
Enhanced CUSUM control charts for
monitoring Coefficient of Variation: A case

study in Textile industry ?

P. H. Tran ∗ C. Heuchenne ∗∗ S. Thomassey ∗∗∗
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Abstract: The recent blooming developments of Artificial Intelligence (AI), Internet of Things
(IoT), and Data Science (DS) have put Smart Manufacturing (SM) into a new context. This
leads to more attractions on control charts as one of the useful tools that contribute to the
success in SM by anomaly detection (AD) approach. Coefficient of variation (CV) is a recent
popular statistic that is used in the quality control of SM. In this paper, we propose investigating
the performance of Cumulative sum (CUSUM) control charts monitoring CV with a fast initial
response (FIR) strategy. The chart parameters are also optimized according to the random
shift size in a given interval with the proposed Nelder-Mead optimization algorithm. The
numerical results show that the performance of FIR CUSUM-γ2 charts are greater than the
initial CUSUM-γ2 ones. An example in monitoring yarn quality at the spinning mill with the
design of FIR CUSUM-γ2 charts is also proposed. These findings are useful for practitioners
as well as managers and researchers. The proposed design of FIR CUSUM-γ2 charts could be
applied in other processes of various domains such as finance, business, industrial processes, etc.

Keywords: Smart Manufacturing, SPM, CUSUM control charts, Coefficient of Variation, FIR,
Textile Industry, AI, IoT, DS, quality control.

1. INTRODUCTION

Together with the rapid development of Artificial Intelligence
(AI), Internet of Things (IoT), and Data Science (DS),
manufacturing industry has been faced with various
opportunities and challenges. Manufacturing process takes
advantages of these advancements that lead to boosting
the productivity and efficiency. Meanwhile, manufacturing
industry is also under the pressure adaptation to the
new trend namely Smart Manufacturing (SM). SM is a
complicated term that describes the manufacturing of the
future with both objects and process integration including
current and tomorrow manufacturing assets with sensors,
computing platforms, communication technology, data
intensive modelling, control, simulation, and predictive
engineering, see Kusiak (2018). Generally, SM relates to
terms such as the cyber-physical systems, IoT, cloud
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computing, service oriented computing, AI and, DS.
Therefore, the recent blooming developments of AI, IoT,
and DS have put SM into a new context, see more in
Phuyal et al. (2020); Khan et al. (2020).An efficiently
SM implementation is an object that have received a
great attention from the science community as well as
government.

Recently, Tran et al. (2022) suggested control charts as one
of the useful tools that contribute to the success in SM by
anomaly detection (AD) approach. The idea of this AD
approach is to find the instance that does not conform to
previously defined normal one, see Chandola et al. (2009).
Control charts therefore can be used by detecting early
the out-of-control state to guarantee the product quality
in manufacturing process, see Tran (2022). Control chart
is a tool of Statistical Process Monitoring (SPM) that
is inspired by Shewhart (1924) from the 20th century.
The practitioners monitor the process throughout a set
of activities such as sampling, calculating the quality of
interest, and plotting this value on the chart. A Shewhart
control chart includes a central line and the control
limits. The process is in-control if the sample point falls



into the interval between the control limits, if not, it
can be said out-of-control. The role of the practitioners
then is to determine special causes and find the way to
eliminate them. The Coefficient of Variation (CV) is a
common statistical measure of dispersion that has several
applications to detect changes in the manufacturing
process. It is defined as a ratio of the standard deviation σ
to the mean µ of a normal distribution. In textile industry,
the CV represents for the variation in thickness of the
yarn, see Spencer-Smith and Todd (1941). The CV of
mass is calculated by the ratio of the standard deviation of
mass variation to average of one. Besides, another notation
is also used to determine the thickness of the yarn or
variation in weight per unit length of the yarn is percentage
of mean deviation (PMD). It means the average value
for all the deviations from the mean, see Hasanuzzaman
et al. (2015). PMD is also denoted by Unevenness% or
U% that found by the Uster Company, see Hossain and
Samanta (2019). Both CV and U% are used to express
the irregularity of yarns in which CV has received more
attention than U% from the science community, see Gauri
(2005); Jambur et al. (2018). The higher CV value, the
more irregular the yarn. In a spinning mill, yarn is the final
product that is produced by steps as follows. According to
Gauri (2005), a mass of raw cotton is gradual cleaned and
drafted to a long thin strand of cotton. This procedure
then twists this strand of cotton to create a yarn. It is
noted that the yarn production involves the processing of
raw cotton in different machines at different stages. The
existence of any difference between machines could be the
cause that leads to high variability in any output stage. He
also mentioned that because of the series of the operations,
the variation induced at any stage still effects on yarn
resulting in high variability of count at the final output.
The more increase in variability of textile strands, the more
increase in linear density. The linear density is defined as
the count of a yarn. This provides attribute information
like the fineness, and governs the appearance and behavior
of the various types of yarns and fabrics. When a yarn has
higher variability of linear density, a larger number of thin
and thick places along the length of the yarn are found.
As a result, the yarn easily is breakage during the spinning
and subsequent weaving/knitting operations. This leads to
lower productivity as well as poorer appearance quality
of the woven/knitted fabric. Moreover, uneven shades
are found when this woven/knitted fabric is dyed .Thus,
Gauri (2005) considered CV as a good measure of the
variability of linear density because of the possibility of
the comparison of different yarns and intermediate output
stage without weight reference. As we can see, CV plays
an important role in the control issues of yarn quality at
the spinning mill; however, there is a lack of study about
monitoring CV with control charts in textile industry in
the literature until now.

Besides, Kang et al. (2007) has been as the pioneer in the
SPM community that put attention in monitoring the CV
based Shewhart control chart. Recent time have been a
flourish period with numerous studies about CV based on
control charts such as the exponentially weighted moving
average (EWMA) (Tran et al. (2019)), the synthetic (Tran
et al. (2018)), the Run Rules (Tran et al. (2021)), the
variable sampling interval(Nguyen et al. (2019)), and
the cumulative sum (CUSUM)(Tran and Tran (2016),

Tran and Heuchenne (2021), Tran et al. (2019)).Moreover,
in comparison with various numerous control charts, it
is worth to highlight that the CUSUM control chart
monitoring CV give a better statistical performance in
detecting small shifts of the process, see in Tran and Tran
(2016). Furthermore, an important assumption in these
designing CUSUM charts is that the process stars from
an in-control state. People, however, find it difficult in
some real cases that process is not the same as proposed
assumption. In order to deal this issue, an approach
suggested by Lucas and Crosier (2000) namely fast initial
response (FIR) strategy is used. The value of specified
positive headstart C+

0 = C−
0 = c in the design of CUSUM

with FIR strategy is set between 0 and control limit H
instead c = 0 like in tradition CUSUM control charts.
Although this approach has competitive advantages in
performance, there is still lack of understand about design
of CUSUM control charts with FIR strategy monitoring
CV.

The purpose of this study therefore is to investigate the
design of CUSUM control charts monitoring the CV with
FIR strategy in order to fill these current gaps in the
literature. A context of textile industry implementation is
also considered. Moreover, the chart parameters are also
optimized. The research outcomes could be applied not
only in textile industry but also in diverse fields such as
finance, business, industry processes, etc.

The rest of the paper is organized as follows. A brief
introduction about the distribution of the sample CV
as well as the CUSUM-γ2 control charts is presented in
Section 2 and 3, respectively. The performance evaluation
and comparison between initial CUSUM-γ2 and CUSUM-
γ2 with FIR strategy control charts are proposed in
Section 4. Section 5 provides an illustrative example in
a spinning mill of the use of the proposed charts. Some
suggestions and remarks are given in Section 6.

2. THE DISTRIBUTION OF THE SAMPLE CV
SQUARED

The distribution of the sample CV squared is briefly
described in this section.

Let us consider X as a positive random variable with
the mean µ and the standard deviation σ are defined as
follows, respectively: µ = E(X), σ = V(X). The CV of the
random variable X is defined as the ratio of the σ to the
µ

γ =
σ

µ
.

Suppose that observed subgroups {X1, . . . , Xn} are n
independently and identically distributed normal (i.i.d.)
random variables with the mean µ and standard deviation
σ. Let X̄ and S be the sample mean and the sample
standard deviation of X1, . . . , Xn. They are defined as
follows

X̄ =
1

n

n∑
i=1

Xi,

and

S =

√√√√ 1

n− 1

n∑
i=1

(Xi − X̄)2.



The sample CV γ̂ then is

γ̂ =
S

X̄
.

The exact following c.d.f (cumulative distribution function)
of the sample CV squared γ̂2 is:

Fγ̂2(x|n, γ̂) = 1− FF
(
n

x

∣∣∣ 1, n− 1,
n

γ2

)
, (1)

where FF

(
.
∣∣∣1, n− 1, nγ2

)
is the c.d.f. of the noncentral

F distribution. The p.d.f (probability density function) of
the sample CV squared γ̂2 is

fγ̂2(x|n, γ̂) =
n

x2
fF

(
n

x

∣∣∣ 1, n− 1,
n

γ2

)
, (2)

where fF

(
.
∣∣∣1, n− 1, nγ2

)
is the p.d.f of the noncentral F

distribution, see more in the studies of Tran et al. (2019)
and Tran et al. (2021).

3. CUSUM-γ2 CONTROL CHARTS

Let us assume that {Xi,1, Xi,2, . . . , Xi,n} at time i =
1, 2, . . . is an observed subgroup of n i.i.d. random
variables, in which each random variable Xi,j follows a
normal distribution with parameters (µi, σi). The CV of
in-control process is denoted by γ0 with the constraint
relation γi = σi

µi
= γ0. This leads an important implication

that each subgroup might has diverse µi and σi values,
but it’s CV γi = σi

µi
remains constant, i.e. equal to some

predefined in-control values γ0, see Tran et al. (2019).
Althought there are no closed-form of the in-control mean
µ0 and standard deviation σ0 of the sample CV squared
γ̂2, the accurate approximations of these parameters are
provided by Breunig (2001).

According to Tran and Tran (2016), the following two
separate one-sided CUSUM charts are used for monitoring
CV squared:

• An increase in the CV is detected by an upward
CUSUM chart as follows:

C+
i = max(0, C+

i−1 + (γ̂2i − µ0(γ̂2))−K+) (3)

with the initial value C+
0 = 0 and the corresponding

upper control limit UCL+ = HU × µ0(γ̂2) > 0,

• A decrease in the CV is detected by a downward
CUSUM as follows:

C−
i = max(0, C−

i−1 − (γ̂2i − µ0(γ̂2))−K−) (4)

with the initial value C−
0 = 0 and the corresponding

lower control limit UCL− = HD × µ0(γ̂2) > 0.

where K+ = KU ×σ0(γ̂2) and K− = KD×σ0(γ̂2) are the
reference charts’parameters, in which KU and KD are the
charts parameters needed to be found.

The performance of the CUSUM-γ2 charts is evaluated
through average run length (ARL), see in study of Tran
and Tran (2016). This statistic is considered as the average
number of samples before the first out-of-control point
is plotted in the control chart. In order to calculate the
ARL, a method suggested by Tran et al. (2019) is to use

x

y

H0 = 0
δ

Hi−1

...

Hi 2δ

Hi+1

...

Hp−1

H+

Fig. 1. Division of control limit interval for upward chart
in the Markov chain approach

the Markov chain. It is noted that the first sub-interval is
δ = H+

2p−1 (δ = H−

2p−1 ) in width while the others are 2δ in

width. Figure 1 shows these subdivisions for the upward
chart.

Each transient state of the Markov chain is figured by each
sub-interval (Hj−δ,Hj+δ], where the midpoint of the sub-
interval j is denoted by Hj with j=0,..,p-1, see more Tran
and Tran (2016).

Second, the discrete-time Markov chain has the transition
probability matrix as follows P

P =

(
Q r
0T 1

)
=


Q0,0 Q0,1 . . . Q0,p−1 r0
Q1,0 Q1,1 · · · Q1,p−1 r1

...
...

...
Qp−1,0 Qp−1,1 . . . Qp−1,p−1 rp−1

0 0 · · · 0 1

 ,

where Q is the (p, p) matrix of transient probabilities,
0 = (0, 0, . . . , 0)T and r is p-vector satisfying r = (1−Q1)
with 1 = (1, 1, . . . , 1)T .

The matrix Q of the upward and the downward charts
has the elements Qi,j which are calculated by the formulas
respectively as follows:

• The upward chart has:

Qi,0 = Fγ̂2
(
µ0(γ̂2) −Hi +K+ + δ

∣∣n, γ1) and (5)

Qi,j = Fγ̂2
(
µ0(γ̂2) +Hj −Hi + δ +K+

∣∣n, γ1)
−Fγ̂2

(
µ0(γ̂2) +Hj −Hi − δ +K+

∣∣n, γ1) ; (6)

• The downward chart has:

Qi,0 = 1 − Fγ̂2
(
µ0(γ̂2) +Hi −K− − δ

∣∣n, γ1) and (7)

Qi,j = Fγ̂2
(
µ0(γ̂2) +Hj −Hi + δ +K−∣∣n, γ1)

−Fγ̂2
(
µ0(γ̂2) +Hj −Hi − δ +K−∣∣n, γ1) , (8)

where Fγ̂2(.) is the c.d.f. of γ̂2 in (1).

Next, let q be the (p − 1, 1) vector of initial probabilities
associated with the p transient states, q = (q0, q1, . . . , qp−1)T .
Regarding the zero-state ARL of performance, it can be



seen the “restart state” corresponds to the initial state
with q = (1, 0, . . . , 0).

The ARL value of the CUSUM-γ2 control chart is
computed by the formula as follows

ARL = qT (I−Q)−11. (9)

Finally, a CUSUM-γ2 control chart is defined by the
upward and downward CUSUM-γ2 chart coefficients,
denoted by the parameters (K+, H+) and (K−, H−),
respectively. In order to evaluate performance of the
charts, the ARL measure, can be numerically calculated
for a particular shift size τ is used. If the values τ ∈ (0, 1),
it can be said that is a decrease of the nominal CV while
τ > 1, that is an increase of the nominal CV.

In general, the design of the CUSUM-γ2 charts is
implemented by finding out the optimal couples (K+, H+)
or (K−, H−) that minimize the out-of-control ARL1 for a
given in-control value ARL0 with Nelder Mead method
where the ARL value is calculated based on the formula
(9) with the c.d.f. of γ̂2 is defined in (1). This procedure
includes two main steps:

(i) The potential combinations (K+, H+) or (K−, H−)
would to be defined in case ARL = ARL0, where
ARL0 is a predefined in-control ARL value.

(ii) An optimal combination chosen among these ones
which is said (K∗+, H∗+) or (K∗−, H∗−), that gives
the best performance, i.e. the smallest out-of-control
ARL value for a particular shift τ , from an in-control
value γ0 to an out-of-control value γ1 = τγ0.

It is noted in the study of Tran and Tran (2016) that the
process starts from an in-control state. Thus, the value
is set by C+

0 = C−
0 = 0 for the design of the CUSUM-

γ2 control charts. In fact, however, this assumption is
not appropriate in some practice cases. The out-of-control
state may be appear when the process starts or is restarted
after an adjustment. Therefore, Lucas and Crosier (2000)
suggested a fast initial response (FIR) strategy that can
be used in such special situations. Following this method,
the design of the FIR CUSUM chart is still the same as
the design of the standard CUSUM chart but the process
is modified by initially setting a CUSUM to a specified
positive headstart C+

0 = C−
0 = c with the value of c

∈ (0, H) in stead of c = 0. A significant advantage of
the FIR strategy is that the CUSUM chart performance is
improved when the process starts from an out-of-control
state but costs only a small penalty when it starts in
control. See more discussion about FIR features in the
studies of Sanusi et al. (2017) and Hawkins and Olwell
(1998).

4. PERFORMANCE EVALUATION AND
COMPARISON

In the current study, the FIR CUSUM-γ2 control chart
is applied with the values of k∗+ and k∗− following
the study of Tran and Tran (2016). Table 1 and Table
2 present the value of reference coefficients h∗+(h∗−)
and the corresponding ARL1 of the FIR CUSUM-γ2,
respectively. A various of situations of the headstart as c ∈{

0, 0.25H, 0.5H, 0.75H
}

is considered. The performance of

the CUSUM-γ2 control chart is improved when using FIR T
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Phase II

k X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Si X̄i γ̂2i C+
i

1 9.59 10.21 10.23 9.58 9.76 9.69 10.46 9.21 10.26 10.08 0.3969 9.9071 0.0016 0.008985
2 9.48 10.71 10.04 9.99 10.54 10.73 10.00 11.16 9.76 10.52 0.5191 10.2918 0.0025 0.008902
3 20.49 18.92 20.11 20.01 20.86 20.71 18.94 19.28 20.72 20.86 0.7827 20.0901 0.0015 0.007799
4 20.48 20.92 19.60 21.20 20.77 21.83 20.70 19.33 20.78 20.17 0.7336 20.5774 0.0013 0.006443
5 18.83 19.91 18.87 20.90 21.03 20.19 19.59 20.38 20.97 19.24 0.8427 19.9919 0.0018 0.005601
6 19.62 19.34 21.17 17.87 20.66 19.77 18.81 19.21 18.92 20.57 0.9929 19.5939 0.0026 0.005548
7 21.54 21.21 20.55 20.26 20.49 19.74 20.69 18.63 19.36 22.05 1.0235 20.4530 0.0025 0.005425
8 10.66 9.58 10.06 8.87 10.44 10.12 9.53 9.20 9.92 9.68 0.5477 9.8067 0.0031 0.005915
9 21.04 18.78 19.62 20.95 19.49 19.42 20.65 21.02 17.97 18.45 1.1313 19.7405 0.0033 0.006575
10 11.43 9.92 10.65 8.71 9.31 9.72 10.02 9.89 10.75 9.59 0.7777 9.9995 0.0061 0.010005
11 10.27 9.93 11.06 9.78 9.21 10.42 9.46 10.77 8.42 9.86 0.7710 9.9198 0.0060 0.013419
12 9.38 9.43 9.04 10.30 8.21 10.37 10.18 9.96 9.83 10.18 0.6834 9.6886 0.0050 0.015766
13 10.41 10.71 9.84 10.15 10.33 8.64 10.44 10.58 9.80 10.92 0.6457 10.1819 0.0040 0.017162
14 19.89 20.20 18.01 19.19 21.04 18.66 19.93 20.27 18.79 18.17 0.9987 19.4151 0.0026 0.017181
15 22.51 19.60 21.26 19.50 18.52 18.54 18.30 20.60 21.52 21.07 1.4562 20.1424 0.0052 0.019785
16 22.04 18.73 18.94 18.67 20.76 20.55 20.15 20.20 20.21 21.68 1.1578 20.1939 0.0033 0.020445
17 9.55 9.65 11.64 9.92 10.53 10.42 7.91 11.50 10.22 9.86 1.0550 10.1210 0.0109 0.028679
18 10.33 9.14 9.66 11.50 11.03 8.31 10.13 12.04 9.66 9.09 1.1648 10.0898 0.0133 0.039373
19 19.54 17.58 19.84 22.34 19.89 20.78 22.59 22.12 20.30 17.13 1.8635 20.2101 0.0085 0.045251
20 20.54 21.20 19.48 19.74 20.83 20.55 21.47 17.47 20.26 18.54 1.2397 20.0065 0.0038 0.046471

Table 3. Illustrative example for dataset used
for Phase II.

strategy. The higher C0 = c, the lower ARL1 is showed
through the numerical results as follows. According to
table 2, when n = 5, γ0 = 0.1, τ = 0.8, ARL1 = 20.025
with C−

0 = 0 and ARL1 = 7.6025 with C−
0 = 0.75H−.

Furthermore, the value of h∗+(h∗−) corresponding to the
control limit H∗+(H∗−) increases when c increases. Table
1 presents the optimal values of reference coefficient are
h∗+ = 4.0796 and h∗+ = 4.2962 when C0 = 0 and C0 =
0.75H+ respectively with n = 7, γ0 = 0.05, τ = 1.3.As
a result, a head start routinely is highly recommend in
order to obtain better performance in designing a CUSUM
control chart monitoring the CV.

5. APPLICATION IN REAL INDUSTRIAL SCENARIO

In this section, we discuss the implementation of an
upward CUSUM-γ2 control chart with FIR strategy in
textile industry. The context of this study is on the
quality monitoring of yarns at the spinning mill. Quality
control is carried out on a production line with outputs of
two yarns of different diameters. The quality practitioner
decided to monitor irregularities in textile yarn by using
the CV. According to Gauri (2005), an increase in CV
would lead to a high possibility of yarn breakage during
weaving. This can say that it is worth to detect early an
increase in CV with the upward FIR CUSUM-γ2 control
chart. The data of this case study is simulated with the
real context discussed above. Assume that, from phase
I data, γ̂0 is estimated, and is equal to 0.05. Let us
consider an experiment for Phase II. We have sample size
n = 10 yarns with length 25 cm every 30 minutes. The
yarns are then weighed (in mg) and recorded in the data
sheet. Table 3 shows a set of simulated samples collected
from the process, the corresponding 2 different sizes of
yarns and the γ̂2i , C+

i statistics. In fact, according to the
process engineers, a shift of 10% in the CV should be
interpreted as a signal that something is going wrong in
the production of yarns. For the upward FIR CUSUM-γ2

chart the parameters (UCL+ = 0.012921, K = 0.1058298,
C0 = 0.01) can be obtained numerically. We assume that
the process is to run in-control up to sample 10th. Next, we
simulated the occurrence of an assignable cause shifting γ0
to γ1 = 1.1× γ0 between samples 10th and 11th, i.e. a CV
percentage increase equal to 10%. The Figure 2 showed
that the upward CUSUM-γ2 control chart signals the
occurrence of the out-of-control signal at sample 11th. This
confirms the greater effectiveness of the proposed CUSUM
-γ2 FIR charts in comparison with tradition CUSUM-γ2

control charts in detecting process anomalies.
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Fig. 2. FIR CUSUM-γ2 charts applied to the textile
process (Phase II)

6. CONCLUDING REMARKS

Designs of new CUSUM control charts with FIR strategy
for monitoring the CV are developed in this paper.
Moreover, the chart parameters are also optimized according
to the random shift size in a given interval with the
proposed optimization algorithm. The performance of
FIR CUSUM-γ2 charts are greater than initial CUSUM-
γ2 ones. These findings are useful for practitioners, as
well as managers and researchers. An experiment in
monitoring yarn quality at the spinning mill with design
of FIR CUSUM-γ2 charts also proposed that are the first
contributions in the literature. The research outcomes
could be applied in different areas such as finance,
business, industry processes, etc.
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