S-adic characterization of dendric languages: ternary case

France Gheeraert Joint work with Marie Lejeune and Julien Leroy

November 30, 2021

France Gheeraert

S-adic characterization of ternary dendric languages

Notations

- uniformly recurrent (= unif. rec.) languages on these alphabets: \mathcal{L} , \mathcal{L}' , \mathcal{L}_N , ...
- image of a \mathcal{L} under σ : $\sigma^{f}(\mathcal{L}) = \mathsf{Fac}(\sigma(\mathcal{L}))$

Introduction

Dendric images Ternary case Conclusion S-adic representations Dendric languages Particular S-adic representations

Introduction

France Gheeraert

S-adic representations Dendric languages Particular S-adic representations

S-adic representations

Definition

A primitive *S*-adic representation of a unif. rec. language \mathcal{L} is a primitive sequence of morphisms $(\sigma_n : \mathcal{A}_{n+1}^* \to \mathcal{A}_n^*)_n$ such that

$$\mathcal{L} = \bigcup_{N} \operatorname{Fac}(\sigma_0 \dots \sigma_N(\mathcal{A}_{N+1})).$$

A sequence $(\sigma_n : \mathcal{A}_{n+1}^* \to \mathcal{A}_n^*)_n$ is primitive if, for all N, there exists $m \ge 0$ such that, for all $a \in \mathcal{A}_{N+m+1}, \sigma_N \dots \sigma_{N+m}(a)$ contains all the letters of \mathcal{A}_N .

S-adic representations Dendric languages Particular S-adic representations

S-adic characterization

<u>Question</u>: For a given family ${\mathcal F}$ of languages, can we find a condition C such that

 $\mathcal{L} \in \mathcal{F}$ iff \mathcal{L} has an S-adic representation satisfying C?

S-adic representations Dendric languages Particular S-adic representations

S-adic characterization

<u>Question</u>: For a given family ${\mathcal F}$ of languages, can we find a condition C such that

 $\mathcal{L} \in \mathcal{F}$ iff \mathcal{L} has an S-adic representation satisfying C?

• Sturmian languages [Morse-Hedlund]: (non eventually constant) sequences over two given morphisms

S-adic representations Dendric languages Particular S-adic representations

S-adic characterization

<u>Question</u>: For a given family ${\mathcal F}$ of languages, can we find a condition C such that

 $\mathcal{L} \in \mathcal{F}$ iff \mathcal{L} has an S-adic representation satisfying C?

- Sturmian languages [Morse-Hedlund]: (non eventually constant) sequences over two given morphisms
- Arnoux-Rauzy languages [Arnoux-Rauzy]
- Episturmian languages [Justin-Pirillo]
- Linearly recurrent languages [Durand]
- Languages such that $p(n+1) p(n) \le 2$ [Leroy]

France Gheeraert

. . .

Introduction S-adic representations Dendric images Dendric languages Ternary case Particular S-adic representations

Extension graphs

$$LE_{\mathcal{L}}(w) = \{a \in \mathcal{A} \mid aw \in \mathcal{L}\}, \quad RE_{\mathcal{L}}(w) = \{b \in \mathcal{A} \mid wb \in \mathcal{L}\},\ E_{\mathcal{L}}(w) = \{(a, b) \in LE_{\mathcal{L}}(w) imes RE_{\mathcal{L}}(w) \mid awb \in \mathcal{L}\}$$

Extension graphs

$$LE_{\mathcal{L}}(w) = \{ a \in \mathcal{A} \mid aw \in \mathcal{L} \}, \quad RE_{\mathcal{L}}(w) = \{ b \in \mathcal{A} \mid wb \in \mathcal{L} \}, \\ E_{\mathcal{L}}(w) = \{ (a, b) \in LE_{\mathcal{L}}(w) \times RE_{\mathcal{L}}(w) \mid awb \in \mathcal{L} \}$$

Definition

The extension graph of $w \in \mathcal{L}$ is the bipartite graph $\mathcal{E}_{\mathcal{L}}(w)$ with vertices $LE_{\mathcal{L}}(w) \sqcup RE_{\mathcal{L}}(w)$ and edges $E_{\mathcal{L}}(w)$.

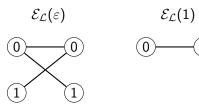
Extension graphs

$$LE_{\mathcal{L}}(w) = \{ a \in \mathcal{A} \mid aw \in \mathcal{L} \}, \quad RE_{\mathcal{L}}(w) = \{ b \in \mathcal{A} \mid wb \in \mathcal{L} \}, \\ E_{\mathcal{L}}(w) = \{ (a, b) \in LE_{\mathcal{L}}(w) \times RE_{\mathcal{L}}(w) \mid awb \in \mathcal{L} \}$$

Definition

The extension graph of $w \in \mathcal{L}$ is the bipartite graph $\mathcal{E}_{\mathcal{L}}(w)$ with vertices $LE_{\mathcal{L}}(w) \sqcup RE_{\mathcal{L}}(w)$ and edges $E_{\mathcal{L}}(w)$.

If $\mathcal L$ is the Fibonacci language,



S-adic representations Dendric languages Particular S-adic representations

Dendric languages

Definition (Berthé, De Felice, Dolce, Leroy, Perrin, Reutenauer, Rindone)

A word $w \in \mathcal{L}$ is *dendric* if its extension graph $\mathcal{E}_{\mathcal{L}}(w)$ is a tree.

A language \mathcal{L} is *dendric* if all the words $w \in \mathcal{L}$ are.

S-adic representations Dendric languages Particular S-adic representations

Dendric languages

Definition (Berthé, De Felice, Dolce, Leroy, Perrin, Reutenauer, Rindone)

A word $w \in \mathcal{L}$ is *dendric* if its extension graph $\mathcal{E}_{\mathcal{L}}(w)$ is a tree.

A language \mathcal{L} is *dendric* if all the words $w \in \mathcal{L}$ are.

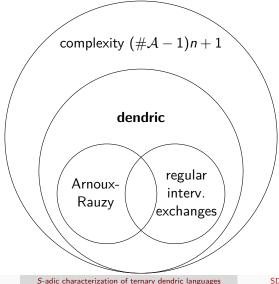
Definition (Dolce, Perrin)

A language \mathcal{L} is *eventually dendric* if there exists *n* such that all the words $w \in \mathcal{L}_{>n}$ are dendric.

Introduction Ternary case

S-adic representations Dendric languages Particular S-adic representations

Relation with other families



SDA2 2021 8 / 39

France Gheeraert

Return words

Definition

A return word for $w \neq \varepsilon$ in \mathcal{L} is a word u such that

$$uw \in \mathcal{L}, \quad |uw|_w = 2, \quad uw \in w\mathcal{A}^*.$$

The set of return words for w is denoted $\mathcal{R}_{\mathcal{L}}(w)$.

Return words

Definition

A return word for $w \neq \varepsilon$ in \mathcal{L} is a word u such that

$$uw \in \mathcal{L}, \quad |uw|_w = 2, \quad uw \in w\mathcal{A}^*.$$

The set of return words for w is denoted $\mathcal{R}_{\mathcal{L}}(w)$.

In the Fibonacci language,

$$\mathcal{R}_{\mathcal{L}}(0) = \{0, 01\}, \quad \mathcal{R}_{\mathcal{L}}(1) = \{10, 100\}.$$

Return words

Definition

A return word for $w \neq \varepsilon$ in \mathcal{L} is a word u such that

$$uw \in \mathcal{L}, \quad |uw|_w = 2, \quad uw \in w\mathcal{A}^*.$$

The set of return words for w is denoted $\mathcal{R}_{\mathcal{L}}(w)$.

In the Fibonacci language,

$$\mathcal{R}_{\mathcal{L}}(0) = \{0, 01\}, \quad \mathcal{R}_{\mathcal{L}}(1) = \{10, 100\}.$$

Theorem (Balková, Pelantová, Steiner) Let \mathcal{L} be a unif. rec. dendric language. For all non empty $w \in \mathcal{L}$,

$$\#\mathcal{R}_{\mathcal{L}}(w) = \#\mathcal{A}.$$

France Gheeraert

S-adic representations Dendric languages Particular S-adic representations

Derived language of a dendric language

Definition

The *derived language* of \mathcal{L} with respect to $w \neq \varepsilon$ is the language

$$\mathcal{L}' = \{ u \in \mathcal{B}^* \mid \sigma(u)w \in \mathcal{L} \}$$

where $\sigma: \mathcal{B}^* \to \mathcal{A}^*$ is such that $\sigma(\mathcal{B}) = \mathcal{R}_{\mathcal{L}}(w)$. Then

$$\mathcal{L} = \sigma^f(\mathcal{L}').$$

France Gheeraert

SDA2 2021 10 / 39

S-adic representations Dendric languages Particular S-adic representations

Derived language of a dendric language

Definition

The *derived language* of \mathcal{L} with respect to $w \neq \varepsilon$ is the language

$$\mathcal{L}' = \{ u \in \mathcal{B}^* \mid \sigma(u) w \in \mathcal{L} \}$$

where $\sigma: \mathcal{B}^* \to \mathcal{A}^*$ is such that $\sigma(\mathcal{B}) = \mathcal{R}_{\mathcal{L}}(w)$. Then

$$\mathcal{L} = \sigma^f(\mathcal{L}').$$

Theorem (Berthé *et al.*)

The derived language of a unif. rec. dendric language with respect to any word is a unif. rec. dendric language.

France Gheeraert

Introduction Dendric images Dend Ternary case Partic Conclusion

S-adic representations Dendric languages Particular S-adic representations

Construction of S-adic representations

We can build primitive S-adic representations of a unif. rec. dendric language $\mathcal{L} = \mathcal{L}_0 \subseteq \mathcal{A}^*$ in the following way:

- pick a non empty word $w_0 \in \mathcal{L}_0$;
- e define L₁ ⊆ A^{*} as the derived language of L₀ with respect to w;
- denote $\sigma_0 : \mathcal{A}^* \to \mathcal{A}^*$ the associated morphism, i.e. such that $\mathcal{L}_0 = \sigma_0^f(\mathcal{L}_1);$
- **(**) go back to step 1 with \mathcal{L}_1 to define \mathcal{L}_2 and σ_1 , and so on.

S-adic representations Dendric languages Particular S-adic representations

Construction of S-adic representations

We can build primitive S-adic representations of a unif. rec. dendric language $\mathcal{L} = \mathcal{L}_0 \subseteq \mathcal{A}^*$ in the following way:

- pick a non empty word $w_0 \in \mathcal{L}_0$;
- e define L₁ ⊆ A^{*} as the derived language of L₀ with respect to w;
- denote $\sigma_0 : \mathcal{A}^* \to \mathcal{A}^*$ the associated morphism, i.e. such that $\mathcal{L}_0 = \sigma_0^f(\mathcal{L}_1);$
- **9** go back to step 1 with \mathcal{L}_1 to define \mathcal{L}_2 and σ_1 , and so on.

$$\mathcal{L} = \sigma_0^f(\mathcal{L}_1) = \sigma_0^f(\sigma_1^f(\mathcal{L}_2)) = \dots$$

S-adic representations Dendric languages Particular S-adic representations

Return morphisms

Definition

A return morphism for $w \neq \varepsilon$ is an injective morphism $\sigma : \mathcal{A}^* \to \mathcal{B}^*$ such that, for all $a \in \mathcal{A}$,

$$|\sigma(a)w|_w=2, \quad \sigma(a)w\in w\mathcal{B}^*.$$

S-adic representations Dendric languages Particular S-adic representations

Return morphisms

Definition

A return morphism for $w \neq \varepsilon$ is an injective morphism $\sigma : \mathcal{A}^* \to \mathcal{B}^*$ such that, for all $a \in \mathcal{A}$,

$$|\sigma(a)w|_w = 2, \quad \sigma(a)w \in w\mathcal{B}^*.$$

$$\sigma : \begin{cases} 0 \mapsto 01 \\ 1 \mapsto 021 \\ 2 \mapsto 022221 \end{cases} \qquad \tau : \begin{cases} 0 \mapsto 01 \\ 1 \mapsto 010 \\ 2 \mapsto 010210 \end{cases}$$

S-adic representations Dendric languages Particular S-adic representations

Return morphisms

Definition

A return morphism for $w \neq \varepsilon$ is an injective morphism $\sigma : \mathcal{A}^* \to \mathcal{B}^*$ such that, for all $a \in \mathcal{A}$,

$$|\sigma(a)w|_w = 2, \quad \sigma(a)w \in w\mathcal{B}^*.$$

$$\sigma : \begin{cases} 0 \mapsto 010 \\ 1 \mapsto 0210 \\ 2 \mapsto 0222210 \end{cases} \quad \tau : \begin{cases} 0 \mapsto 01 \\ 1 \mapsto 010 \\ 2 \mapsto 010210 \end{cases}$$

S-adic representations Dendric languages Particular S-adic representations

Return morphisms

Definition

A return morphism for $w \neq \varepsilon$ is an injective morphism $\sigma : \mathcal{A}^* \to \mathcal{B}^*$ such that, for all $a \in \mathcal{A}$,

$$|\sigma(a)w|_w = 2, \quad \sigma(a)w \in w\mathcal{B}^*.$$

$$\sigma : \begin{cases} 0 \mapsto 010 \\ 1 \mapsto 0210 \\ 2 \mapsto 0222210 \end{cases} \quad \tau : \begin{cases} 0 \mapsto 0101 \\ 1 \mapsto 01001 \\ 2 \mapsto 01021001 \end{cases}$$

S-adic representations Dendric languages Particular S-adic representations

Return morphisms

Definition

A return morphism for $w \neq \varepsilon$ is an injective morphism $\sigma : \mathcal{A}^* \to \mathcal{B}^*$ such that, for all $a \in \mathcal{A}$,

$$|\sigma(a)w|_w = 2, \quad \sigma(a)w \in w\mathcal{B}^*.$$

$$\sigma : \begin{cases} 0 \mapsto 010 \\ 1 \mapsto 0210 \\ 2 \mapsto 0222210 \end{cases} \qquad \tau : \begin{cases} 0 \mapsto 01010 \\ 1 \mapsto 010010 \\ 2 \mapsto 010210010 \end{cases}$$

Initial factors Extended images Special cases First characterization

Dendric images under return morphism

Dendric images: goal

Given an unif. rec. dendric language \mathcal{L} and a return morphism σ for w, when is $\sigma^{f}(\mathcal{L})$ (unif. rec.) dendric?

Introduction	Initial factors
Dendric images	Extended images
Ternary case	Special cases
Conclusion	First characterization

Dendric images: goal

Given an unif. rec. dendric language \mathcal{L} and a return morphism σ for w, when is $\sigma^{f}(\mathcal{L})$ (unif. rec.) dendric?

 \rightarrow What can we say about $\mathcal{E}_{\sigma^{f}(\mathcal{L})}(u)$?

Introduction	Initial factors
Dendric images	Extended images
Ternary case	Special cases
Conclusion	First characterization

Dendric images: goal

Given an unif. rec. dendric language \mathcal{L} and a return morphism σ for w, when is $\sigma^{f}(\mathcal{L})$ (unif. rec.) dendric?

 \rightarrow What can we say about $\mathcal{E}_{\sigma^{f}(\mathcal{L})}(u)$?

Two cases:

- $|u|_w = 0$: *u* is an *initial factor*;
- $|u|_w > 0$: *u* is an *extended image*.

Initial factors and dendric morphisms

If *u* is an initial factor, then each occurrence of *u* is as an internal factor of some $\sigma(\alpha)w$, $\alpha \in \mathcal{A}$.

Initial factors and dendric morphisms

If u is an initial factor, then each occurrence of u is as an internal factor of some $\sigma(\alpha)w$, $\alpha \in \mathcal{A}$. Thus

$$\mathsf{aub} \in \sigma^f(\mathcal{L}) \Leftrightarrow \exists \alpha \in \mathcal{A} \text{ st. } \mathsf{aub} \in \mathsf{Fac}(\sigma(\alpha)w).$$

Initial factors and dendric morphisms

If u is an initial factor, then each occurrence of u is as an internal factor of some $\sigma(\alpha)w$, $\alpha \in \mathcal{A}$. Thus

$$aub \in \sigma^{f}(\mathcal{L}) \Leftrightarrow \exists \alpha \in \mathcal{A} \text{ st. } aub \in \operatorname{Fac}(\sigma(\alpha)w).$$

In other words,

$$\mathcal{E}_{\sigma^f(\mathcal{L})}(u) = \mathcal{E}_{F_\sigma}(u).$$

where

$$F_{\sigma} = \bigcup_{\alpha \in \mathcal{A}} \operatorname{Fac}(\sigma(\alpha)w).$$

SDA2 2021 15 / 39

Initial factors and dendric morphisms

If u is an initial factor, then each occurrence of u is as an internal factor of some $\sigma(\alpha)w$, $\alpha \in \mathcal{A}$. Thus

$$aub \in \sigma^{f}(\mathcal{L}) \Leftrightarrow \exists \alpha \in \mathcal{A} \text{ st. } aub \in \mathsf{Fac}(\sigma(\alpha)w).$$

In other words,

$$\mathcal{E}_{\sigma^f(\mathcal{L})}(u) = \mathcal{E}_{F_\sigma}(u).$$

where

$$F_{\sigma} = \bigcup_{\alpha \in \mathcal{A}} \mathsf{Fac}(\sigma(\alpha)w).$$

Definition

A return morphism σ for w is *dendric* if, for all $u \in F_{\sigma}$ such that $|u|_w = 0$, u is dendric in F_{σ} .

France Gheeraert

S-adic characterization of ternary dendric languages

SDA2 2021 15 / 39

Introduction Initial factors Dendric images Ternary case Conclusion

Extended images Special cases First characterization

Examples

$$\sigma : \begin{cases} 0 \mapsto 010 \\ 1 \mapsto 0210 \\ 2 \mapsto 0222210 \end{cases}$$

France Gheeraert

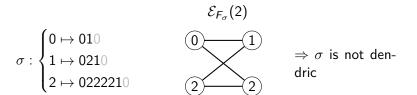
S-adic characterization of ternary dendric languages

16 / 39 SDA2 2021

2

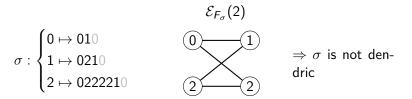
Examples

Examples



SDA2 2021 16 / 39

Examples

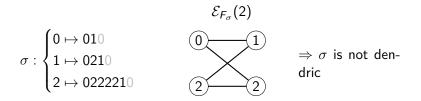


$$\tau: \begin{cases} 0 \mapsto 0101 \\ 1 \mapsto 01001 \\ 2 \mapsto 0102100 \end{cases}$$

France Gheeraert

SDA2 2021 16 / 39

Examples



$$\tau: \begin{cases} 0 \mapsto 0101 \\ 1 \mapsto 01001 \\ 2 \mapsto 01021001 \end{cases} \qquad \begin{array}{l} \mathcal{E}_{F_{\sigma}}(\varepsilon), \ \mathcal{E}_{F_{\sigma}}(0) \text{ and} \\ \mathcal{E}_{F_{\sigma}}(10) \text{ are trees} \end{cases} \Rightarrow \tau \text{ is dendric} \end{cases}$$

1

Extended images

Proposition (G., Lejeune, Leroy)

If $u \in \sigma^f(\mathcal{L})$ is an extended image, there exist unique $s, p \in \mathcal{A}^*$, $v \in \mathcal{L}$ such that

•
$$u = s\sigma(v)p$$
,

- s is a proper suffix of an element of $\sigma(\mathcal{A})$,
- $p \in w\mathcal{B}^*$ is a proper prefix of an element of $\sigma(\mathcal{A})w$.

We will then specify that u is an extended image <u>of v</u> (under σ).

France Gheeraert

Introduction Initial factors
Dendric images
Ternary case
Conclusion First characterization

Extended images

Proposition (G., Lejeune, Leroy)

If $u \in \sigma^f(\mathcal{L})$ is an extended image, there exist unique $s, p \in \mathcal{A}^*$, $v \in \mathcal{L}$ such that

- $u = s\sigma(v)p$,
- s is a proper suffix of an element of $\sigma(\mathcal{A})$,
- $p \in w\mathcal{B}^*$ is a proper prefix of an element of $\sigma(\mathcal{A})w$.
- \Rightarrow Every occurrence of u is as an internal factor of some $\sigma(\alpha v\beta)w$

We will then specify that u is an extended image <u>of v</u> (under σ).

France Gheeraert

Extended images

Proposition (G., Lejeune, Leroy)

If $u \in \sigma^f(\mathcal{L})$ is an extended image, there exist unique $s, p \in \mathcal{A}^*$, $v \in \mathcal{L}$ such that

•
$$u = s\sigma(v)p$$
,

• s is a proper suffix of an element of $\sigma(\mathcal{A})$,

• $p \in w\mathcal{B}^*$ is a proper prefix of an element of $\sigma(\mathcal{A})w$.

⇒ Every occurrence of u is as an internal factor of some $\sigma(\alpha v\beta)w$ Moreover, $(a, b) \in E_{\sigma^{f}(\mathcal{L})}(u)$ if and only if

 $\exists (\alpha, \beta) \in E_{\mathcal{L}}(v) \text{ st. } \sigma(\alpha) \in \mathcal{B}^* \text{ as and } \sigma(\beta)w \in pb\mathcal{B}^*.$

We will then specify that u is an extended image <u>of v</u> (under σ).

France Gheeraert

Introduction	Initial factors
Dendric images	Extended images
Ternary case	Special cases
Conclusion	First characterization

$$(a,b) \in E_{\sigma^{f}(\mathcal{L})}(u) \Leftrightarrow \exists (\alpha,\beta) \in E_{\mathcal{L}}(v) : \sigma(\alpha) \in \mathcal{A}^{*}$$
 as $\land \sigma(\beta)w \in pb\mathcal{A}^{*}$

 France Gheeraert
 S-adic characterization of ternary dendric languages
 SDA2 2021
 18 / 39

Introduction	Initial factors
Dendric images	Extended images
Ternary case	Special cases
Conclusion	First characterization

$$(a,b) \in E_{\sigma^{f}(\mathcal{L})}(u) \Leftrightarrow \exists (\alpha,\beta) \in E_{\mathcal{L}}(v) : \sigma(\alpha) \in \mathcal{A}^{*}$$
 as $\land \sigma(\beta)w \in pb\mathcal{A}^{*}$

$$\tau: \begin{cases} \mathbf{0} \mapsto \mathbf{0101} \\ \mathbf{1} \mapsto \mathbf{01001} \\ \mathbf{2} \mapsto \mathbf{0102100} \end{cases}$$

1

 France Gheeraert
 S-adic characterization of ternary dendric languages
 SDA2 2021
 18 / 39

Introduction	Initial factors
Dendric images	Extended images
Ternary case	Special cases
Conclusion	First characterization

$$(a,b) \in E_{\sigma^{f}(\mathcal{L})}(u) \Leftrightarrow \exists (\alpha,\beta) \in E_{\mathcal{L}}(v) : \sigma(\alpha) \in \mathcal{A}^{*}$$
as $\land \sigma(\beta)w \in pb\mathcal{A}^{*}$

$$au: egin{cases} 0 \mapsto 0101 \ 1 \mapsto 01001 \ 2 \mapsto 01021001 \ \mathcal{E}_\mathcal{L}(v) \end{cases}$$

Introduction	Initial factors
Dendric images	Extended images
Ternary case	Special cases
Conclusion	First characterization

$$(a,b) \in E_{\sigma^{f}(\mathcal{L})}(u) \Leftrightarrow \exists (\alpha,\beta) \in E_{\mathcal{L}}(v) : \sigma(\alpha) \in \mathcal{A}^{*}$$
as $\land \sigma(\beta)w \in pb\mathcal{A}^{*}$

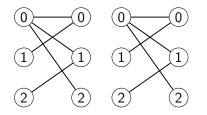
2

2

Introduction	Initial factors
Dendric images	Extended images
Ternary case	Special cases
Conclusion	First characterization

$$(a,b) \in E_{\sigma^{f}(\mathcal{L})}(u) \Leftrightarrow \exists (\alpha,\beta) \in E_{\mathcal{L}}(v) : \sigma(\alpha) \in \mathcal{A}^{*}as \land \sigma(\beta)w \in pb\mathcal{A}^{*}$$

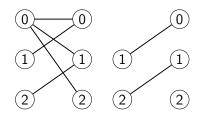
$$\tau: \begin{cases} 0 \mapsto 0101 \\ 1 \mapsto 01001 \\ 2 \mapsto 01021001 \\ \mathcal{E}_{\mathcal{L}}(v) \end{cases} \quad u = 10\sigma(v)010 \longrightarrow s = 10, \ p = 010 \\ \mathcal{E}_{\mathcal{L}}(v) \end{cases}$$



Introduction	Initial factors
Dendric images	Extended images
Ternary case	Special cases
Conclusion	First characterization

$$(a,b) \in E_{\sigma^{f}(\mathcal{L})}(u) \Leftrightarrow \exists (\alpha,\beta) \in E_{\mathcal{L}}(v) : \sigma(\alpha) \in \mathcal{A}^{*}as \land \sigma(\beta)w \in pb\mathcal{A}^{*}$$

$$\tau:\begin{cases} 0 \mapsto 0101 \\ 1 \mapsto 01001 \\ 2 \mapsto 01021001 \\ \mathcal{E}_{\mathcal{L}}(v) \end{cases} \quad u = 10\sigma(v)010 \longrightarrow s = 10, \ p = 010 \\ \mathcal{E}_{\mathcal{L}}(v) \end{cases}$$



Introduction	Initial factors
Dendric images	Extended images
Ternary case	Special cases
Conclusion	First characterization

$$(a,b) \in E_{\sigma^{f}(\mathcal{L})}(u) \Leftrightarrow \exists (\alpha,\beta) \in E_{\mathcal{L}}(v) : \sigma(\alpha) \in \mathcal{A}^{*}$$
 as $\land \sigma(\beta)w \in pb\mathcal{A}^{*}$

$$\tau : \begin{cases} 0 \mapsto 0101 \\ 1 \mapsto 01001 \\ 2 \mapsto 01021001 \end{cases} \qquad u = 10\sigma(v)010 \longrightarrow s = 10, \ p = 010 \\ \mathcal{E}_{\mathcal{L}}(v) \qquad \mathcal{E}_{\tau^{f}(\mathcal{L})}(u) \\ \hline 1 \qquad 1 \qquad 0 \qquad 0 \\ 2 \qquad 2 \qquad 2 \qquad 2 \end{cases}$$

Introduction	Initial factors
Dendric images	Extended images
Ternary case	Special cases
Conclusion	First characterization

1

$$(a,b) \in E_{\sigma^{f}(\mathcal{L})}(u) \Leftrightarrow \exists (\alpha,\beta) \in E_{\mathcal{L}}(v) : \sigma(\alpha) \in \mathcal{A}^{*}$$
 as $\land \sigma(\beta)w \in pb\mathcal{A}^{*}$

$$\tau : \begin{cases} 0 \mapsto 0101 & u = 10\sigma(v)010 \longrightarrow s = 10, \ p = 010 \\ 1 \mapsto 01001 & u' = \sigma(v)010 \longrightarrow s = \varepsilon, \ p = 010 \\ \mathcal{E}_{\mathcal{L}}(v) & \mathcal{E}_{\tau^{f}(\mathcal{L})}(u) \\ \hline 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 2 & 2 & 2 & 2 \end{cases}$$

Introduction	Initial factors
Dendric images	Extended images
Ternary case	Special cases
Conclusion	First characterization

$$(a,b) \in E_{\sigma^{f}(\mathcal{L})}(u) \Leftrightarrow \exists (\alpha,\beta) \in E_{\mathcal{L}}(v) : \sigma(\alpha) \in \mathcal{A}^{*}$$
as $\land \sigma(\beta)w \in pb\mathcal{A}^{*}$

$$\tau : \begin{cases} 0 \mapsto 0101 & u = 10\sigma(v)010 \longrightarrow s = 10, \ p = 010\\ 1 \mapsto 01001 & u' = \sigma(v)010 \longrightarrow s = \varepsilon, \ p = 010\\ \mathcal{E}_{\mathcal{L}}(v) & \mathcal{E}_{\tau^{f}(\mathcal{L})}(u) & \\ \hline 0 & 1 & 0 & 0\\ 1 & 1 & 0 & 0 & 1\\ 2 & 2 & 2 & 2 & 2 \end{cases}$$

Introduction	Initial factors
Dendric images	Extended images
Ternary case	Special cases
Conclusion	First characterization

$$(a,b) \in E_{\sigma^{f}(\mathcal{L})}(u) \Leftrightarrow \exists (\alpha,\beta) \in E_{\mathcal{L}}(v) : \sigma(\alpha) \in \mathcal{A}^{*}$$
as $\land \sigma(\beta)w \in pb\mathcal{A}^{*}$

$$\tau : \begin{cases} 0 \mapsto 0101 & u = 10\sigma(v)010 \longrightarrow s = 10, \ p = 010\\ 1 \mapsto 01001 & u' = \sigma(v)010 \longrightarrow s = \varepsilon, \ p = 010\\ \mathcal{E}_{\mathcal{L}}(v) & \mathcal{E}_{\tau^{f}(\mathcal{L})}(u) & \\ \hline 0 & 1 & 0 & 0\\ 1 & 1 & 0 & 0 & 1\\ 2 & 2 & 2 & 2 & 2 \end{cases}$$

Introduction	Initial factors
Dendric images	Extended images
Ternary case	Special cases
Conclusion	First characterization

1

$$(a,b) \in E_{\sigma^{f}(\mathcal{L})}(u) \Leftrightarrow \exists (\alpha,\beta) \in E_{\mathcal{L}}(v) : \sigma(\alpha) \in \mathcal{A}^{*}as \land \sigma(\beta)w \in pb\mathcal{A}^{*}$$

$$\tau : \begin{cases} 0 \mapsto 0101 & u = 10\sigma(v)010 \longrightarrow s = 10, \ p = 010 \\ 1 \mapsto 01001 & u' = \sigma(v)010 \longrightarrow s = \varepsilon, \ p = 010 \\ \mathcal{E}_{\mathcal{L}}(v) & \mathcal{E}_{\tau^{f}(\mathcal{L})}(u) & \mathcal{E}_{\tau^{f}(\mathcal{L})}(u') \\ \hline 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 2 & 2 & 2 & 2 \end{cases}$$

Dendric extended images

 $\mathcal{E}_{\mathcal{L},s,p}(v)$ is the subgraph of $\mathcal{E}_{\mathcal{L}}(v)$ generated by the edges

 $\{(\alpha,\beta)\in \mathsf{E}_{\mathcal{L}}(\mathsf{v}):\sigma(\alpha)\in\mathcal{B}^+s \text{ and } \sigma(\beta)\mathsf{w}\in\mathsf{p}\mathcal{B}^+\}$

i.e. the graph obtained after the first step.

Dendric extended images

 $\mathcal{E}_{\mathcal{L},s,p}(v)$ is the subgraph of $\mathcal{E}_{\mathcal{L}}(v)$ generated by the edges

 $\{(\alpha,\beta)\in E_{\mathcal{L}}(v):\sigma(\alpha)\in \mathcal{B}^+s \text{ and } \sigma(\beta)w\in p\mathcal{B}^+\}$

i.e. the graph obtained after the first step.

Theorem (G., Lejeune, Leroy)

If $v \in \mathcal{L}$ is dendric, then the following are equivalent:

- **1** all the extended images of v are dendric (in $\sigma^{f}(\mathcal{L})$);
- **2** for all $s, p \in \mathcal{B}^*$, the graph $\mathcal{E}_{\mathcal{L},s,p}(v)$ is connected;

Dendric extended images

 $\mathcal{E}_{\mathcal{L},s,p}(v)$ is the subgraph of $\mathcal{E}_{\mathcal{L}}(v)$ generated by the edges

 $\{(\alpha,\beta)\in E_{\mathcal{L}}(v):\sigma(\alpha)\in \mathcal{B}^+s \text{ and } \sigma(\beta)w\in p\mathcal{B}^+\}$

i.e. the graph obtained after the first step.

Theorem (G., Lejeune, Leroy)

If $v \in \mathcal{L}$ is dendric, then the following are equivalent:

- **1** all the extended images of v are dendric (in $\sigma^{f}(\mathcal{L})$);
- **2** for all $s, p \in \mathcal{B}^*$, the graph $\mathcal{E}_{\mathcal{L},s,p}(v)$ is connected;
- for all $s, p \in \mathcal{B}^*$, the graphs $\mathcal{E}_{\mathcal{L},s,\varepsilon}(v)$ and $\mathcal{E}_{\mathcal{L},\varepsilon,p}(v)$ are connected.

Dendric images: result

Corollary

The image of a unif. rec. dendric language \mathcal{L} under a return morphism σ is dendric if and only if σ is dendric and the conditions $\mathcal{C}^{L}(\sigma, \mathcal{L})$ and $\mathcal{C}^{R}(\sigma, \mathcal{L})$ are satisfied.

$$\mathcal{C}^{L}(\sigma, \mathcal{L}) \equiv \forall v \in \mathcal{L}, \forall s \in \mathcal{B}^{*}, \mathcal{E}_{\mathcal{L}, s, \varepsilon}(v) \text{ is connected}$$
$$\mathcal{C}^{R}(\sigma, \mathcal{L}) \equiv \forall v \in \mathcal{L}, \forall p \in \mathcal{B}^{*}, \mathcal{E}_{\mathcal{L}, \varepsilon, p}(v) \text{ is connected}$$

France Gheeraert

S-adic characterization of ternary dendric languages

SDA2 2021 20 / 39

Arnoux-Rauzy languages

If there exist a and b such that

 $E_{\mathcal{L}}(v) = (a \times RE_{\mathcal{L}}(v)) \cup (LE_{\mathcal{L}}(v) \times b),$ $\mathcal{E}_{\mathcal{L}}(v)$ \vdots \vdots \vdots

then the extended images of v are always dendric.

Arnoux-Rauzy languages

If there exist a and b such that

 $E_{\mathcal{L}}(v) = (a \times RE_{\mathcal{L}}(v)) \cup (LE_{\mathcal{L}}(v) \times b),$ $\mathcal{E}_{\mathcal{L}}(v)$ $\mathcal{E}_{\mathcal{L}}(v)$ $\mathcal{E}_{\mathcal{L}}(v)$

then the extended images of v are always dendric.

Corollary

The image of an Arnoux-Rauzy under a return morphism is dendric if and only if the morphism is dendric.

France Gheeraert

Introduction Initial Dendric images Exten Ternary case Speci Conclusion First

Initial factors Extended images **Special cases** First characterization

Eventually dendric languages

Proposition (Dolce, Perrin)

A language \mathcal{L} is eventually dendric if and only if there exists N such that all words of $\mathcal{L}_{>N}$ satisfy the condition of the previous slide.

Introduction Initial fa Dendric images Extende Ternary case Special Conclusion First cha

Extended images Special cases First characterization

Eventually dendric languages

Proposition (Dolce, Perrin)

A language \mathcal{L} is eventually dendric if and only if there exists N such that all words of $\mathcal{L}_{\geq N}$ satisfy the condition of the previous slide.

Corollary

The image of an unif. rec. eventually dendric language under a return morphism is eventually dendric.

Introduction Initial fa Dendric images Extende Ternary case Special Conclusion First cha

Initial factors Extended images Special cases First characterization

Eventually dendric languages

Proposition (Dolce, Perrin)

A language \mathcal{L} is eventually dendric if and only if there exists N such that all words of $\mathcal{L}_{\geq N}$ satisfy the condition of the previous slide.

Corollary

The image of an unif. rec. eventually dendric language under a return morphism is eventually dendric.

Corollary

A language \mathcal{L} is an unif. rec. eventually dendric language if and only if there exist a return morphism σ and an unif. rec. dendric language \mathcal{L}' such that $\mathcal{L} = \sigma^{f}(\mathcal{L}')$.

Summary of what we obtained

Each unif. rec. dendric language \mathcal{L} has a primitive S-adic representation $(\sigma_n)_n$ such that

- **(**) for all N, σ_N is a dendric return morphism,
- **2** if \mathcal{L}_{N+1} is the language with *S*-adic representation $(\sigma_n)_{n>N}$, then the conditions $\mathcal{C}^L(\sigma_N, \mathcal{L}_{N+1})$ and $\mathcal{C}^R(\sigma_N, \mathcal{L}_{N+1})$ are satisfied.

Summary of what we obtained

Each unif. rec. dendric language \mathcal{L} has a primitive S-adic representation $(\sigma_n)_n$ such that

- **(**) for all N, σ_N is a dendric return morphism,
- **2** if \mathcal{L}_{N+1} is the language with *S*-adic representation $(\sigma_n)_{n>N}$, then the conditions $\mathcal{C}^L(\sigma_N, \mathcal{L}_{N+1})$ and $\mathcal{C}^R(\sigma_N, \mathcal{L}_{N+1})$ are satisfied.

Proposition

If \mathcal{L} has a primitive S-adic representation $(\sigma_n)_n$ satisfying conditions 1 and 2 above, then \mathcal{L} is unif. rec. dendric.

First (very) naive graph

Proposition

A language $\mathcal{L} \subseteq \mathcal{A}^*$ is unif. rec. dendric if and only if it has a primitive S-adic representation labeling a path in the graph defined as follows

- each vertex corresponds to a (unif. rec.) language on A;
- for each dendric return morphism $\sigma : \mathcal{A}^* \to \mathcal{A}^*$ and each language \mathcal{L} , there is an edge from $\sigma^f(\mathcal{L})$ to \mathcal{L} if and only if conditions $\mathcal{C}^L(\sigma, \mathcal{L})$ and $\mathcal{C}^R(\sigma, \mathcal{L})$ are satisfied.

Conditions $\mathcal{C}^L(\sigma,\mathcal{L})$ and $\mathcal{C}^R(\sigma,\mathcal{L})$ Simpler set of morphisms Final results

Ternary case: goal

We work on the alphabet $\mathcal{A}_3 = \{1, 2, 3\}$.

To obtain a simpler description of the characterization, we look at

- the vertices
- the edges

Conditions $C^{L}(\sigma, \mathcal{L})$ and $C^{R}(\sigma, \mathcal{L})$ Simpler set of morphisms Final results

Vertices: Goal

We want to associate an object $o(\mathcal{L})$ to each (unif. rec. dendric) language \mathcal{L} such that

- conditions $\mathcal{C}^{L}(\sigma, \mathcal{L})$ and $\mathcal{C}^{R}(\sigma, \mathcal{L})$ only depend on σ and $o(\mathcal{L})$;
- if $o(\mathcal{L}) = o(\mathcal{L}')$, then $o(\sigma^{f}(\mathcal{L})) = o(\sigma^{f}(\mathcal{L}'))$.

Conditions $C^{L}(\sigma, \mathcal{L})$ and $C^{R}(\sigma, \mathcal{L})$ Simpler set of morphisms Final results

Vertices: Goal

We want to associate an object $o(\mathcal{L}) = (o^{\mathcal{L}}(\mathcal{L}), o^{\mathcal{R}}(\mathcal{L}))$ to each (unif. rec. dendric) language \mathcal{L} such that

• condition $C^{L}(\sigma, \mathcal{L})$ (resp. $C^{R}(\sigma, \mathcal{L})$) only depends on σ and $o^{L}(\mathcal{L})$ (resp. $o^{R}(\mathcal{L})$);

• if
$$o(\mathcal{L}) = o(\mathcal{L}')$$
, then $o(\sigma^{f}(\mathcal{L})) = o(\sigma^{f}(\mathcal{L}'))$.

We will only look at the left side for now.

Conditions $\mathcal{C}^{L}(\sigma, \mathcal{L})$ and $\mathcal{C}^{R}(\sigma, \mathcal{L})$ Simpler set of morphisms Final results

Example

$\mathcal{C}^{L}(\sigma,\mathcal{L}) \equiv \forall \, v \in \mathcal{L}, \forall \, s \in \mathcal{B}^{*}, \mathcal{E}_{\mathcal{L},s,\varepsilon}(v) \text{ is connected}$

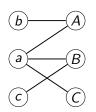
 France Gheeraert
 S-adic characterization of ternary dendric languages
 SDA2 2021
 28 / 39

Conditions $C^{L}(\sigma, \mathcal{L})$ and $C^{R}(\sigma, \mathcal{L})$ Simpler set of morphisms Final results

Example

$$\mathcal{C}^{\mathcal{L}}(\sigma,\mathcal{L}) \equiv \forall v \in \mathcal{L}, \forall s \in \mathcal{B}^*, \mathcal{E}_{\mathcal{L},s,\varepsilon}(v) \text{ is connected}$$

Which sets of left vertices can we remove while keeping connected graphs? $\mathcal{E}_{\mathcal{L}}(v)$

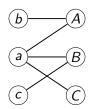


Conditions $C^{L}(\sigma, \mathcal{L})$ and $C^{R}(\sigma, \mathcal{L})$ Simpler set of morphisms Final results

Example

$$\mathcal{C}^{\mathcal{L}}(\sigma,\mathcal{L}) \equiv \forall v \in \mathcal{L}, \forall s \in \mathcal{B}^*, \mathcal{E}_{\mathcal{L},s,\varepsilon}(v) \text{ is connected}$$

Which sets of left vertices can we remove while keeping connected graphs? $\mathcal{E}_{\mathcal{L}}(v)$



A letter is *(left-)problematic* if removing it on the left will disconnect some extension graph

Conditions $C^{L}(\sigma, \mathcal{L})$ and $C^{R}(\sigma, \mathcal{L})$ Simpler set of morphisms Final results

Object $o^{L}(\mathcal{L})$

We define

$$o^{L}(\mathcal{L}) =$$
 set of left-problematic letters

It is such that

- condition $\mathcal{C}^{L}(\sigma, \mathcal{L})$ only depends on σ and $o^{L}(\mathcal{L})$,
- if $o^{L}(\mathcal{L}) = o^{L}(\mathcal{L}')$, then $o^{L}(\sigma^{f}(\mathcal{L})) = o^{L}(\sigma^{f}(\mathcal{L}'))$.

Conditions $C^{L}(\sigma, \mathcal{L})$ and $C^{R}(\sigma, \mathcal{L})$ Simpler set of morphisms Final results

Object $o^{L}(\mathcal{L})$

We define

$$o^{L}(\mathcal{L}) =$$
 set of left-problematic letters

It is such that

• condition $\mathcal{C}^{L}(\sigma, \mathcal{L})$ only depends on σ and $o^{L}(\mathcal{L})$,

• if
$$o^{L}(\mathcal{L}) = o^{L}(\mathcal{L}')$$
, then $o^{L}(\sigma^{f}(\mathcal{L})) = o^{L}(\sigma^{f}(\mathcal{L}'))$.

Proposition

If \mathcal{L} is a unif. rec. ternary dendric language, then there is at most one left-problematic letter.

Conditions $C^{L}(\sigma, \mathcal{L})$ and $C^{R}(\sigma, \mathcal{L})$ Simpler set of morphisms Final results

New set of vertices

Definition

For $o = (o^L, o^R) \in \{\emptyset, \{1\}, \{2\}, \{3\}\}^2$, if \mathcal{L} is such that $o = o(\mathcal{L})$, we can define

•
$$\mathcal{C}^{L}(\sigma, o) \equiv \mathcal{C}^{L}(\sigma, \mathcal{L})$$

•
$$\mathcal{C}^{R}(\sigma, o) \equiv \mathcal{C}^{R}(\sigma, \mathcal{L})$$

• $\sigma(o) = o(\sigma^f(\mathcal{L}))$

We obtain a new graph:

- the vertices are the elements of $\{\emptyset, \{1\}, \{2\}, \{3\}\}^2$;
- for each dendric return morphism σ : A* → A* and each vertex o, there is an edge from σ(o) to o if and only if conditions C^L(σ, o) and C^R(σ, o) are satisfied.

Introduction endric images Ternary case Conclusion Final results Conditions $C^L(\sigma, \mathcal{L})$ and $C^R(\sigma, \mathcal{L})$

Edges: Goal

We can build primitive S-adic representations of a unif. rec. dendric language $\mathcal{L} = \mathcal{L}_0 \subseteq \mathcal{A}^*$ in the following way:

- pick a non empty word $w_0 \in \mathcal{L}_0$;
- ❷ define $\mathcal{L}_1 \subseteq \mathcal{A}^*$ as the derived language of \mathcal{L}_0 with respect to w;
- denote $\sigma_0 : \mathcal{A}^* \to \mathcal{A}^*$ the associated morphism, i.e. such that $\mathcal{L}_0 = \sigma_0^f(\mathcal{L}_1);$
- **9** go back to step 1 with \mathcal{L}_1 to define \mathcal{L}_2 and σ_1 , and so on.

Edges: Goal

We can build primitive S-adic representations of a unif. rec. dendric language $\mathcal{L} = \mathcal{L}_0 \subseteq \mathcal{A}^*$ in the following way:

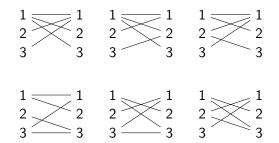
- pick a non empty word $w_0 \in \mathcal{L}_0$;
- e define L₁ ⊆ A^{*} as the derived language of L₀ with respect to w;
- denote $\sigma_0 : \mathcal{A}^* \to \mathcal{A}^*$ the associated morphism, i.e. such that $\mathcal{L}_0 = \sigma_0^f(\mathcal{L}_1);$
- **(**) go back to step 1 with \mathcal{L}_1 to define \mathcal{L}_2 and σ_1 , and so on.

We pick w in a "clever" way to reduce the set of return morphisms that appear.

Conditions $C^{L}(\sigma, \mathcal{L})$ and $C^{R}(\sigma, \mathcal{L})$ Simpler set of morphisms Final results

Possible extension graphs

The extension graph of ε in a unif. rec. dendric language is, up to a permutation, one of



Conditions $C^{L}(\sigma, \mathcal{L})$ and $C^{R}(\sigma, \mathcal{L})$ Simpler set of morphisms Final results

Finding the return words

From $\mathcal{E}_{\mathcal{L}}(\varepsilon)$, we build the Rauzy graph of order 1.

Conditions $C^{L}(\sigma, \mathcal{L})$ and $C^{R}(\sigma, \mathcal{L})$ Simpler set of morphisms Final results

Finding the return words

From $\mathcal{E}_{\mathcal{L}}(\varepsilon)$, we build the Rauzy graph of order 1.

The return words for 1 are among the paths from 1 to 1 in the Rauzy graph of order 1.

Conditions $C^{L}(\sigma, \mathcal{L})$ and $C^{R}(\sigma, \mathcal{L})$ Simpler set of morphisms Final results

Finding the return words

From $\mathcal{E}_{\mathcal{L}}(\varepsilon)$, we build the Rauzy graph of order 1.

The return words for 1 are among the paths from 1 to 1 in the Rauzy graph of order 1.

$$eta:egin{cmatrix}1\mapsto1\2\mapsto12\3\mapsto132\end{pmatrix}$$

Conditions $\mathcal{C}^{L}(\sigma, \mathcal{L})$ and $\mathcal{C}^{R}(\sigma, \mathcal{L})$ Simpler set of morphisms Final results

Set of morphisms

$$\alpha : \begin{cases} 1 \mapsto 1 \\ 2 \mapsto 12 \\ 3 \mapsto 13 \end{cases} \qquad \beta : \begin{cases} 1 \mapsto 1 \\ 2 \mapsto 12 \\ 3 \mapsto 132 \end{cases} \qquad \gamma : \begin{cases} 1 \mapsto 1 \\ 2 \mapsto 12 \\ 3 \mapsto 123 \end{cases}$$
$$\delta^{(k)} : \begin{cases} 1 \mapsto 1 \\ 2 \mapsto 123^{k} \\ 2 \mapsto 123^{k} \\ 3 \mapsto 123^{k+1} \end{cases} \qquad \zeta^{(k)} : \begin{cases} 1 \mapsto 13^{k} \\ 2 \mapsto 12 \\ 3 \mapsto 13^{k+1} \end{cases} \qquad \eta : \begin{cases} 1 \mapsto 13 \\ 2 \mapsto 12 \\ 3 \mapsto 123 \end{cases}$$

France Gheeraert

S-adic characterization of ternary dendric languages

SDA2 2021 34 / 39

Conditions $\mathcal{C}^{L}(\sigma, \mathcal{L})$ and $\mathcal{C}^{R}(\sigma, \mathcal{L})$ Simpler set of morphisms Final results

Set of morphisms

$$\alpha : \begin{cases} 1 \mapsto 1 \\ 2 \mapsto 12 \\ 3 \mapsto 13 \end{cases} \qquad \beta : \begin{cases} 1 \mapsto 1 \\ 2 \mapsto 12 \\ 3 \mapsto 132 \end{cases} \qquad \gamma : \begin{cases} 1 \mapsto 1 \\ 2 \mapsto 12 \\ 3 \mapsto 132 \end{cases}$$

$$\delta^{(k)} : \begin{cases} 1 \mapsto 1 \\ 2 \mapsto 123^{k} \\ 3 \mapsto 123^{k+1} \end{cases} \qquad \zeta^{(k)} : \begin{cases} 1 \mapsto 13^{k} \\ 2 \mapsto 12 \\ 3 \mapsto 13^{k+1} \end{cases} \qquad \eta : \begin{cases} 1 \mapsto 13 \\ 2 \mapsto 12 \\ 3 \mapsto 123 \end{cases}$$

$$\mathcal{S}_{3} = \{\alpha, \beta, \gamma, \eta\} \cup \{\delta^{(k)}, \zeta^{(k)} \mid k \ge 1\}$$

Conditions $\mathcal{C}^{L}(\sigma, \mathcal{L})$ and $\mathcal{C}^{R}(\sigma, \mathcal{L})$ Simpler set of morphisms Final results

Simpler graph

Theorem (G., Lejeune, Leroy)

A language is unif. rec. ternary dendric if and only if it has a primitive S-adic representation labeling an infinite path in the graph defined as follows

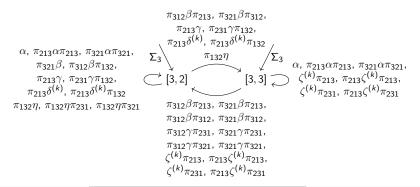
- the vertices are the elements of $\{\emptyset, \{1\}, \{2\}, \{3\}\}^2$;
- for each $\sigma \in \Sigma_3 S_3 \Sigma_3$ and each vertex o, there is an edge from $\sigma(o)$ to o if and only if conditions $C^L(\sigma, o)$ and $C^R(\sigma, o)$ are satisfied.

Conditions $C^{L}(\sigma, \mathcal{L})$ and $C^{R}(\sigma, \mathcal{L})$ Simpler set of morphisms Final results

Even simpler graph

Theorem (G., Lejeune, Leroy)

A language is unif. rec. ternary dendric if and only if it has a primitive S-adic representation labeling an infinite path in the following graph.



France Gheeraert

S-adic characterization of ternary dendric languages

Conclusion

France Gheeraert

S-adic characterization of ternary dendric languages

SDA2 2021 37 / 39

Further questions

• Finding a simple graph in the case of a larger alphabet

Further questions

- Finding a simple graph in the case of a larger alphabet
- S-adic conjecture : there exists an S-adic characterization of the languages of at most linear complexity

Further questions

- Finding a simple graph in the case of a larger alphabet
- S-adic conjecture : there exists an S-adic characterization of the languages of at most linear complexity
- Can we use this characterization to study other properties of (eventually) dendric languages/shift spaces ?

Thank you for your attention!

France Gheeraert

S-adic characterization of ternary dendric languages

SDA2 2021 39 / 39