actually the realistic application that is considered in Chapter 8 for
an elementary source. A complete description of the model is provided in that chapter. For now, it is
only interesting to know that the model is composed of five different media which are not magnetic
but which have different permittivities that depend on the frequency. These media are surrounded by
empty space.
As it is emphasized in Section 2.4, the complex nature of the wavenumber has to be considered only
when the equivalent conductivity σ̃ is non negligible. To be able to see the influence of this equivalent
conductivity, two frequencies are used; f = 100 [MHz] and f = 3 [GHz]. At f = 100 [MHz], the
imaginary and the real part of the permittivity are more or less equal while at f = 3 [GHz], the
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Figure 6.7: L2 norm of the error e as a function of the tolerance εit on the relative residual for one of
the subdomains and for Krylov solver and OO2 transmission conditions.

imaginary part is slightly smaller (up to 5 times smaller). The exact value of permittivities and the
ratio σ̃

ωRe(ε̃)
are given for each media in Figure 8.3, C.4 and C.5 (cfr Appendix).

For the numerical simulations, the characteristic mesh sizes are taken such that there are 60 (resp.
120) points per wavelength2 at f = 100 [MHz] in empty space (resp. in the media) and 12 points
per wavelength2 at f = 3 [GHz] (both in empty space and in the media). The current carried by the
physical source is j0Aδ = 1 [A]. The geometry of this model problem is given in Figure 8.1 while
the numerical parameters are summarized in Table C.1 (cfr Appendix).

Results The residual as a function of the iteration number is given in Figure 6.8a and 6.8b for
both frequencies. T0BC, OO2BC and OO0D transmission conditions are used inside the conductive
media while OO2BC is always used in the surrounding empty space. Krylov solver only is used.

2A reference wavelength is defined from Figure 8.2 to be λm = 0.3 [m] at f = 100 [MHz] and λm = 0.01 [m] at
f = 3 [GHz].
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Figure 6.8: Relative residual rn
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as a function of the iteration number for T0BC, OO2BC and OO0D
transmission conditions using Krylov solver.
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Discussion It can be seen in Figure 6.8a and 6.8b that at both frequencies, OO0D converges faster
than T0BC. This result is expected from literature [6]. However in both cases, OO2BC has the best
convergence. These results are consistent with the prediction on the convergence rates of the two-
subdomain model problem treated in Section 2.4 and in particular with Figure 2.3a and 2.3b. Indeed,
for bad conductors (i.e. σ̃

ωRe(ε̃)
� 1), the model problem clued that OO2BC performs better while

no advantage for OO0D or OO2BC can be concluded for dielectrics (i.e. σ̃
ωRe(ε̃)

≈ 1). Increasing the
ratio σ̃

ωRe(ε̃)
would probably give the advantage to OO0D.

Due to the frequency range and the tissues involved in this work, OO2BC is the transmissions con-
dition that is kept.

As a conclusion, Krylov solver is always better than the Jacobi solver. In literature, Jacobi scheme is
actually only used to derive convergence rates as in Section 2.4. Moreover, for the application that is
considered in Chapter 8, OO2BC transmission conditions can be used indifferently in empty space
and in conductive media.
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In the preceding chapter, parameters to solve Eqs.(4.5) using domain decomposition methods and
finite elements are discussed. In this chapter, this solution technique is applied sequentially for each
elementary source of an array in order to compute the matrices introduced in Chapter 5. Once the
matrices are known, some of their properties are checked and different optimization problems are
solved.

Model Problem IV To be able to validate the results, a model problem is once again defined.
This model problem consists of a 2-source array in nearly empty space. Indeed two conductive
cylinders with the electrical properties of muscles (cfr Chapter 8) are added above and below the
array. Parameters are different from Model Problem III as physical dimensions are now considered.
The geometry of this model problem is given in Figure 6.1d while the numerical parameters are
summarized in Table C.1 (cfr Appendix). The goal of this model problem is to maximize the power
radiated through a surface Sr defined as

Sr (θr,∆θr) ,

{
{ρ, θ} ∈ {ρr} ×

[
θr −

∆θr
2
, θr +

∆θr
2

]}
(7.1)

while keeping the injected power Ps constant and equal to P0 (cfr Chapter 5, Eqs(5.17)).
To do so, first both elementary solutions u1 and u2, corresponding to the two elementary sources of
the array, are computed as the solutions of Eqs.(4.5). Then the power related matrices Ps, R (Sr)

and L(V ) are built from Eq.(5.6), Eq.(5.11) and Eq.(5.9). Generalized eigenvectors and eigenvalues
related to some of these matrices are finally computed to find the extrema source weights j (cfr
Section 5.3.1).

7.1 Total outgoing power maximization
If ∆θr = 360◦ is considered, then the problem Eqs(5.17) reduces to maximizing the total outgoing
power through a closed circle around the sources. Because of power conservation, this problem
should thus be equivalent to minimizing the losses L inside the circle (because S , ∂V = Sr). In
Section 5.3, it is shown that extrema of the radiated power R or the losses L are proportional to the
generalized eigenvalues λRn or λLm, solutions of

R jRn = λRnPs j
R
n or L jLm = λLm Ps j

L
m. (7.2)
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For the closed surface considered in this section, power conservation yields

1 = λRn + λLm and jRn = jLm. (7.3)

The short rigorous proof of this statement is given in Appendix B.8. Intuitively, it simply means that
minimizing the losses inside the circle is equivalent to maximizing the power radiated outside the
circle, thus the losses-minimizing weights vector equals the radiation-maximizing weights. In the
following paragraphs, properties of the power matrices are verified numerically then the result of the
optimization is validated from intuition.

Power matrices To check that the power related matrices Ps, R and L are computed correctly, the
complex submatrices P b

s , Rb and Lb are analysed. In the simple model example considered in this
section, these matrices are given by

P b
s =

(
−8842.8− i1622.3 −6117.85− i5241.92
−6117.85− i5241.92 −8842.86− i1622.07

)
, (7.4)

Rb =

(
−380.143 + i4423.3 −160.337 + i1866.27
−160.429 + i1866.68 −379.605 + i4423.43

)
, (7.5)

Lb =

(
19022.6− i4390.61 18366.4− i4238.99
18366.3− i4239.31 19022.3− i4390.54

)
. (7.6)

As expected because of the symmetry of Model Problem IV, the diagonal entries are nearly equal
and the matrices are nearly symmetric.

Power conservation To check that the power is conserved despite numerical errors1, one test is
to check that Ps − L − R is skew symmetric. For the model problem considered here, the relative
symmetric part of this matrix is

(
Ps −R− L

)T
+
(
Ps −R− L

)

2 min
(
Ps, R, L

) =




1.31594 1.30961 0.0 0.0103775
1.30932 1.31553 −0.0103715 0.0

0.0 −0.0103775 1.31594 1.30961
0.0103715 0.0 1.30932 1.31553


 [%] (7.7)

and can thus be considered as skew symmetric. Then to have an insight of how precise are the
eigenvectors and eigenvalues, Eq.(7.3) can be verified:

1− λR − λL
min (λR, λL)

= 0.65, 0.66, 11 [%] (7.8)

jR − jL
min

(∥∥jR
∥∥ ,
∥∥jL
∥∥) =




3× 10−4

−3× 10−4

−8× 10−4


 ,




7× 10−4

10−18

−2.5× 10−8


 ,




5× 10−5

5× 10−5

2× 10−4


 [%]. (7.9)

1One should be careful that a bad boundary condition will not produce any error as far as power conservation is
concerned. Indeed while this approximation tries to mimic the unbounded solution, it is nevertheless compatible with
power conservation.
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The high relative error on the last eigenvalue is a consequence of the small value of the losses.
Computing the absolute error shows that it is nearly the same for the three generalized eigenvalue
pairs.

Radiation patterns The largest radiation eigenvalue λRM , the corresponding smallest losses eigen-
value λLm and their common eigenvector jRM = jLm are2

λRM = 93.8 [%], λLm = 5.6 [%] and jRMAδ =



−19.1
19.1
0


 [mA]. (7.10)

From Section 4.2, the far field radiation pattern associated with these weights is known to minimize
the radiated field above and under the arrays. This results is actually expected as losses occur in the
cylinders placed above and below the array.
A comparison of the incident far field (i.e. the far field computed with Eq.(4.20), which corresponds
to the far field obtained with a 2-point source array in empty space) and the total (pseudo-)3far field
(obtained through the numerical simulation) is given in Figure 7.1a.

Similarly, the smallest radiation eigenvalue λRm, the corresponding largest losses eigenvalue λLM and
their common eigenvector jRm = jLM are

λRm = 42 [%], λLM = 57.7 [%] and jRmAδ =




8.2
8.2
0


 [mA]. (7.11)

From section 4.2, the far field radiation pattern associated with these weights is also known to max-
imize the radiated field above and under the array. This result is once again expected as losses occur
in the cylinders.
A comparison of the incident far field and the total (pseudo-)far field is given in Figure 7.1b.

2While the eigenvectors have units [A/m2] and are current densities, the quantity that is physically relevant is either
the real current density ja = jpwp or the total current on the source

∫
ja dV =

∫
jpwpdV = jpAδ.

3This pseudo-far field is simply obtained by computing the absolute value of the solution on the radiation boundary.
This technique is correct if the radiation boundary is electrically far (i.e. k0z � 1) which is not really the case. A more
precise far field could be obtained using near field to far field transformations.
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(a) Radiation maximizing weights jRM .
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(b) Radiation minimizing weights jRm.

Figure 7.1: Comparison of the incident far field and the total (pseudo-)far field for a 2-source array
with optimal weights. Sr (θr = 0◦,∆θr = 180◦).
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7.2 Directive outgoing power maximization
If ∆θr < 360◦ is considered, then the radiation surface is not closed anymore and the power conser-
vation properties Eqs(7.3) are therefore not valid anymore because S , ∂V 6= Sr. In this section
two such problems are considered for two different radiation surfaces Sr.

θr = 0◦ and ∆θr = 180◦

This case leads to

λRM = 64.7 [%] and jRMAδ =




12
−20.1
−3.7


 [mA], (7.12)

and the corresponding radiation patterns are given in Figure 7.2a.
It is interesting to highlight that the total field is very different from the preceding case while the
incident field is similar (cfr Figure 7.1a). It is hard to guess intuitively the pair of incident and total
fields of Figure 7.2a because it is hard to take into account the destructive interferences that appear
on the left side of the array because of the two cylinders.

θr = 75◦ and ∆θr = 60◦

For these parameters, one finds then one finds

λRM = 1.3 [%] and jRMAδ =




14.1
−18.2

7.1


 [mA]. (7.13)

The corresponding radiation pattern is given in Figure 7.2b.
As can be seen, the 2-source array have actually few impact on its radiation pattern because of the
cylinders. These cylinders are very good conductors and thus allow nearly no radiation through or
near them such that in this configuration it is impossible to have an array whose principal radiation
direction is at θ = 90◦. While one can maximize the radiation at θ = 90◦ or θ = 75◦ in this case,
it is impossible to tilt the radiation pattern in presence of good conductors because they behave like
shields in some directions.
This result is actually well illustrated in Figure 7.1a, 7.1b, 7.2a and 7.2b as the main radiation
directions are always θ = 0◦ or θ = 180◦.
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(a) θr = 0◦,∆θr = 180◦.
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(b) θr = 75◦,∆θr = 60◦.

Figure 7.2: Comparison of the incident far field and the total (pseudo-)far field for a 2-source array
with radiation maximizing weights jRM .
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Chapter 8

Power transfer through biological tissues

Now that the operation flow has been presented in the previous chapters, application to a more
realistic problem is considered. The problem that is tackled in this chapter is related to power or
information transfer through biological tissues and in particular, to wireless intra-body sensors. Such
sensors are very useful in medicine as they provide patient mobility and continuous mesurement of
critical quantities. However their power usage must be monitored carefully as their size and position
make them hard to charge. Moreover excessive electromagnetic field exposure can hurt biological
tissue. The aim of this chapter is thus to apply a new tool based on domain decomposition methods
for optimizing the shape of antennas. The novelty of this technique is that it takes into account the
entire electrical and geometrical complexity of the human body, that it operates in the frequency
domain and that it can be run in parallel on several computers without any modifications. Examples
of sensors that could use this technique to be optimized can for example be found in [20] or [25].

8.1 Biological tissues model
As all the developments of this work are conducted for a two dimensional scalar case, so does this
application. This model does not aim to reproduce exactly the reality but rather aims to be as complex
as reality, as far as numerical simulation is concerned. There are two fundamental components for
this model: geometrical characteristic on the one hand and electrical properties on the other hand.
Both are detailed in the following two paragraphs.

Geometrical characteristics The geometry of the model was created using color axial anatomical
images from the Visible Human Project sponsored by the USA National Library of Medicine [29].
The particular image that was used is given in Figure C.3 (cfr Appendix) while the edges of the two
dimensional finite element model are given in Figure 8.1. Five biological tissues have been modeled:

• the heart

• the lunges

• the ribcage

• some muscles

• and a layer of fat.
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Figure 8.1: Edges of the finite element human body model considered in this work. From the center
to the exterior, surfaces represent: the heart, the lunges, the ribcage, muscles, a layer of fat and
empty space (twice, the inner line is used to define the radiation surface Sr). Dimensions are given
in meters.

Electrical properties Each one of these media is considered non-magnetic, i.e. µ = µ0 but they
all have a different complex permittivity. The complex permittivity model used in this work is a
summation of four Cole-Cole dispersions and a conductivity term [10], i.e.

ε̃r = ε∞ +
4∑

n=1

∆εn

1 + (iωτn)(1−αn)
+

σ

iωε0
. (8.1)

Each one of the caracteristic relaxation time τn has an influence in a limited range of frequencies.
Indeed if ωτn � 1 then ∆εn looses its influence. Therefore when working at frequencies around
f = 3 [GHz], the relaxation time τ3 and τ4 have a very little influence (cfr Table C.2 in Appendix).
Nevertheless, the four dispersions are still considered for generality. The parameters of this four
Cole-Cole dispersions have been determined empirically by [10] and are reproduced in Table C.2
(cfr Appendix) for the five tissues that are modeled here. Using Eq.(8.1), the wavelength in the
media can then be computed as

λ = c
√
µ0ε0Re (ε̃r) (8.2)

and the equivalent conductivity, governing the losses, as

σ̃ = −Im (ωε0ε̃r) . (8.3)
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Figure 8.2: Wavelength λ for the different tissues considered in the human body model.
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Figure 8.3: Equivalent conductivity σ̃ for the different tissues considered in the human body model.
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The wavelength and the equivalent conductivity are given in Figure 8.2 and 8.3. As can be seen, in
the gigahertz range, the wavelength in the muscles and the heart is up to ten times smaller than in
the air. Moreover, the losses are greater in the muscles and the heart such that at any frequency, it
is harder to transfer power through these media than through the others. The shielding behaviour of
muscles has already been obsverved in Section 7.2. Power transfer is also very difficult at frequencies
above a few GigaHertz as the losses in all media strongly increase. The real part of the relative
permittivity is given in Figure C.4 (cfr Appendix). The conductor ratio σ̃

ωε0Re(ε̃r)
is also given in

Figure C.5 (cfr Appendix). This ratio allows to characterize media (cfr Section 1.1) and to chose the
transmission condition accordingly, as explained in Section 2.4.

8.2 Specific absorption rate based constraints
Critical quantities in the study of biological effects of electromagnetic fields are the specific absorp-
tion rate [W/kg] defined as

SAR ,
σ̃ ‖e‖2

2ρ
(8.4)

and its whole body average defined as

WBA-SAR ,
1

V

∫

V

σ̃ ‖e‖2

2ρ
dx (8.5)

where ρ [kg/m3] is the density of the tissue and V the volume of the body.
From a biological point of view, the harmful mechanism is actually the temperature rise due to
dissipated power. Under the assumption that heat conduction is negligible, the specific absorption
rate is linked to the local temperature increase by

T = T0 +
1

c
SAR× (t− t0) (8.6)

where c [J/K/kg] is the specific heat capacity. Proof of this link and validity of the assumption
are given in Appendix B.9. In the International Commission on Non-Ionizing Radiation Protection
(ICNIRP) guidelines [17] and the IEEE standard [16], the WBA-SAR has a basic restriction of
WBA-MAXmax = 0.08 [W/kg] for general public exposure. Using a specific heat typical of muscle
[22], i.e. c = 0.9 [cal/g/K] = 3766 [J/kg/K] and the maximal WBA-SAR, the rate of temperature
increase is then

SAR
c

= 2× 10−5 [K/s] = 0.08 [K/h]. (8.7)

The finite element framework used here allows to compute the exact temperature field by solving
the bio-heat equation1 [14]. The SAR could also be computed for each tissue simply by dividing the
loss term by the corresponding density ρ. However, it has been chosen for simplicity to consider a
restriction similar to those on the WBA-SAR because they can be linked to the losses L inside the

1The bio-heat equation is another formulation of the heat equation Eq.(B.83) specified for heat transfer inside bio-
logical tissues
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body, i.e.

WBA-SARmax ≥WBA-SAR =
1

V

∫

V

σ̃ ‖e‖2

2ρ
dx

≈ 1

V ρm

1

2

∫

V

σ̃ ‖e‖2 dx (8.8)

=
L

V ρm
. (8.9)

In the optimization problem that is solved for this application, the constraint is thus

L = L0 = V ρmWBA-SARmax. (8.10)

For biological tissue, the density is typically 1000 [kg/m3] [22] and from Figure 8.1 the volume of
the body can be estimated as V = 0.3× 0.3 = 9× 10−2 [m2] such that the constraint is taken as

L = L0 = V ρmWBA-SARmax = 7.2 [W/m]. (8.11)

8.3 Phased array configuration
The considered phased arrays are centered around the black dot located in the lunges in Figure
8.1. They consist of either Np = 1, 2, 5 or 9 sources following the pattern of Figure 8.4. The
sources spacing d is taken as d = λm/2 where λm is the reference wavelength inside the tissues.
This reference wavelength is chosen from Figure 8.2 as λm = λ/10 ≈ 1 [cm], i.e. as the smallest
wavelength. The idea behind this array is to be as symmetric as possible not to favor any direction
a priori. Then once the optimization is performed, sources with very small weights could possibly
be deleted or moved. The spacing between the sources is taken such that useful interference could
appear between sources in any media. The value d = λm/2 is chosen from the reasoning of Section
4.2. Ideally, the maximal spacing between two sources should thus be half the maximal wavelength.

1�source

2�sources

5�sources

9�sources

�

�

� 24

3

5 6

7

8

9

Figure 8.4: Sources relative placement around their center. The center is denoted by a black dot in
Figure 8.1.
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8.4 Optimization
Following the procedure of Chapter 7, the cost function for this application is chosen to be the
radiated power R through Sr with θr = 45◦ and ∆θr = 45◦. The frequency used is once again f = 3
[GHz]. The parameters for the numerical simulation are summarized in Table C.1 (cfr Appendix). It
is important to highlight that only n0 = nm = 12 points per wavelengths (in empty space and in the
media) are used for a total of approximately 5 × 105 elements. A much finer mesh could easily be
used if the simulations were made parallel on a computer cluster.

Results The relative radiated power through the surface Sr for Np = 1, 2, 5 and 9 sources is
given in Table 8.1. The corresponding source weights are given in Table C.3 (cfr Appendix) and the
(pseudo-)far field radiation patterns are given in Figure 8.5. The real part of the total field u is also
given in Figure 8.6 for Np = 1 and Np = 9.

Np = 1 Np = 2 Np = 5 Np = 9

λ [%] 2.24× 10−6 6.261× 10−6 8.83× 10−6 16.1× 10−6

Table 8.1: Relative radiated power through the surface Sr(θr = 45◦,∆θr = 45◦) for Np = 1, 2, 5
and 9 sources. The total power is obtained by multiplying λ by L0.

Discussion As can be seen from Figure 8.5a and 8.6a, for the 1-source case the muscle and the
heart act like very efficient shields and it is thus harder to radiate in some directions. The radiation
in directions between θ = 45◦ and θ = 225◦ is extremely weak due to the relative position of the
sources and the heart. Along directions between θ = 225◦ and θ = 45◦, the radiation is efficient
only when the muscle layer is thin. In particular, it seems that there is a window for radiation at
θ = 270◦. These results on the shielding properties of heart and muscles are expected from the
results on Model Problem IV.
While it is hard to tune the direction of the main lobe, this does not mean that the performance in
the direction of interest is not increased. Indeed, the relative radiated power (that is tabulated in
Table 8.1) increases from Np = 1 to Np = 9. The output power in the desire direction is actually
multiplied by 8, while the loss and the injected power are kept constant because Ps = L0 + R with
R = λL0 � L0.
Furthermore, Figure 8.5 and 8.6 also show that increasing the number of sources from Np = 1 to
Np = 9 allows to tilt to main lobe from θ = 270◦ to θ = 0◦ while the window at θ = 270◦ seems
initially much more open (based on the isotropic radiation pattern for Np = 1).
One should be careful that in Figure 8.5, the curves are normalized to set their maximum values to
1. It is therefore impossible to compare their amplitudes for different number of sources Np.
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Figure 8.5: Incident (blue) and total (orange) (pseudo-)far field radiation pattern for the optimal
sources weights of Table C.3, for different number of sources Np. The maximum value of each
curved is set to one.
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�a) N� = 1
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Figure 8.6: Real part of the total field Re(u) [V/m] for the optimal sources weights of Table C.3, for
Np = 1 and 9 sources.
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Conclusion

In this work, a particular kind of domain decomposition methods, the non-overlapping Optimized
Schwarz algorithms, is developed for the frequency domain Maxwell’s equations for transverse
fields. This solution technique is then used to optimize the radiation properties of phased arrays
in non-homogeneous media and in particular in biological tissues.

First of all, a formulation of these domain decomposition methods as solvers is explained. Then
different variants, i.e. different transmission conditions, for common media in electromagnetism are
discussed and compared on a model problem. Finally, the finite element discretization of the algo-
rithms is explained in the particular case of Lagrange P1 elements.
Phased arrays are then defined and optimization problems based on power budget are introduced. A
solution technique which requires the use of non-overlapping Schwarz algorithms is derived.
Each step of the solution technique is then validated on model problems for which analytical solution
is known. Error are therefore also estimated. The model problems are chosen to be close to the final
realistic application: the optimization of the radiated power in a particular direction for a phased
array surrounded by biological tissues. The optimization allows to multiply the radiated power by 8,
proving the efficiency of the method.

The realistic application considered at the end of this work is promising and let believe that antenna
designer could benefit from this new method, especially because it speeds up easily when using com-
puter clusters. It would be interesting to generalize the results developed here to three dimensional
non transverse fields to fully exploit the possibilities of the method. Once this generalization is done,
antennas could be optimized for full-complexity media.
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Appendix A

Conventions and notations

Convention Definition

, a definition
Eq.(x.y) equation from Chapter x numbered y
Eqs((x.y)) system of equations from Chapter x numbered y
text first introduction of a concept/quantity called text
a∗ the conjugate of a
a a frequency domain vector
a a time domain vector
a a frequency domain scalar
a a time domain scalar
â the spatial Fourier transform of a
â a unit vector
∂a the boundary of set a
an a quantity at the nth iteration
a the closure of a (a

⋃
∂a)

ã a test function
a a vector
a a matrix

Symbol Name

i =
√
−1 imaginary number

ω pulsation
F (−1) (inverse) Fourier transform
h magnetic field
e electric field
b magnetic flux density
d electric displacement field
j current density
ρ charge density
jc conduction current density
ja applied current density
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σ conductivity
µ magnetic permeability
ε electric permittivity
ε̃ complex electric permittivity
σ̃ equivalent conductivity
GC good conductor
BC bad conductor
D dielectric
k, k0 wave number
k = (kx, ky) wave vector
u, uinc, uscat TE or TM total, incident, scattered fields
f TE or TM source term
ρ cylindrical coordinate radius
PEC perfect electric conductor
PMC perfect magnetic conductor
Λ Dirichlet to Neuman (DtN)
θ incidence angle
κ curvature
T0 zeroth order Taylor approximation for plane surfaces
CT0 zeroth order Taylor approximation for curved surfaces
T2 second order Taylor approximation for plane surfaces
CT2 second order Taylor approximation for cuvred surfaces
u∞ RHS of absorbing boundary conditions
ud RHS of Dirichlet boundary conditions
un RHS of Neumann boundary conditions
∂Ω∞ absorbing boundary conditions surface
∂Ωd Dirichlet boundary conditions surface
∂Ωn Neumann boundary conditions surface
B tangential absorbing boundary operator
gij , sij surface unknowns/artificial sources
Γij common boundary between subdomains i and j
Di set of neighbours of subdomain i
A, Aji,A surface operator
A′, A′ji,A′ linear part of surface operator
b, bji, b constant part of surface operator
r residual
εit tolerance on the residual
Kn (A, b) Krylov subspace generated byA on b
εi absolte error on subdomain i
ρ convergence rate
I unitary operator
S tangential part of DtN based transmission condition
σ principal symbol of S
kmin,kmax, k+, k− optimized transmission condition parameters
h characteristic mesh size
L characteristic domain size
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δ skin depth
T0(GC-BC) zeroth order Taylor approximation transmission condition for good-bad conductors
T2(BC-BC) second order Taylor approximation transmission condition for good-bad conductors
OO2BC optimized second order transmission condition for bad conductors
OO0D optimized second order transmission condition for dielectrics
Eν element ν
ψs surface node function
ψv volume node function
NΩ nodes of Ω
K stiffness matrices
M mass matrices
Np source number
wp elementary source function
jp source p weight
up elementary solution p
g0(x;y) free space Green function
gFF

0 (x;y) far field free space Green function
g(x;y) non-homogeneous space Green function
d source spacing
z, zp dimensionless radius
F radiation pattern
A field amplitude
δ(x) Dirac distribution
ε physical point source radius
j source weights vector
Ps injected power
R radiated power
L losses/dissipated power
λ generalized eigenvalue
λ0, λ wavelength in empty space
λ wavelength in complex media
λm media reference wavelength
f frequency
b absorbing boundary radius
m element per point source radius
CST constant point source approximation
GSN Gaussian point source approximation
Sr radiation surface
θr radiation surface mean azimuth
∆θr radiation surface arc length
SAR specific absorption rate
WBA-SAR whole body average specific absorption rate
ρ density
T temperature
c specific heat capacity
k thermal conductivity
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Appendix B

Additional proofs, developments and
theorems

B.1 Dirichlet to Neumann (DtN) operator for a model problem

Consider the Helmholtz equation on the semi-infinite space {x, y} ∈ R+ × R for an homogeneous
medium with a Sommerfeld radiation condition and a Dirichlet condition





− div grad w − k2w = 0 in R+ × R,

lim
ρ→∞
√
ρ

(
∂

∂ρ
+ jk

)
w = 0

w = f(y) on {x, y} ∈ {0} × R.

(B.1)

Taking the Fourier transform w.r.t. y, Eqs(B.1) become




∂2
xxŵ +

(
k2 − k2

y

)
ŵ = 0 for x > 0 and ky ∈ R,

lim
x→∞

√
x

(
∂

∂x
+ jk

)
ŵ = 0, for ky ∈ R,

ŵ = f̂(ky) for x = 0 and ky ∈ R.

(B.2)

Defining
λ2 , k2

y − k2, (B.3)

the solution to the first equation of Eqs(B.2) is

ŵ = A exp−λx+B expλx (B.4)

with1

λ(ky) =





√
k2
y − k2

0 for |ky| ≥ |k0|

j
√
k2

0 − k2
y for |ky| ≤ |k0| .

(B.5)

Then applying Sommerfeld radiation condition and Dirichlet boundary condition of Eqs(B.2), the
solution becomes

ŵ = f̂(ky) exp−λx (B.6)

1Eqs(B.5) stands only if k is real.
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which verifies
n̂ · grad ŵ = λŵ. (B.7)

The DtN operator Λ can then be found by taking the inverse Fourier transform w.r.t. y on both sides
of Eq.(B.7) on the surface {0} × R, i.e.

F−1(n̂ · grad ŵ) = F−1(λŵ) on {0} × R,
n̂ · grad w = F−1 (λF(f)) on {0} × R,

= Λ(f) on {0} × R. (B.8)

B.2 Reflection coefficient for curved boundaries
Consider the curved boundary represented in Figure B.1, the local cylindrical coordinate system
(ρ, θ) associated with any point P of this boundary and the incident field

uinc = exp (−ik ·ρ). (B.9)

P

k

��
�

�

�

�

uinc

�

Figure B.1: Illustration of an incident plane wave on a curved boundary.

At point P , the reflected field is then

uscat = Γ exp (ik ·ρ). (B.10)

In local cylindrical coordinates, n̂ · grad = ∂
∂ρ

and divΣgradΣ = κ2 ∂2

∂2θ
. The angle between the

local normal ρ̂ and the wave vector k is called φ. Because k has a constant direction, φ + θ = Cst
and therefore

∂2

∂2θ
=

∂2

∂2φ
. (B.11)

A boundary condition of the form

L(u) = n̂ · grad u+ αu− βtextdivSigmagradΣ u = 0. (B.12)
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becomes

L(u) =
∂u

∂ρ
+ αu− βκ2 ∂

2

∂2φ
= 0. (B.13)

Inserting the total field

u = exp (ik ·ρ) + Γ exp (−ik ·ρ)

= exp (ik0ρ cosφ) + Γ exp (−ik0ρ cosφ) (B.14)

into Eq.(B.13), yields

L (uinc) +ΓL (uscat) = 0

⇒ Γ = −L (uinc)

L (uscat)

⇒ Γ = − uinc

uscat

−ik0 cosφ+ α + βk2
0 sin2 φ− ik0βκ cosφ

+ik0 cosφ+ α + βk2
0 sin2 φ+ ik0βκ cosφ

⇒ Γ = − uinc

uscat

−i cosφ+ α
k0

+ βk0 sin2 φ− iβκ cosφ

+i cosφ+ α
k0

+ βk0 sin2 φ+ iβκ cosφ
. (B.15)

The magnitude of this reflection coefficient is given in Figure B.2 for κ/k0 = 0.1 (⇒ λ = 0.63R).
The bad performance of CT0 w.r.t. T0 is explained by the fact that CT0 (and CT2) are designed to
absorb circular decaying waves while the performances are here evaluated for plane waves [19].

0 π/8 π/4 3π/8 π/2

φ [rad]

−4

−3

−2

−1

0

lo
g
1
0
|Γ
|[
-]

T0

T2

CT0

CT2

Figure B.2: Reflection coefficient Γ for T0 Eq.(1.55), T2 Eq.(1.62), CT0 Eq.(1.61) and CT2
Eq.(1.65) for curved boundaries. κ/k0 = 0.1.
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B.3 Divergence theorem
Consider Ω a compact subset of Rn, ∂Ω its boundary and F a vector field defined on Ω. The
divergence theorem then writes as

∫

Ω

div F dΩ =

∫

∂Ω

F · n̂ d∂Ω. (B.16)

Corollary In the particular case where F = g grad f , Eq.(B.16) becomes
∫

Ω

div (g grad f) dΩ =

∫

∂Ω

g grad f · n̂ d∂Ω
∫

Ω

(g div grad f + grad g · grad f) dΩ =

∫

∂Ω

g grad f · n̂ d∂Ω (B.17)

or ∫

Ω

g div grad f dΩ =

∫

∂Ω

ggrad f · n̂ d∂Ω−
∫

Ω

grad g · grad f dΩ. (B.18)

Eq.(B.18) is sometimes referred to as integration by parts.

B.4 Weak formulations

B.4.1 Volume problem
Consider the volume problem Eqs(2.4), i.e.





(
− div grad − k2

)
w = f in Ωi,

(n̂ · grad + B)w = u∞ on ∂Ω∞i ,

w = ud on ∂Ωd
i ,

n̂ · grad w = un on ∂Ωn
i ,

Jiw = sim on Γim, ∀m ∈ Di.

(B.19)
(B.20)

(B.21)
(B.22)
(B.23)

Volume partial differential equation Eq.(B.19) (T1) Multiplying Eq.(B.19) by a test function w̃
and then integrating over Ωi yields

−
∫

Ωi

div grad w w̃ dΩi − ω2

∫

Ωi

(
k

ω

)2

ww̃ dΩi −
∫

Ωi

fw̃ dΩi = 0 (B.24)

which reduces to

(T1) −




∫

∂Ωi

w̃ grad w · n̂ d∂Ωi

︸ ︷︷ ︸
A

−
∫

Ωi

grad w̃ · grad w dΩi


−ω

2

∫

Ωi

(
k

ω

)2

w̃ dΩi−
∫

Ωi

fw̃ dΩi = 0

(B.25)
using integration by parts Eq.(B.18).
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Absorbing boundary condition Eq.(B.20) (T2) Multiplying Eq.(B.20) by the test function w̃ and
then integrating over ∂Ω∞i yields

(T2)
∫

∂Ω∞i

w̃ grad w · n̂ d∂Ω∞i

︸ ︷︷ ︸
B

+

∫

∂Ω∞i

w̃Bw d∂Ω∞i −
∫

∂Ω∞i

w̃u∞ d∂Ω∞i = 0. (B.26)

Dirichlet boundary condition Eq.(B.21) (T3) The Dirichlet boundary condition Eq.(B.21) is au-
tomatically verified because w̃ cancels on ∂Ωd

i and thus

(T3)
∫

∂Ωdi

w̃ grad w · n̂ d∂Ωd
i

︸ ︷︷ ︸
C

= 0. (B.27)

Neumann boundary condition Eq.(B.22) (T4) Multiplying Eq.(B.22) by a test function w̃ and
then integrating over ∂Ωn

i yields

(T4)
∫

∂Ωni

w̃ grad w · n̂ d∂Ωn
i

︸ ︷︷ ︸
D

−
∫

∂Ωni

w̃un d∂Ω∞i = 0. (B.28)

Transmission boundary conditions Eq.(B.23) (T5) Multiplying each (∀m ∈ Di) of Eqs(B.23)
by a test function w̃ and then integrating over ∂Ω∞i yields

(T5)
∫

Γim

w̃ grad w · n̂ dΓim

︸ ︷︷ ︸
E

+

∫

Γim

w̃Sw dΓim −
∫

Γim

w̃sim dΓim = 0, ∀m ∈ Di. (B.29)

By definition, boundaries satisfy

∂Ωi = ∂Ω∞i ∪ ∂Ωd
i ∪ ∂Ωn

i ∪m∈Di Γim (B.30)

such that
A = B + C + D + E. (B.31)

Summing terms T1 to T5 then gives

∫

Ωi

grad w̃ · grad w dΩi − ω2

∫

Ωi

(
k

ω

)2

w̃w dΩi

+

∫

∂Ω∞i

w̃Bw d∂Ω∞i +
∑

m∈Di

∫

Γim

w̃Sw dΓim

=

∫

Ωi

w̃f dΩi +

∫

∂Ω∞i

w̃u∞ d∂Ω∞i +

∫

∂Ωni

w̃un d∂Ω∞i +
∑

m∈Di

∫

Γim

w̃sim dΓim. (B.32)
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B.4.2 Surface equation
Consider the surface equation Eq.(2.16), i.e.

Aji(sim ∀m ∈ Di) = −sij + (Si + Sj)w. (B.33)

Multiplying Eq.(B.33) by a test function Ãji and then integrating over the common boundary Γij
yields ∫

Γij

ÃjiAji dΓij = −
∫

Γij

Ãjisij dΓij +

∫

Γij

Ãji (Si + Sj)w dΓij. (B.34)

B.4.3 Boundary operators
In Section 1.6 and 2.4, particular forms for the operators B and S are derived. All these operators
express as

K = B or S = a− bdivΣ gradΣ (B.35)

where the expression of a and b depend on the considered operator and can be found in sections 1.6
and 2.4.
The weak form term ∫

Σ

ṽKv dΣ (B.36)

where v = w or Aji, ṽ = w̃ or Ãji and Σ = ∂Ω∞i or Γji, then becomes

∫

Σ

ṽKv dΣ = a

∫

Σ

vṽ dΣ− b
[
ṽ t̂ · gradΣv

]
∂Σ

+ b

∫

Σ

gradΣ ṽ · gradΣ v dΣ (B.37)

where t̂ is the tangent to Σ.

B.5 Mass and stiffness matrices definitions

[
Kvv

Ωi

]
pq

,
∫

Ωi

grad ψvp · grad ψvq dΩi, ∀p ∈ NΩi , q ∈ NΩi (B.38)

[
M vv

Ωi

]
pq

,
∫

Ωi

ψvpψ
v
q dΩi, ∀p ∈ NΩi , q ∈ NΩi (B.39)

[
Kvv

∂Ω∞i

]
pq

,
∫

∂Ω∞i

grad∂Ω∞i
ψvp · grad∂Ω∞i

ψvq d∂Ω∞i ,∀p ∈ NΩi , q ∈ NΩi (B.40)

[
M vv

∂Ω∞i

]
pq

,
∫

∂Ω∞i

ψvpψ
v
q d∂Ω∞i , ∀p ∈ NΩi , q ∈ NΩi (B.41)

[
Kvv

Γim

]
pq

,
∫

Γim

gradΓimψ
v
p · gradΓimψ

v
q dΓim, ∀p ∈ NΩi , q ∈ NΩi (B.42)

[
M vv

Γim

]
pq

,
∫

Γim

ψvpψ
v
q dΓim, ∀p ∈ NΩi , q ∈ NΩi (B.43)

[
f

Ωi

]
p
,
∫

Ωi

fψvp dΩi, ∀p ∈ NΩi (B.44)
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[
u∞,∂Ωi

]
p
,
∫

∂Ωai

u∞ψ
v
p d∂Ωa

i , ∀p ∈ NΩi (B.45)

[
un,∂Ωi

]
p
,
∫

∂Ωni

unψ
v
p d∂Ωn

i , ∀p ∈ NΩi (B.46)

[
Ksv

Γij

]
pq

,
∫

Γij

gradΓim ψ
s
p · gradΓim ψ

v
q dΓij, ∀p ∈ NΓij , q ∈ NΩi (B.47)

[
M vs

Γij

]
pq

,
∫

Γij

ψvpψ
s
q dΓij, ∀p ∈ NΩi , q ∈ NΓij (B.48)

[
M ss

Γij

]
pq

,
∫

Γij

ψspψ
s
q dΓij, ∀p ∈ NΓij , q ∈ NΓij . (B.49)

B.6 Link between time and frequency domains for time har-
monic fields

Time harmonic fields at pulsation ω0 are given in the frequency domain by

f(ω) =
1

2
(f(ω0)δ(ω − ω0) + f(−ω0)δ(ω + ω0))

=
1

2
(f(ω0)δ(ω − ω0) + f(ω0)∗δ(ω + ω0)) (B.50)

and in the time domain by

f(t) = Re (f(ω0)) cos (ω0t)− Im (f(ω0)) sin (ω0t) (B.51)

, f r cos (ω0t)− f i sin (ω0t) . (B.52)

The scalar product of two such fields is given by

f · g = f r · gr cos2 (ω0t) + f i · gi sin
2 (ω0t)− f r · gi cos (ω0t) sin (ω0t)− f i · gr cos (ω0t) sin (ω0t)

=
1

2
[f r · gr + f i · gi + f r · gr cos (2ω0t)− f i · gi cos (2ω0t)− f r · gi sin (2ω0t)− f i · gr sin (2ω0t)] .

(B.53)

The time average over one period T = 2π
ω0

is given by

1

T

∫ T

0

f · g dt =
1

2
[f r · gr + f i · gi]

=
1

2
Re (f · g∗) . (B.54)

Using similar arguments also yields

1

T

∫ T

0

f × g dt =
1

2
[f r × gr + f i × gi]

=
1

2
Re (f × g∗) . (B.55)
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B.7 Poynting’s theorem

B.7.1 Time domain
Consider the time domain Poynting’s vector s defined as

s = e× h (B.56)

and an arbitrary closed volume V whose surface is denoted by S (= Sin
⋃
Sext) as represented in

Figure B.3.

V

�

��

��

��

��

Figure B.3: Arbitrary volume on which the Poynting’s theorem is applied.

Using the divergence theorem Eq.(B.16), one has
∫

S

s · n̂ dS =

∫

V

div s dV. (B.57)

The divergence term can then be developed using successively the definition of the Poynting’s vector
Eq.(B.56), the Ampère-Maxwell’s Eq.(1.1) and the Faraday’s law Eq.(1.2) as2

div s = (curl e) · h− e · (curl h)

= −µh ·
∂h

∂t
− e ·

(
ε
∂e

∂t
+ jc + ja

)

= −1

2
µ
∂ ‖h‖2

∂t
− 1

2
ε
∂ ‖e‖2

∂t
− σ ‖e‖2 − e · ja. (B.58)

Then inserting Eq.(B.58) in the divergence theorem yields

−
∫

V

e · ja dV =
∂

∂t

∫

V

1

2

(
µ ‖h‖2 + ε ‖e‖2) dV +

∫

V

σ ‖e‖2 dV +

∫

S

s · n̂ dS. (B.59)

2Isotropic linear constitutive laws are considered, i.e. e = ε (x)d and b = µ (x)h.
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The physical interpretation of the terms appearing in the power conservation Eq.(B.59) is as folows:

•
Ps , −

∫

V

e · ja dV (B.60)

is the power injected by sources. It is positive when e and ja have opposite direction what
makes sense.

•
S ,

∂

∂t

∫

V

(
µ ‖h‖2 + ε ‖e‖2) dV (B.61)

is the time variation of the stored electromagnetic energy inside volume V .

•
L ,

∫

V

σ ‖e‖2 dV (B.62)

are the losses generated by conduction. As σ ≥ 0, this term is logically always positive.

•
R ,

∫

S

s · n̂ dS (B.63)

is the power radiated through the surface S.

B.7.2 Frequency domain
Consider the Poynting’s vector s defined as

s =
1

2
e× h∗. (B.64)

Using the link between time and frequency domain (cfr Appendix B.6)), the relation

1

T

∫ T

0

s dt = Re (s) (B.65)

holds between time and frequency domain for time harmonic fields.
Once again using the divergence theorem, one has

∫

S

s · n̂ dS =

∫

V

div s dV. (B.66)

The divergence can then be developed using successively the definition of the Poynting’s vector
Eq.(B.64), the Ampère-Maxwell’s Eq.(1.7) and the Faraday’s law Eq.(1.8) as

2 div s = (curl e) ·h∗ − e · (curl h∗)
= −iωµ0h ·h∗ − e · (iωε̃e+ ja)

∗

= −iωµ0 ‖h‖2 + iωRe (ε̃) ‖e‖2 + ωIm
(
ε̃ ‖e‖2)− e · ja

∗. (B.67)
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Then inserting Eq.(B.67) in the divergence theorem yields

−1

2

∫

V

e · ja
∗ dV = iω

1

2

∫

V

(
µ0 ‖h‖2 − Re (ε̃) ‖e‖2) dV +

1

2

∫

V

σ̃ ‖e‖2 dV +

∫

S

s · n̂ dS.

(B.68)

Taking the real part of the complex Poynting theorem Eq.(B.68), a time average power conservation
theorem is obtained. Indeed the real part is given by

−1

2

∫

V

Re (e · ja
∗) dV =

1

2

∫

V

σ̃ ‖e‖2 dV +

∫

S

Re (s) · n̂ dS. (B.69)

The physical interpretation of the terms appearing in the power conservation Eq.(B.69) is deduced
from time domain and is as folows:

•

Ps , −
1

2

∫

V

Re (e · ja
∗) dV =

1

T

∫ T

0

Ps dt (B.70)

is the power injected by the sources.

•

R ,
∫

S

Re (s) · n̂ dS =
1

T

∫ T

0

R dt (B.71)

is the power radiated through the surface S.

•

L ,
1

2

∫

V

σ̃ ‖e‖2 dV =
1

T

∫ T

0

L dt (B.72)

are the loss generated by the equivalent conductivity.

A similar principle can be obtained for the reactive power through the imaginary part of Eq.(B.68).

Transverse electric (TE)
If the electric field e is transverse, i.e.

e = uẑ (B.73)

then in regions where there are no sources (i.e. ja = 0), the Poynting’s vector expresses as

s ,
1

2
e× h∗

=
1

2
uẑ × curl e∗

iωµ0

=
1

2

u

iωµ0

ẑ × curl e∗

=
1

2

1

iωµ0

ugrad u∗. (B.74)
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The different terms of the power conservation Eq.(B.69) then take the following forms:

Ps , −
1

2

∫

V

Re (uja
∗) dV, (B.75)

R ,
1

2

1

ωµ0

∫

S

Im (ugrad u∗) dS, (B.76)

L ,
1

2

∫

V

σ̃ ‖u‖2 dV. (B.77)

B.8 Duality between losses minimization and radiation maxi-
mization

Consider three symmetric matrices denoted by Ps, L and R such that

j
(
Ps − L−R

)
j = 0, ∀j (B.78)

which is equivalent to consider that Ps − L − R is skew symmetric. Taking the gradient w.r.t. j of
Eq.(B.78) yields (

Ps − L−R
)
j = 0 (B.79)

as the three matrices are symmetric. Then introducing λR ∈ R, the preceding equation can be written
(
λRPs −R

)
j +

(
(1− λR)Ps − L

)
j = 0. (B.80)

Therefore if a {λRn , jn} couple verifies
(
λRnPs −R

)
jn = 0 (B.81)

then (
(1− λRn )Ps − L

)
jn = 0. (B.82)

B.9 Link between electric losses and thermal elevation
The heat equation using Fourier conduction law is given by

ρc
∂T

∂t
− div (kgrad T ) = q̇ (B.83)

where k [W/m/K] is the thermal conductivity and q̇ [W/m3] are the volume heat sources.
In the particular case of human tissues heated by Joules effect (no polarization losses are considered
here, i.e. Im (ε) = 0), then the source term is

e · j = σ ‖e(t)‖2 . (B.84)

For time-harmonic fields at pulsation ω0 (cfr Eq.(B.53)) the dissipation is

σ ‖e‖2 = =
1

2
σ
[
‖er‖2 + ‖ei‖2 + ‖er‖2 cos (2ω0t)− ‖ei‖2 cos (2ω0t)− 2er · ei sin (2ω0t)

]
.

(B.85)
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If the temperature is initially homogeneous inside the media and equal to T0 then initially the spatial
gradient and thus the conduction term cancels such that heat equation Eq.(B.83) becomes

ρc
∂T

∂t
= σ ‖e‖2 (t) (B.86)

and the solution is

T (t) = T0 +
1

c

σ ‖e(ω0)‖2

2ρ

(
t+O(ω−1)

)

≈ T0 +
1

c

σ ‖e(ω0)‖2

2ρ
t

≈ T0 +
1

c
SAR t. (B.87)

The oscillation terms O(ω−1
0 ) with periodicity 2π/ω0 are negligible in the GigaHertz range as

2π/ω0 ≈ 1 [ns].
Now the solution is known, the initial assumption can be checked, i.e.

k div (grad T )
1
2
σ ‖e(ω0)‖2 � 1

⇒ kt

ρc

div
(
grad ‖e‖2)

‖e‖2 � 1

⇒ kt

ρcλ2
� 1

⇒ t � τ ,
ρcλ2

k
. (B.88)

Using typical thermal [22] and electrical [10] data from muscles yields3 k
ρc
≈ 10−7 [m2/s] and λ ≈ 1

[cm] at f = 3 [GHz] such that
τ ≈ 17 [min]. (B.89)

After this time τ , the conduction term is no longer negligible and the entire partial differential equa-
tion Eq.(B.83) must be solved. In the particular case of biological tissues, the classical heat equation
Eq.(B.83) is often substituted by the bio-heat equation [14] which is designed to take into account
heat convection through the blood, among others.

3ρ = 1.2 [g/cm3], c = 0.9 [cal/g/K], k = 0.001 [cal/cm/s/K].
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0�0 0�60�3

e [�]

Figure C.1: Map of the error e for Model Problem III. Krylov solver and OO2 transmission condi-
tions are used. The tolerance is set to εit = 10−5.
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��� ��33��165

�u�

Figure C.2: Norm of the electric field u for Model Problem III consisting in a 2-source array.

Figure C.3: Color axial anatomical images from the Visible Human Project sponsored by the USA
National Library of Medicine [29] used to create the geometrical human body model of Chapter 8.
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Model Problem
Application Units

I II III IV
k0 1 1 1 - - - [1/m]
a 0.6 - - - - - [m]
b {6,30} 12 12 0.3 0.3 0.3 [m]
xp {0,-3} - - - - - [m]

ABC
{CT0,
CT2}

CT2 CT2 CT2 CT2 CT2

Nd 1 1 5 5 6 6 [-]
h0 0.13 0.13 0.13 0.0033 0.025 0.008 [m]
ε - {0.3,0.6} 0.3 0.005 0.003 5× 10−4 [m]
m - {5,17} 9 5 3 3 [-]

Source -
{CST,
GSN}

GSN GSN CST CST

TC - -
{T0BC,
T2BC,
OO2BC}

OO2BC OO2BC OO2BC

Solver - -
{Jacobi,
Krylov}

Krylov Krylov Krylov

d - - π 0.05 - 0.005 [m]
εit - - [10−1 : 10−5] 10−6 10−6 10−6 [-]
f - - - 3× 109 108 3× 109 [Hz]
λ0 - - - 0.1 3 0.1 [m]
λm - - - 0.01 0.3 0.01 [m]
ρm - - - 0.05 - - [m]
dm - - - 0.1 - - [m]
hm - - - 0.001 0.005 8× 10−4 [m]

Table C.1: Parameters related to the elementary solutions for the numerical simulations of Part III.
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Bone (cortical) Fat (not infiltrated) Heart Lung (inflated) Muscle
ε∞ [-] 2.5 2.5 4.0 2.5 4.0
∆ε1 [-] 10.0 3.0 50.0 18.0 50.0
τ1 [ps] 13.26 7.96 7.96 7.96 7.23
α1 [-] 0.20 0.20 0.10 0.10 0.10
∆ε2 [-] 180 15 1200 500 7000
τ2 [ns] 79.58 15.92 159.15 63.66 353.68
α2 [-] 0.20 0.10 0.05 0.10 0.10
∆ε3 [-] 5.0 ×103 3.3 ×104 4.5 ×105 2.5 ×105 1.2 ×106

τ3 [µs] 159.15 159.15 72.34 159.15 318.31
α3 [-] 0.20 0.05 0.22 0.20 0.10
∆ε4 [-] 1.0 ×105 1.0 ×107 2.5 ×107 4.0 ×107 2.5 ×107

τ4 [ms] 15.915 7.958 4.547 7.958 2.274
α4 [-] 0.00 0.01 0.00 0.00 0.00
σ [S] 0.0200 0.0100 0.0500 0.0300 0.2000

Table C.2: Cole Cole dispersions and conductivity parameters for several biological tissues consid-
ered in the human body model [10].

1 2 3 4 5 6 7 8 9 10 11
log10 f [Hz]

1

2
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e(
ǫ̃ r
))
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]

Rib

Fat

Heart

Lung

Muscle

Figure C.4: Real part of the permittivity Re (ε̃r) for the different tissues considered in the human
body model.
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2 4 6 8 10
log10 f [Hz]
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Figure C.5: Conductor ratio − Im(ε̃r)
Re(ε̃r)

= σ̃
ωε0Re(ε̃r)

for the different tissues considered in the human
body model.

Np = 1 Np = 2 Np = 5 Np = 9

j1 (52.8;0) (39.8;-49.6) (35;-46) (28.5;-72.1)
j2 (50.7;180) (44.2;167.1) (37;144.3)
j3 (17.1;-56.7) (29.3;19.44)
j4 (5.7;91.2) (8.1;41.4)
j5 (23.6;180) (25.7;-163.66)
j6 (21.4;53.1)
j7 (40.8;-117)
j8 (3.3;-78.8)
j9 (14.9;180)

Table C.3: Sources weights jp for the application of Chapter 8. Values in the table are
(|jp|Aδ [mA];∠jp [deg])
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