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Abstract - A new theory for torsional stiffness of multi-
span bundle overhead transmission lines is presented. The
torsional mechanism is clarified. A simplified torsional
stiffness formula is obtained which allows for the complex
bundle stiffness to be directly calculated from the basic
parameters. Applications in the choices of yoke plates and
suspension clamps are detailed. The new theory correlates
with experiments to a high degree of accuracy.
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1. INTRODUCTION

High voltage (> 220 kV) overhead lines are generally
designed as a multi-conductor arrangement per phase. The
torsional behavior of such a bundle is much more compli-
cated than that of a single conductor, which is linear and
only a function of materials (aluminum, steel), its diame-
ter and the type of strand. The bundle torsional stiffness
is nonlinear and depends on the sag/span ratio, the spacer
disposition and the bundle geometry, and is as well a func-
tion of the angle of rotation. The torsional stiffness is an
important parameter due to its interaction with the tor-
sional frequency, further with the flutter Instability (bundle
conductor galloping).

1.1 State-of-the-Art

Due to the complexity of the bundle torsional stiffness,
the former theories on galloping in three-degree-of-freedom
\3-DOF) [3, 7] are limited to the study of the galloping of
single conductors, and fail to investigate this phenomenon
for bundle conductors. Although there exist a few theo-
ries [1, 2] for bundle conductors, they are 2-DOF and only
valid for small torsional movements. In 1977, Nigol et al [4]
presented a complete model for bundle torsional stiffness
(we will call this theory the Nigol theory in this paper),
but it assumes the tension of all subconductors to be con-
stant and equal. Another theory for bundle conductors [1]
developed a new insight by taking into account, tension
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differences between subconductors. However this theory
is only valid for small rotations and neglects transversal
movements. Since then, no other complete model for bun-
dle torsional stiffness has been published until 1996, when a
full multi-span 3-DOF galloping model and this new the-
ory of torsional stiffness were presented [5]. Systematic
under-estimation of the torsional stiffness in Nigol theory
(especially for long spans and bundles with large number of
subconductors) is the motivation to find explanations and
to develop a new theory in this study. Further, the gal-
loping mechanism is closely related to stiffness (especially
to the torsional stiffness) and is thus the second reason for
developing this new theory.

1.2 Hypothesis and New Aspects

The bundle torsional stiffness is found out by an equiv-
alent single conductor that presents similar mechanical be-
havior to that of a bundle of any number of subconductors.
Thus, the model of torsion is limited to only one second
order differential equation irrespective of the number of
subconductors. Subconductors are assumed as a, straight
lines between two spacers.

This new theory presents the following new aspects:
The physical mechanism of bundle torsional stiffness is
clarified. The tension differences between subconductors
are included by the connections to anchoring insulators
and depend on suspension attachments. The subconduc-
tor initial angular orientation is introduced. Spacer effects
are taken into account. Inter-span (within a section) inter-
actions are also considered.

2. A NEW THEORY FOR TORSIONAL
STIFFNESS

2.1 Physical Mechanism

Basically, the torsional stiffness of the overhead trans-
mission line describes the rotational resistance of the line
to the external mechanical torques applied along its longi-
tudinal axis.

2.1.1 Single Conductor Torsional Stiffness

The torsional stiffness of a single conductor is rather
constant as long as the tension remains between 10% and
35% of the ultimate tensile strength (UTS).

It increases with the size and the age of the conductor
though there is no fixed relation between these variables.
The increase in stiffness with the age is caused by the lock-
ing of the strands due to oxidation and creep.

The torsional stiffness can be deduced from the local
torque [Nm] required to twist a stressed conductor by 1
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radian, over a span length [m]. The dimension of torsional
stiffness is expressed by Nm?/rad.

The torsional stiffness of a single conductor is rather
low compared to that of a bundle (about 1/20 to 1/10).
The torsional stiffness of a single conductor is an intrinsic
constant value (7) for a given size and age of the conductor
and is independent of the span configuration.

Referring to 87 experimental measurements performed
in Belgium, Canada, France, Japan, USA, etc., 7 is here
given by fitting dots through both new and old (over 20
years) conductors in the log scaling as shown in Fig. 1.
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Figure 1: Measured intrinsic torsional stiffness of single con-
ductors (typical stranded conductors with round-wire, ACSR
and AAAC data are mixed in this figure.)

7 is also a function of the shape of the strand. The
“smooth” conductors with trapezoidal strands present a
sensibly higher intrinsic torsional stiffness. (the result of
such cable is not included in Fig. 1).

From these experimental values, a good approximation
of the intrinsic stiffness of the single conductor in function
of its diameter is found (see Fig. 1). The exponent 4 is
definitely a good choice and is logically from mathemati-
cal expression of the moment of inertia of a cylinder. It
1s fundamental because the exponent 4 gives a torsional

:quency independent of the conductor diameter.

2.1.2 Bundle Conductor Torsional Stiffness

The torsional stiffness of bundle conductors is highly
dependent on the bundle configuration and is nonlinear
for large rotations.

Generally experiments on torsional behavior of bundle
conductors can be performed by either torque-imposed or
angle-imposed methods. The first method is by means of
a Jocal torque applied at a constant radius of the bundle
as a torsional external excitation. The response in the tor-
sional degree of freedom is the bundle rotation angle 4.
"The angle-imposed method is by forcing a rotation angle,
the corresponding torque is then measured by load sensors
in the cable which drives the rotation angle. Fig. 2 shows
the response all along the whole process of the rotation by

an experimental case (the dotted parts oabec, ef, gh and
ij are experimental results, performed by Ontario Hydro
[4] using the torque-imposed method. The angle-imposed
curve is qualitatively overprinted through the authors’ ex-
perience).
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Figure 2: Physical mechanism of bundle torsional stiffness.
Basic data: horizontal twin bundle, 2-span section, span length
Ly = L, = 244 m, subconductor spacing d = 0.457 m, 4 sub-
spans per span. The rotation angles were obtained from the
span where the torque was applied (at mid-span).

Since there is a limit to the torque which can be applied
by the torque-imposed method, there exists a point (point
¢ in this curve) where the bundle will suddenly collapse.
Collapse means that over a given torque, the bundle rota-
tlon grows so large (static instability) that subconductors
of one or several subspans will touch each other. This con-
tact is called “kissing”. After kissing, bundle stiffness is
partially recovered and some other subspans (if any) will
then collapse. The angle corresponding to the Ist collapse
is called the collapse angle.

When the Ist collapse angle is reached, due to the insta-
bility a “jump” (part cde) appears (by the torque-imposed
method) while the 2nd and 3rd collapse (in other subspans)
happen successively. Very large rotations can be observed
in the whole process of collapses (more than 500 degrees
in this case).

The angle-imposed method can give an access to the
full curve, as shown in Fig 2, including stable (solid parts)
and instable (dashed parts) stiffness branches.

Test can’t be reversible by the torque-imposed method.
The system will actually follow the stable branches (solid
parts) and go back through efghijk with some “jumps”
(dashed curves) to avoid unstable branches.

The physical torsional stiffness of bundle conductors is
the tangential torsional stiffness. A negative value of tan-
gential torsional stiffness means unstable branches. Col-
lapse happens when the tangential torsional stiffness is
Z€ero.

Generally the value of the “restoring torque” depends
on the number of subspans in contact. Full restoration is
obtained at a very low torque value compared to collapse
torque. This value is very much influenced by the fittings
and will be detailed in the following parts of this paper.




2.2 Elastic Resultant Torque

subspan K+ 1

subspan K )

Figure 3: Distributed forces on a subconductor and located
reaction forces on a spacer

Under the external excitation, there will appear a set
of distributed forces along the span (see Fig. 3). Due to
the bundle configurations, the torque resulting from the
distributed forces can only evolve at spacer positions, in
addition to the permanent contribution of the intrinsic tor-
sional stiffness of each subconductors (which is in genera] a
limited contribution to the global torsional stiffness and is
null if spacers are with rotating clamps). The distributed
forces (internal forces) are the components of the tension
in each subconductor, in a plane which is perpendicular
to the conductor. Elastic resultant torques are located at
every spacer position, in a plane which is perpendicular
to the conductor and that include the spacer itself. C7,
1s the torque generated by the vertical and the transver
sal components of the located reaction forces (shown in
Fig. 3 as F; and Fy), that result from the integrations of
the distributed forces along subspans. The global resul-
tant torque is then the sum of all the elementary resultant
torques located in each spacer plane for each subconductor:

n Ns
c=> "¢z, (1)
i=1s=1
where N; is the number of subspans and n the number of
subconductors.

If the bundle rotation angle 6 is small, the subconductor
separation is constant along each subspan but is not valid
anymore for large rotations. The relative displacements
between the subconductors should be taken into account.
Tension differences between subconductors will then play a
very important role, in relation to both their directions and
magnitude. The new theory accounts for this effect and
defines a new formulation of the subconductor separation.

2.3 Loads on Spacers

In practice, the multi-conductor bundles have several
Spacers per span. These spacers act on the torsional re-
sponse of the system and their role grows bigger as the
rotation becomes larger and larger. The resultant forces
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acting to the spacer are the reaction forces of the adja-
cent subspans. These forces are due to the vertical and
the transversal components of the tension in the cable (see

Fig. 3).

Subconductor Separation

Spacers are assumed to be weightless in this paragraph.
At the spacer location (referring to Fig. 4 and Fig. 5), the
coordinates of subconductor i are

zi(z) = z(z) + r cos(o; + 6,)

(2)
yi(z) = y(z) + rsin(o; + 6,)

subconductor £

Figure 4: Schematic view of a twin bundle after a 90° differ.
ential rotation (65 — 6,_1) between subspans

where r represents the radius of the bundle and s is the
angular position of spacer s (see Fig. 5). But for large
rotations, the distance between subconductors all along the
subspan will not remain constant. It becomes a function
of z, as shown in Fig. 4 and Fig. 5. o; is the initial angular
position of subconductor 7 in a bundle (e.g. o1 = 0° and
o3 = 180° for a horizontal twin bundle). The coordinates
of any point of subconductor are then:

zi(z) = o(z) + R(z) cos(o; + 6(z))

vi(2) = y(2) + R(2)sin(o; + 0(2))

Referring to Fig. 5, the half of subconductor separation
R(z) is obtained [5] by

®3)

" 63—}-1 - gs

co 5
R(z) = r—= (4)
cos(f — ‘Q*’L;Hi)

which is used in Eq. 3. The value of R(z) can only be equal
to zero when 0,11 — 6, = 7, which means the bundle has
already collapsed. But, the necessary angle of rotation for
a collapse is generally lower than 7.

At any point of a subconductor 7, we have
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Figure 5: Subconductor separation of twin bundles
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T; 1s the subconductor tension and it depends on the stress-
strain relation imposed by torsion [5], under the relation

of

ar;

dF,

T
T,;:;—J-AT.,; (6)

where T' is the mean tension in the bundle. AT; depends on
the fitting of end towers. T; can be considered independent
of z in the actual overhead lines.

The distributed force is then given by integration along

a subspan:

i
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OF, / T,-a—%z—dz
/ 82’ (IS) aZ (7)
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According to the equilibrium condition around the spacer
location point, the resultant and the reaction forces can be

easily computed from Eq. 7.

2.4 Torques at Spacers

For a given spacer, the distributed forces are from both
adjacent subspans. The total resultant forces acting on
this spacer are given by

Fop= —— T —=—zdz
W= op /US)J 5z 2d
2.,
+/ ( - —1>Tia %z
(Uesa) \Dst1 0z
8
Foy = i/ 7. 8% 4 Y
Y ls (15) ! 622 zaz
2,
+/ ( = —1>J;Mdz
(lopn) \lst1 0z°
L. 2
where 83:; and 662% can be derived from Eq. 3.

Torque at the spacer s (of subconductor ¢) is then
C s = Fyylrcos(0s + 04)] — Fog[rsin(0s +03)]  (9)

Total torque is obtained by summing the contribution of
any subspan and any subconductor (Eq. 1).

Some other contributing factors, such as the eccentric
concentrated mass (called pendulum), can be easily intro-
duced in this model [5]. This model can be easily inte-
grated in a simulation software.

2.5 Analytical Expressions

The total torque gives an access to torsional stiffness
GJ using the relation

oc 9%0

=GJ]—

ES 022 (10)

The global expression of the torsional stiffness for small
rotations can be found [5] as

1672
3L

[Kays + Kizg — (K3 + Ka)yozo]
(11)

where L 1s the total length of spans in the whole section.
zo and yo represent initial transversal (if any) and vertical
static sag. K; depends on the flexibility matrix of an-
choring (related to the yoke plate assembly, see 2.6), the
number of subconductor, bundle geometry and the sagging
conditions.

The first term (nt + r2T) of formula (11) is identical
to Nigol theory [4] but the second one is a new term. This
term can be as large as the first one so that neglecting it
can lead to an under-estimation of the bundle torsional
stiffness by about 50%. The second term results only from
the tension differences between subconductors arising from
the anchoring attachment of the bundle. The influence of
this term increases as the number of spans decreases.

Considering horizontal twin bundles, we have two ex-
treme values of torsional stiffness depending on anchoring
attachments:

(12)

GJ = (nT+r2T)+

GJmin = nt+ r°T
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where E represents the Young’s modulus, 4 the cross-
section of one phase. This simplified torsional stiffness
formula (13) allows for the complex bundle stiffness to be
directly calculated from the basic parameters.

2.6 Effects of Yoke Plate at Anchoring Towers

In general, the yoke plate is the attachment plate which
connects the subconductors to the insulators of the anchor-
ing and suspension towers. It is a small triangular plate
for a twin arrangement (see Fig. 6) and a more complex
assembly for other multi-conductor bundles.

Figure 6: Twin bundle yoke arrangement, with the definition
of h

The longitudinal distance (hin Fig. 6) of the yoke plate
Is a characteristic dimension. The anchoring assembly is
described by a flexibility matrix which includes the yoke
plate dimension and other parameters. The flexibility ma-
trix of a twin bundle can be found [1] by:

& 1 -1
T4RT \ -1 1
This means that a small rotation of the yoke plate (in the
plane defined by the conductors which are connected to it)

will induce some small changes of the lengths of subcon-
ductors in the span, which induces

Al &2 | ATy
Aly | 7 4pT \ ~1 1 AT,
Al; is the span length modification of the subconductor 3.
Hence if h = 0, then ATy = AT, = 0, because Al; must
remain finite; if h — 00, then Al; — 0, because AT is
finite.
For example, K; in Eq. 11 for horizontal twin bundles
can be found [5] as K; = K5 = K4 =0 and

(m/N) — (14)

twin

(15)

2L =4

"EA cosoy
+ 2F in
2L tw (cosaz

EA 5y

Ky = (cosoy c0s03)

where ¢y = (° and 09 = 180° in this case.
Regarding suspension attachments, most of the actual
attachments of bundle conductors allow a free longitudinal
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movement between subconductors. Therefore a rotation in
a span also induces a rotation in the adjacent spans. This
has been taken into account in this study.

3. APPLICATIONS
3.1 The Impact of Yoke Plate Design

Table 1 shows the tension variations between subcon-
ductors which are induced by yoke plate design for a rota-
tion of 60° at mid-span. The tension increases this amount
for the subconductor going.down and decreases the same
amount for the subconductor going up.

Table 1: Tension differences (AT; in Eq. 6) by 60° rotation for
a twin bundle section of the Drake conductor with: d = 0,457
m, T/2 = 35600 N, I = 244 m and 4 subspans in each span.

| section |A=0]A=02m | h=0co ]
dead-end span 0 785.3 N [ 1453.8 N
2-span 0 423.5 N 573.7 N

6-span 0 149.1N 1676 N |

The characteristic dimension of yoke plate h could be
considered as “infinite” if A > 2d (see Fig. 7) , where d
is the subconductor separation. We then get 96% of the
maximum value of torsional stiffness. The curve of Fig. 7
illustrates it for a dead-end span.

Generally %/d is rather small. Some configurations
present a ratio h/d = 0.1/0.45 ~ 0.22. It means that
an increase of the yoke plate design from A = 0.1 m (as
usual) to A = 1.1 m will increase the torsional stiffness of
the span of about 20% ! This can easily be achieved by
wnstalling a rigid spacer at about 1 m Jrom the actual yoke
plate attachment.

125 S | e ok 1 G N K ol
0.1 1 10 100 1000
hinlog scaling (m)

Torsional stiffness (torque/rotation) (Nm/deg)

Figure 7: Torsional stiffness as a function of yoke plate design
for a dead-end span of 244 m length, 0.457 m spacing, conductor
diameter 28.2 mm, intrinsic stiffness 158 Nm?2 /rad.

3.2 Influence of the Number of Spans and Types
of Suspension Clamps

Tension differences evolve from the anchoring attach-
ment of the bundle and also depend on the total number
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of spans in a section. The higher the number of spans, the
lower the torsional stiffness. The following simulation gives
details on this aspect. Fig. 8 give details on the influence
of the number of spans on the torsional stiffness.

1.8 T T T T
--------------- B e S Lt R T T T T T,
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= .
g L6 .
Z
PR by the new theory 7
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=
g 14r .
wv
§ L3k with typical suspension sets |
E by Nigol theory
12
1 1 |

1 2 3 4 5 6
number of spans

Figure 8: The influence of the number of spans on torsional
stiffness (same data as used in Table 1)

From Fig. 8§ it can be seen that for the same set of
" ta, the bundle torsional stiffness of a span in a multi-
»pan section is lower than that of a dead-end span section
and depends on the number of spans in the section. In
a multi-span section, the contribution of the anchoring at-
tachment to the torsional stiffness decreases as the number
of span increases. This is the reason why dead-end span
sections can sometimes increase the bundle stiffness more
than 50% by comparing with the same span included in a
multi-span section. This is mainly because in a multi-span
section, conductors can move freely and independently in
longitudinal direction at the suspension clamp locations, so
that tension compensates well from one span to another.
Due to these reasons, Nigol theory can only be applied to a
multi-span section with a number of span higher than three
and with the classical suspension attachment.

It is possible to avoid this relative movement by non-
articulated suspension clamps instead of the typical sus-
pension clamps [6]. The number of span will not influence
the torsional stiffness any more. This will shift the ratio
of frequency (between vertical and torsional motions) to a
s*~mificant amount. In such a case, couplings of torsional
1. .on between spans will disappear. By this way, “up-
and-down” galloping risks of bundles will disappear in most
of the cases. Such new suspension set will increase the tor-
sional stiffness by about 50% (from 1.2 Nm/deg to about
1.8 Nm/deg) and therefore induce a detuning of about 25%
by shifting up the frequency of torsional motions [5, 6].

Thus, only by the change of suspension attachment, the
bundle torsional stiffness of multi-span section can be easily
changed.

4. COMPARISONS

4.1 Comparisons with Nigol’s Results

Actually, all the experiments must remain between two
extreme cases: h = 0 and h = co. Since the values of yoke
plate have not been mentioned in the published results,
two extreme cases will be presented.

Nigol et al gave 45 experiment cases (Fig. 9) on twin
and quad bundles for a 2-span line with one suspension [4].
Fig. 9 shows a systematic under-estimation of the calcu-
lated values of the Nigol theory with respect to the exper-
imental results, especially for long span sections and quad
bundles.

Nigol’s theory can be considered as a particular case
for the new theory, i.e. neglecting the effects of tension
differences between subconductors and this always under
estimates the torsional stiffness.

Some results (two extreme values for each case) by the
new theory are detailed in Fig. 10, which correlate well
with the experimental values. Furthermore, long span and
quad bundle cases can now be well evaluated.

i 1 1 1 1
0 1 2 3 4 5
torsional stiffness (torque/rotation) by Nigol theory (Nm/deg)
Figure 9: Torsional stiffness according to Nigol theory (ex-
tracted from [4])
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Figure 10: Torsional stiffness according to the new theory for
a 2-span section. The range from the minimum (h = 0) to the
maximum (h = o) is given for the same experimental value.
Two extra cases are doted in the same figure.

4.2 Results of Full Scale Field Line

A test had been made in a dead-end span of a 380 kV
transmission line by Laborelec, Belgium. The span length
is 234 m. Its basic data are: AMS 2 x 620 mm? hor-
zontal bundle, subconductor cross-section 4 = 620 mm®.
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