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Abstract

Background subtraction (BGS) is a common choice for
performing motion detection in video. Hundreds of
BGS algorithms are released every year, but combining
them to detect motion remains largely unexplored. We
found that combination strategies allow to capitalize on
this massive amount of available BGS algorithms, and
offer significant space for performance improvement. In
this paper, we explore sets of performances achievable
by 6 strategies combining, pixelwise, the outputs of
26 unsupervised BGS algorithms, on the CDnet 2014
dataset, both in the ROC space and in terms of the
F1 score. The chosen strategies are representative for
a large panel of strategies, including both deterministic
and non-deterministic ones, voting and learning. In our
experiments, we compare our results with the state-of-
the-art combinations IUTIS-5 and CNN-SFC, and re-
port six conclusions, among which the existence of an
important gap between the performances of the individ-
ual algorithms and the best performances achievable by
combining them.
Keywords: motion detection, background subtrac-
tion, combination of algorithms, performance, CDnet

1 Introduction

Background subtraction (BGS) aims at detecting
pixels belonging to moving objects in video se-
quences. It has been very popular over the last
decade, and has given rise to a massive amount
of algorithms predicting either the label BG = 0
(background) or FG = 1 (foreground) in each pixel.

Today, the BGS community is still working
hard to find ways to push the performance. An
overview of the current status is provided by the
changedetection.net platform. It provides the CD-
net 2014 [1] dataset with 53 reference videos,

grouped in 11 categories, for a total number of
150, 000 frames annotated manually at the pixel
level. It also makes publicly available the binary
outputs of various algorithms. And, last but not
least, it helps in comparing algorithms, by report-
ing performance indicators (such as the error rate
ER, the true positive rate TPR, the false positive
rate FPR, the F1 score, etc.), and offers an up-to-
date ranking.

Currently, the effort is almost exclusively fo-
cussing on the development of new algorithms, with
hundreds of them being designed every year. Their
principles can be found in the surveys [2, 3, 4, 5].
Despite the importance of the effort put in this
path, the performance reported on CDnet is sat-
urating.

An alternative path consists in combining algo-
rithms [6]. Surprisingly, only a few papers took
this path. The current state-of-the-art combina-
tions are IUTIS-5 [7] and CNN-SFC [8], which have
been obtained by learning.

In this paper, we are also considering the com-
bination of BGS algorithms. Our contributions are
the following.

First, we innovate by expressing the set of all per-
formances achievable by combination, rather than
discussing a unique algorithm. More precisely, we
explore the pixelwise combinations of 26 unsuper-
vised BGS algorithms, with 6 combination strate-
gies. We also innovate by deliberately focussing on
the combination of the outputs, instead of the in-
trinsic mechanisms for dealing with the input pixel
values.

Second, we point out that the CDnet 2014 plat-
form remains largely underexploited, and show that
the availability of BGS algorithm segmentation
masks makes it possible to go beyond the produc-
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Rank Algorithm
1 PAWCS [9]
2 SuBSENSE [10]
3 WeSamBE [11]
4 SharedModel [12]
5 FTSG [13]
6 CwisarDRP [14]
7 MBS [15]
8 CEFIC [16]
9 MBSv0 [17]

Rank Algorithm
10 CwisarDH [18]
11 EFIC [19]
12 Spectral360 [20]
13 BMOG [21]
14 AMBER [22]
15 AAPSA [23]
16 GraphCutDiff [24]
17 SC_SOBS [25]
18 RMoG [26]

Rank Algorithm
19 Mahalanobis [27]
20 KDE [28]
21 CP3-online [29]
22 GMM-Stauffer [30]
23 GMM-Zivkovic [31]
24 Simplified_OBS [32]
25 Multiscale [33]
26 Euclidean [27]
\ \

Tab. 1: Set of unsupervised BGS algorithms to be
combined.

tion of a leaderboard. Actually, the evaluated al-
gorithms only represent a negligible proportion of
the possible algorithms. But CDnet 2014 contains
all the necessary information to perform a kind of
“algorithmic augmentation” by combining segmen-
tation outputs. By doing so, we capitalize on the
results accumulated over these years.

Third, we demonstrate the richness of our ap-
proach. We report the sets of achievable perfor-
mances, for all considered combination strategies,
in terms of the Receiver Operating Characteristic
ROC = (FPR,TPR) space. We also provide addi-
tional experimental results related to the F1 score.
Based on our results, we draw six conclusions.

The outline of this paper is as follows. Sec-
tion 2 details our methodology. Section 3 gives
an overview of our implementation. We present
and analyze results in Section 4. Finally, Section 5
briefly concludes the paper.

2 Exploration methodology

Our exploration methodology is built upon the fol-
lowing terms, further discussed in the subsections:
(1) what we combine, (2) how the combinations are
performed, and (3) how the performance is mea-
sured.

2.1 The combined algorithms

We have chosen a set of BGS algorithms for which
the binary segmentation masks (outputs) are pub-
licly available on the CDnet platform. They are
listed in Table 1, with their relative ranks in the
leaderboard. Despite that some of these 26 unsu-
pervised algorithms use random numbers, we con-
sider them as deterministic as only one output is
uploaded on the platform. We run experiments in
which the 26 algorithms are combined, and others

in which number of combined algorithms is limited
to 9, which is more realistic in practice.

2.2 The combination strategies

We have chosen the following strategies to combine
the outputs of the chosen algorithms at the pixel
level.

All Combinations. In a stochastic perspective,
the behavior of any combiner is given by the prob-
abilities of predicting FG for each of the 2n pos-
sible joint outputs for the n combined algorithms.
Thus, any combiner can be seen as a point of the
[0, 1]2

n

hypercube, and the 22
n

deterministic com-
biners {0, 1}n → {0, 1} can be seen as its vertices
{0, 1}2n .

Random Choice. A subset of combinations
can be obtained by choosing, at random and ac-
cording to fixed probabilities, either BG, FG, or
one of the combined outputs.

Deterministic combinations. Some deter-
ministic combinations can be obtained by thresh-
olding “soft combinations” whose output is a con-
fidence. Examples include the proportion of algo-
rithms predicting FG [6] (Prop. FG), the Averaged
Bayes’s classifier [6], and BKS [34]. To the best
of our knowledge, BKS has never been applied to
BGS algorithms. The Majority Vote, defined for
any odd n, is a particular case of Prop. FG with the
threshold value τ = 1/2. Note that there is no guar-
antee to improve the performance by the majority
vote [35]. The formulas for these four strategies are
given in Table 2, with the respective number of dis-
tinct combinations that can be obtained by tuning
τ .

Implementing Averaged Bayes requires the
knowledge of the precision and false omission rate
of all combined algorithms. For BKS , we need
to know the probability of foreground for all the
possible joint outputs of the combined algorithms.
These quantities are estimated empirically from a
learning set. In order for our results to be compara-
ble with IUTIS-5 and CNN-SFC, we used the same
learning set LS as in those papers. It is obtained
by aggregating all pixels from the shortest video in
each category of CDnet. This learning set has more
than a billion training samples, which is enough to
estimate the quantities needed by Averaged Bayes
and BKS .
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strategy combination formula amount

Majority Vote 1≥0.5

(
1
n

∑n
j=1 bj

)
= 1

Prop. FG 1≥τ

(
1
n

∑n
j=1 bj

)
= n+ 2

Averaged Bayes 1≥τ

(
1
n

∑n
j=1

(
(1− bj)FOR

(LS)
j + bjPPV

(LS)
j

))
≤ 2n + 1

BKS 1≥τ

(
P

(LS)
FG (b1, . . . ,bn)

)
≤ 2n + 1

Tab. 2: Some deterministic combination strategies.
Here, 1≥τ denotes a thresholding opera-
tion w.r.t. a threshold τ . The output
of the jth combined algorithm is bj ∈
{0, 1}. The constants FOR(LS)

j , PPV (LS)
j ,

and P (LS)
FG (b1, . . . ,bn) are learned with the

learning set LS and correspond, respec-
tively, to the empirical false omission rate
of the jth combined algorithm, to its em-
pirical positive predictive value (precision),
and to the probability of foreground given
all outputs.

2.3 Measuring performances

We determine the performances of the combina-
tions with all the 53 videos of CDnet 2014. All
categories are equally important, and all videos
within any given category receive also an equal im-
portance. CDnet reports the weighted arithmetic
mean of the performance indicators obtained for
each video. Another technique, known as summa-
rization, presents some advantages [36]. Neverthe-
less, in this paper, we stick to the technique of CD-
net to calculate ROC = (TPR,FPR) and F1, as it
is the common practice in the BGS community.

3 Implementation overview

3.1 With the strategy Random
Choice

In the ROC space, the set of performances achiev-
able by choosing one algorithm at random corre-
sponds to the convex hull of the individual perfor-
mances. In particular, for n = 2, it corresponds
to the line segment between the individual perfor-
mances. Note that a similar property is known in
the classical (unweighted) ROC space [37].

3.2 With the strategy All
Combinations

Any given combination can be expressed as a ran-
dom choice between some (2n + 1 are enough) de-
terministic combinations. Thus, the set of all per-
formances achievable by combining the outputs of
n algorithms is, in ROC, the convex hull of the
performances achievable with the 22

n

determinis-
tic combinations. When n is large, measuring the
performances of all the 22

n

deterministic combina-
tions is unrealistic (22

n

= 1.0938× 1020201781 with
n = 26). But, as TPR and FPR are linear with re-
spect to the probabilities to predict FG for the 2n

possible joint outputs, the achievable area in ROC
is a linear projection of the hypercube [0, 1]2

n

, that
is a zonotope. We discovered an efficient way to
compute the vertices on its contour, making it pos-
sible to compute the set of achievable performances
for large values of n (even for n = 26!). For selec-
tions involving fewer BGS algorithms, we obtain an
achievable zonotope per selection and compute the
contour of the union of all these zonotopes.

3.3 With the other strategies
With the other strategies, we proceed by testing
each combination exhaustively, with an optimized
software. Note that there are 5 millions possible
selections of n ≤ 9 algorithms out of 26. Just to
illustrate how difficult it has been to explore their
combinations, the number of possible combinations
is 5.6585× 106 for the Majority Vote, 4.7002× 107

for Prop. FG , and 2.0954×109 for Averaged Bayes
and BKS . In addition, each combination requires
to read 12 billions pixels.

4 Results and observations

We analyze the sets of achievable performances for
the 6 combination strategies and 26 unsupervised
BGS algorithms.

A huge potential for the pixelwise combinations.
Figure 1 shows individual performances and sets of
achievable performances in ROC. According to it,
the margin for improving the BGS performance is
huge. Some pixelwise combinations of outputs (All
Combinations) can drastically outperform all the
individual BGS algorithms listed in Table 1. They
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Fig. 1: The ROC space with the 26 BGS algorithms
(•), previous state-of-the-art combination
results (• for IUTIS-5 [7] and • for CNN-
SFC [8]), and the sets of achievable perfor-
mances with the strategies Random Choice
(� for n = 26, see Section 3.1) and All Com-
binations (� ∪� for n ≤ 9, and � ∪� ∪�
for n = 26, see Section 3.2).

can also largely outperform the simple Random
Choice strategy. Moreover, there exist achievable
performances that are closer to the oracle (upper
left corner) than those of the non-pixelwise combi-
nations IUTIS-5 and CNN-SFC.

There are efficient combination strategies. A
combination strategy is efficient when (1) it pro-
duces a tractable amount of combinations, and (2)
most of the performances achievable with All Com-
binations are also achievable by randomly choos-
ing between some of the combinations produced by
that strategy. Table 2 confirms that the amounts
of combinations produced by our four deterministic
strategies are all largely inferior to 22

n

. Figure 2
facilitates the comparison between the convex hulls
of their performance point clouds and the achiev-
able zone with All Combinations, in ROC. We see
that Prop. FG , Averaged Bayes, and BKS are ef-
ficient (and have approximately the same convex
hulls), but not the classical Majority Vote. Lit-
tle has to be gained from other pixelwise combina-
tion strategies (training decision trees or deep neu-
ral networks, adding some regularization to BKS ,
. . . ) if the amount of combined algorithms is not
increased.
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Fig. 2: The ROC space with the convex hulls of per-
formances achievable by combining n ≤ 9
algorithms with four deterministic strate-
gies (colored curves, see Section 3.3).

It is worth investigating combinations of BGS al-
gorithms. Figure 3 shows that the best F1 scores
are, for n > 1, significantly better than those ob-
tained without combination (n = 1). This suggests
that looking for efficient combinations of existing
BGS algorithms or developing new BGS algorithms
complementary to the existing ones, even if not
necessarily better, might be more profitable than
searching for the best algorithm. Despite the fact
that this conclusion was already drawn in [6], the
BGS community continues to propose hundreds of
new BGS algorithms every year, the best of which
work barely better than the state of the art, with-
out investigating the contribution of the proposed
algorithms when combined with those already de-
scribed in the literature.

How should we combine? Figure 3 also helps
in observing that our four deterministic strategies
achieve the same maximal F1 score for n ∈ {2, 3}.
For 4 ≤ n ≤ 9, the ranking according to F1 is:
Majority Vote ≤ Prop. FG ' Averaged Bayes ≤
BKS. Despite that, the improvement of Averaged
Bayes and BKS performance is too small to bal-
ance their much larger amount of combinations to
test in practice.
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Combination strategy Selection of BGS algorithms n Threshold τ F1 score

Previous works IUTIS-5 [7] SuBSENSE + FTSG + CwisarDH + Spectral360 + AMBER 5 None 0.7821
CNN-SFC [8] SuBSENSE + FTSG + CwisarDH 3 Unknown 0.8243

Ours

Majority Vote PAWCS + WeSamBE + FTSG + CwisarDRP + MBS + CEFIC + MBSv0 + EFIC + GraphCutDiff 9 None 0.8380
Prop. FG PAWCS + WeSamBE + FTSG + CwisarDRP + MBS + CEFIC + MBSv0 + EFIC 8 7/16 0.8401

Averaged Bayes PAWCS + WeSamBE + FTSG + CwisarDRP + MBS + CEFIC + MBSv0 + EFIC + GraphCutDiff 9 0.2918 0.8421
BKS PAWCS + FTSG + CwisarDRP + MBS + CEFIC + MBSv0 + EFIC + Euclidean 8 0.2720 0.8487

Tab. 3: Summary of F1 scores including those of previous works (non-pixelwise combinations), and the
maximum scores that are achievable with our four deterministic combination strategies by tuning
the selection of algorithms and the threshold (pixelwise combinations). Note that our best score
(0.8487) surpasses the one of CNN-SFC.
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Fig. 3: Best F1 scores for four deterministic com-
bination strategies obtained with respect to
the number n = k, k ∈ {1, . . . , 9} of com-
bined BGS algorithms. Gray bars indicate
the results obtained with the top-n algo-
rithms (ranking of CDnet) instead of an op-
timized selection of n algorithms.

What should we combine? For any given n, it
might be tempting to combine the top-n algo-
rithms. In fact, Figure 3 shows that we can do
much better by carefully cherry picking the com-
bined algorithms among all the available ones (see
colored bars vs. gray bars). Moreover, the differ-
ence in performance between a colored bar and the
corresponding gray bar is, in most cases, greater
than the difference in performance between adja-
cent gray bars. This suggests that knowing pre-
cisely what to combine is more important than
knowing precisely how to combine. Poorly ranked
algorithms can be useful when combined with oth-
ers, even if they do not perform well alone. This
is illustrated in Table 3, where we can observe that
our best result are obtained by selecting algorithms

in different zones of the leaderboard.

A new “state-of-the-art” F1 score on CDnet
2014. Our four deterministic strategies can out-
perform IUTIS-5 and CNN-SFC when the com-
bined algorithms and the threshold τ are ade-
quately chosen. As shown in Table 3, our results
establish a new “state-of-the-art” F1 score of 0.8487
on CDnet 2014, against 0.8243 for the previous one.

5 Conclusion

To push the performance in BGS, one can either
develop new algorithms and publish their results
on CDnet, or develop combinations based on the
results already available on this platform. Our re-
sults show that such combinations have the poten-
tial to outperform the individual algorithms. This
has resulted in six conclusions. Our findings were
all made possible thanks to the availability of out-
puts on the CDnet platform, a choice that should
be promoted for all challenges!
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