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BACKGROUND: The effects of endocrine-disrupting chemicals (EDCs) on fertility and reproductive development represent a rising concern in modern
societies. Although the neuroendocrine control of sexual maturation is a major target of EDCs, little is known about the potential role of the hypothal-
amus in puberty and ovulation disruption transmitted across generations.
OBJECTIVES:We hypothesized that developmental exposure to an environmentally relevant dose of EDC mixture could induce multi- and/or transge-
nerational alterations of sexual maturation and maternal care in female rats through epigenetic reprograming of the hypothalamus. We investigated
the transmission of a disrupted reproductive phenotype via the maternal germline or via nongenomic mechanisms involving maternal care.

METHODS: Adult female Wistar rats were exposed prior to and during gestation and until the end of lactation to a mixture of the following 13 EDCs:
di-n-butyl phthalate (DnBP), di(2-ethylhexyl) phthalate (DEHP), bisphenol A (BPA), vinclozolin, prochloraz, procymidone, linuron, epoxynaxole,
dichlorodiphenyldichloroethylene, octyl methoxynimmate, 4-methylbenzylidene camphor (4-MBC), butylparaben, and acetaminophen. Perinatally
exposed offspring (F1) were mated with unexposed males to generate germ cell (F2) and transgenerationally exposed (F3 and F4) females. Sexual
maturation, maternal behavior, and hypothalamic targets of exposure were studied across generations.

RESULTS: Germ cell (F2) and transgenerationally (F3) EDC-exposed females, but not F1, displayed delayed pubertal onset and altered folliculogene-
sis. We reported a transgenerational alteration of key hypothalamic genes controlling puberty and ovulation (Kiss1, Esr1, and Oxt), and we identified
the hypothalamic polycomb group of epigenetic repressors as actors of this mechanism. Furthermore, we found a multigenerational reduction of
maternal behavior (F1–F3) induced by a loss in hypothalamic dopaminergic signaling. Using a cross-fostering paradigm, we identified that the reduc-
tion in maternal phenotype was normalized in EDC-exposed pups raised by unexposed dams, but no reversal of the pubertal phenotype was achieved.
DISCUSSION: Rats developmentally exposed to an EDC mixture exhibited multi- and transgenerational disruption of sexual maturation and maternal
care via hypothalamic epigenetic reprogramming. These results raise concerns about the impact of EDC mixtures on future generations. https://doi.
org/10.1289/EHP8795

Introduction
Endocrine-disrupting chemicals (EDCs) affect populations as
much as individuals, given their environmental ubiquity (Gore
et al. 2015). Close to 800 compounds are known or suspected to
have the ability to disrupt normal endocrine function (Bergman
et al. 2013) and induce a higher risk of diseases such as reproduc-
tive failure, cancer, obesity, metabolic syndrome, and neurodeve-
lopmental disorders (Demeneix and Slama 2019). Small-scale
studies have shown that follicular fluid samples of women visit-
ing fertility clinics contained a wide array of chemicals with
endocrine-disrupting activity, such as dichlorodiphenyltrichloro-
ethane (DDT), phthalates, bisphenol A (BPA), and perfluorinated
compounds (Petro et al. 2012, 2014), indicating direct exposure
of maturing oocytes and their surrounding steroid-producing
cells. In current human pregnancy conditions, it is estimated that

a woman and her fetus are exposed to a low-dose mixture of at
least 100 EDCs (Demeneix and Slama 2019). In rodents, several
EDCs in combination have been shown to produce effects at
doses that individually are not associated with any observable
response (Axelstad et al. 2014; Christiansen et al. 2009; Hass
et al. 2017; Howdeshell et al. 2008; Johansson et al. 2016).
Expert panels have recently urged for further studies using envi-
ronmentally relevant doses (EFSA 2019; Gore et al. 2015), which
are crucial from a regulatory point of view because current risk
assessment is solely based on the effects of individual chemicals.

Normal puberty is essential for achievement of reproductive
capacity. Several epidemiological (Aksglaede et al. 2009; Parent
et al. 2015) and animal (Franssen et al. 2016; López-Rodríguez et al.
2019) studies have suggested that pubertal timing is affected by
EDCs and could be an early marker of fertility issues detected later
in life. The rapid secular trend in age at onset of puberty reported
around the world is likely due to the effect of exogenous environ-
mental factors, including EDCs (Biro et al. 2010; Parent et al. 2015,
2003).Although the causal link betweenEDCexposure and pubertal
timing in humans remains difficult to establish, several studies
(Table 1) have shown a disruption of the neuroendocrine control of
puberty in rodents, sheep, and nonhuman primates after develop-
mental exposure to single (Collet et al. 2010; Franssen et al. 2016;
Gao et al. 2018;Kurian et al. 2015;Naulé et al. 2014; Ruiz-Pino et al.
2019; Zalko et al. 2016) andmixtures of EDCs (Axelstad et al. 2014;
Hass et al. 2010; Johansson et al. 2016) at environmentally relevant
doses as summarized in Tables 1 and 2 for the compounds used in
our study. In mammals, sexual maturation is driven by increased
pulsatile secretion of hypothalamic gonadotropin-releasing hor-
mone (GnRH) released into the portal vasculature, ultimately stimu-
lating pulsatile release of luteinizing hormone (LH) from the
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pituitary into the peripheral circulation and inducing ovarian steroi-
dogenesis and ovulation (Ojeda and Skinner 2006). During the pre-
pubertal period, the secretory activity of GnRH neurons is silent,
under predominant trans-synaptic inhibitory control provided by
GABAergic, Opiatergic, and RFamide inputs (Ojeda et al. 2003). At
puberty this inhibition is lifted, and a concomitant increase in excita-
tory inputs to the GnRH network is provided by glutamatergic and
kisspeptin neurons (Clarkson and Herbison 2006; Terasawa et al.
2018). Recent evidence suggests that this trans-synaptic activation is
controlled by an epigenetic switch. This epigenetic switch coordi-
nates the transcriptional activity of arcuate nucleus (ARC) kisspep-
tin neurons implicated in stimulating GnRH release (Lomniczi et al.
2013; Toro et al. 2018). Before puberty, the transcriptional activity
of Kiss1, the gene encoding kisspeptins, was found to be down-
regulated by members of the polycomb group (PcG) of transcrip-
tional repressors, by catalyzing the trimethylation of histone 3 at ly-
sine 27 (H3K27me3), a histone mark associated with gene silencing
(Lomniczi et al. 2013). As puberty approaches, the PcG is evicted
from the Kiss1 promoter, and the Trithorax Group (TrxG) of epige-
netic activators is recruited, resulting in increased histone methyla-
tion at lysine 4 (H3K4me3) and acetylation at lysine 27 (H3K27ac)
to the Kiss1 promoter/enhancer regions, respectively, leading to an
increase in Kiss1 mRNA transcription (Toro et al. 2018). Several
studies have identified Kiss1 expression as a target of EDCs (Table
1, see Lopez-Rodriguez et al. 2021 for review) in the anteroventral
periventricular nucleus (AVPV) (Losa et al. 2011; Naulé et al. 2014;
Ruiz-Pino et al. 2019; Wang et al. 2014) and the arcuate nucleus
(ARC) (Cao et al. 2012; Hu et al. 2013; Losa et al. 2011; Ruiz-Pino
et al. 2019) cell populations, potentially resulting in abnormal pu-
berty and ovulation (López-Rodríguez et al. 2019;Mahalingamet al.
2017; Patel et al. 2017; Santamaría et al. 2016), but no study so far
has identified the pathways conveying epigenetic information from
environmental disruptors to the hypothalamic cells controlling
pubertal onset and ovulation.

Although the direct long-lasting consequences of developmental
exposure to EDCs have been extensively addressed (Demeneix and
Slama 2019; Gore et al. 2015), the consequences across generations

is only starting to be studied (Brehm and Flaws 2019; Lopez-
Rodriguez et al. 2021). Exposure through maternal lineage (F0),
leads to direct exposure of F1 pups in utero and/or through lactation,
whereas F2 pups are directly exposed as germ cell. This phenom-
enon is known as mutigenerational inheritance. Transgenerational
inheritance requires the study at least of the F3 generation when
indirect action of the exposure is largely explained by alterations in
the epigenetic reprogramming of the germline. Transgenerational
consequences of EDC exposures through maternal lineage (Table
2) have been observed on pubertal timing (Rattan et al. 2018b;
Zhou et al. 2017; Ziv-Gal et al. 2015), female fertility, and ovarian
follicle development (Berger et al. 2016; Brehm et al. 2018;
Drobna et al. 2018; Nilsson et al. 2012; Pocar et al. 2017) in
rodents. These transgenerational reproductive abnormalities
caused by EDCs may be mediated by alterations of the neuroendo-
crine control of sexual maturation and reproduction (Goldsby et al.
2017;Wolstenholme et al. 2013).

Besides transgenerational inheritance, phenotypic traits can be
propagated through an experience-based nongenomic mechanism.
This mechanism known as multigenerational inheritance can be
transmitted bymaternal care and exclusively involves somatic tissue
alterations (Champagne and Curley 2016). Natural variations in rat
maternal behavior, such as licking and grooming, were shown to
shape the offspring hypothalamus by modifying the expression of
Esr1 and Nr3c1 (Francis et al. 1999; Peña et al. 2013). This behav-
ioral pattern of expression persisted into adulthood and was trans-
mitted through generations (Francis et al. 1999). In rats, licking and
grooming behaviors were found to be vulnerable to BPA exposure
(Seta et al. 2005). In addition, natural variations in licking and
grooming were found to be able to alter pubertal timing in the off-
spring (Cameron et al. 2008a). Whether variations in pubertal tim-
ing caused by changes in licking and grooming are produced via
reprogramming of the hypothalamus is still unknown.

Here we hypothesize that developmental exposure to an EDC
mixture through the maternal lineage induces transgenerational
alterations of female pubertal timing and ovulation and a multige-
nerational reduction in maternal behavior. In the current study,

Table 2. Literature summary of transgenerational effects of the 13 compounds used in the EDC mixture.

F3 (Transgenerational)

Pubertal timing
Fertility, EC, and
Folloculogenesis

Hypothalamic effects

GnRH Kisspeptin ERa OXT TH

Di-n-butyl phthalate — — — — — — —
Di(2-ethylexyl) phthalate Rattan et al. 2018b Pocar et al. 2017; Rattan

et al. 2018a, 2018b,
2019; Brehm et al.
2018

— — — — —

Bisphenol A Ziv-Gal et al. 2015 Ziv-Gal et al. 2015;
Drobna et al. 2018;
Berger et al. 2016

— — Goldsby et al.
2017

Wolstenholme
et al. 2012

—

Vinclozolin — Nilsson et al. 2012, 2018 — — — — Gillette et al.
2015

Procymidon — — — — — — —
Prochrloraz — — — — — — —
Linuron — — — — — — —
Epoxinaxole — — — — — — —
4-Methyl-benzylidene

camphor
— — — — — — —

Octyl methoxycinnamate — — — — — — —
p,p 0-DDE — — — — — — —
Butylparaben — — — — — — —
Acetaminophen — — — — — — —
Phthalate and/or plasticizers

mixturesa
Zhou et al. 2017 Manikkam et al. 2012a,

2013; Zhou et al. 2017
— — — — —

Note: —, no data available; EC, estrous cyclicity; EDC, endocrine-disrupting chemicals; ER, estrogen receptor; GnRH, gonadotrophin-releasing hormone; OXT, oxytocin; p,p 0-DDE,
dichlorodiphenyldichloroethylene; TH, tyrosine hydroxylase.
aThe studies used some of the EDCs found in our mixture.
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female rats (F0) were exposed to a mixture of 13 EDCs at relevant
exposure concentrations prior to and during gestation and until the
end of lactation. F1 females (exposed in utero and through lacta-
tion) and subsequent generations were bred with unexposed males
to generate the F2 (exposed through the germ cells), F3, and F4
generations (exposed transgenerationally). Sexual maturation and
maternal behavior were evaluated across generations.We aimed to
compare transcriptional and chromatin profiles after direct (F1)
and transgenerational (F3) exposure. Furthermore, by using a
cross-fostering paradigm, we were able to distinguish between
transgenerational consequences of the EDC mixture transmitted
via the germline and multigenerational consequences due to varia-
tions inmaternal care.

Materials and Methods

Animals
Adult female Wistar rats purchased from the animal facility of the
University of Liège, Belgium, were housed in standardized condi-
tions (12 h inverted dark:light phase, 22.8°C, and food and water
ad libitum). All animals were raised in EDC-free cages (polypro-
pylene cages, Ref. 1291H006; Tecnilab) and fed EDC- and
phytoestrogen-free chow (V135 R/Z low phytoestrogen pellets;
SSNIFF Diet). Water was supplied in glass bottles. All experi-
ments were carried out with the approval of the BelgianMinistry of
Agriculture and the Ethics Committee at the University of Liège.

Chemicals
The EDCs di-n-butyl phthalate (DnBP) (purity >99:0%, 84-74-2),
di(2-ethylhexyl) phthalate (DEHP) (purity >99:5%, 117-81-7),
vinclozolin (purity >99:5%, 50,471-44-8), prochloraz (purity
>98:5%, 67,747-09-5), procymidone (purity >99:5%, 32,809-
16-8), linuron (purity >99:0%, 330-55-2), epoxiconazole
(purity >99:0%, 106,325-08-8), octyl methoxynimmate (purity
>98:0%, 5,466-77-3), dichlorodiphenyldichloroethylene (p,p 0-
DDE) (purity >98:5%, 72-55-9), 4-methyl-benzylidene cam-
phor (4-MBC) (purity >98:0%, 36,861-47-9) and butylparaben
(BP) (purity >99:0%, 94-26-8) were purchased from
AccuStandard. BPA (purity >99:5%, 80-05-7), acetaminophen
(purity >99:0%, 103-90-2) and corn oil (as a control vehicle)
were obtained from Sigma-Aldrich. EDC compounds were

dissolved in corn oil to obtain the final concentration showed in
Table 3. The chemicals in the mixture were chosen based on pre-
vious literature (Christiansen et al. 2012). The mixture contains
ubiquitous chemicals for which information about their
endocrine-disrupting effects in vivo and data about human expo-
sures were available to guide the choice of doses (Christiansen
et al. 2012). Considering the role of androgens and estrogens in
sexual development, Christiansen et al. composed the mixture of
chemicals with those known to exert antiandrogenic or estrogenic
actions. Developmental exposure to this mixture at higher doses
in rats than what we used has been previously shown to alter sex-
ual differentiation in male rats (Axelstad et al. 2014; Mandrup
et al. 2015) and disrupt estrous cyclicity in female rats when
exposed in utero (Isling et al. 2014; Johansson et al. 2016). As
described in Christiansen et al. (2012), the design of the mixture
was based on the point of departure index (PODI) approach,
which relies on the estimated exposure level and the no observed
adverse effect levels (NOAEL) of each individual substance, or
lowest observed adverse effect level (LOAEL) when NOAEL is
not available. This index is considered the method of choice for
cumulative risk assessment. It combines exposures to estimate
the risk of chemicals with common mechanisms. Although doses
were chosen to represent human exposure, some practical adjust-
ments were made. For instance, phthalate concentrations were
adjusted to compensate for the omission of other congeners. The
two selected phthalates thus represent exposure to all antiandro-
genic phthalates. BP and 4-MBC concentrations were adjusted
downwards because the limited number of population studies
showed that individuals were exposed to undetectable or low
concentrations of BP (Calafat et al. 2010; U.S. CDC 2015; Kang
et al. 2016; Tkalec et al. 2021; Ye et al. 2006) or 4-MBC (Krause
et al. 2017; Murawski et al. 2021). Epoxiconazole was adjusted
upward and included in the mixture as the only component repre-
senting the group of triazole fungicides with antiandrogenic
effects, based on a rat study of gestational and postnatal exposure
(Taxvig et al. 2007).

Experimental Design
Early adult, postnatal day 40 (P40) male and female Wistar rats
were purchased from the animal facility of the University of
Liège. The animals were never inbred. After habituation to the
animal care facility, adult (P70) F0 females were mated for 2 wk

Table 3. Features of the 13 chemicals included in the EDC mixture.

Substance Function AA/E Dose (lg=kg=d) NOAEL (mg/kg/d) LOAEL (mg/kg/d) References

Di-n-butyl phthalate Plasticizer AA 10 50 100 Mylchreest et al. 2000
Di(2-ethylexyl) phthalate Plasticizer AA 20 3 10 Christiansen et al.

2010
Bisphenol A Plasticizer AA/E 1.5 5 1.2 EFSA 2019; Kang

et al. 2002; Salian
et al. 2009

Vinclozolin Dicarboximide fungicide AA 9 5 10 Hass et al. 2007
Procymidon Dicarboximide fungicide AA 15 10 25 Hass et al. 2007
Prochrloraz Imdazome fungicide AA 14 5 10 Christiansen et al.

2009
Linuron Urea-based herbicide AA 0.6 25 50 McIntyre et al. 2001
Epoxinaxole Triazole fungicide AA 10 15 — Taxvig et al. 2007
4-Methyl-benzylidene

camphor
UV-filter E 60 0.7 7 Durrer et al. 2007

Octyl methoxycinnamate UV-filter E 120 — 500 Cousins et al. 2002
p,p 0-DDE Metabolite of the insecticide

DDT
AA/E 1 — 10 You et al. 1998

Butylparaben Antifungal and antibacterial
preservative

AA 60 — 100 Kang et al. 2002

Acetaminophen Analgesic and antipyretic AA 800 — 350 Hass et al. 2010

Note: —, no data available; AA, antiandrogenic; E, estrogenic; NOAEL, no observed adverse effect level; LOAEL, lowest observed adverse effect level; p,p 0-DDE, dichlorodiphenyl-
dichloroethylene; UV, ultraviolet.
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with an adult (P70) unexposed male to generate the F1 genera-
tion. F0 females were exposed to an EDC mixture or corn oil (ve-
hicle) starting 2 wk before mating and until the end of lactation
to a mixture of 13 EDCs (Figure 1). Depending on the timing at
pregnancy during mating, adult females were exposed for a total
of 57–65 d prior and during gestation and until offspring wean-
ing. Daily exposure was done by injecting 50 lL of EDC mixture
or corn oil in a wafer (Delacre N.V. S.A.) and providing one wa-
fer to each female. Before and during mating, an EDC and one
control (CTL) female were housed together. Females were moni-
tored daily for body weight changes due to pregnancy. After con-
firmation of gestation, females were housed individually until
weaning. When necessary, females were separated to provide the
wafer containing the EDC mixture, and cages were systemati-
cally verified after 10 min to check for complete ingestion.
Thereafter, females were moved back to their original cages.
Females were randomly assigned to treatment. At P70, in utero
EDC mixture–exposed and control females from the F1 genera-
tion were mated with an unexposed male ordered from the animal
facility of the University of Liège to generate the F2 generation
(exposed through the germline). Similar procedures were used to
generate the F3 and F4 generations, transgenerationally exposed
through the maternal lineage. Females used to generate subse-
quent generations were randomly selected within each group. For
every generation, pups were homogenized for sex ratio (1:1) and
litter size (average of 12 pups per litter). From weaning at P21 to
P70, control females were paired with an EDC female and housed
together. The pairing procedure was followed for all females
from the F1 to the F4 generations. All behavioral and reproduc-
tive data were obtained from two independent nonrelated cohorts
of animals. Samples used for all experiments originated from an
original pool of 40 F0 females per group/per cohort.

Cross-Fostering
To distinguish between germ-cell vs. experience-based phenotype
transmission, a cross-fostering paradigm was used. To avoid an
effect of cross-fostering, a maximum of two pups per litter were
cross-fostered with pups from F1 dams as follows: Control F1
dams raised either EDC-exposed pups (CE) or control pups (CC)

from another dam. EDC-exposed F1 raised either EDC-exposed
pups (EE) or control pups (EC) from another dam. Cross-fostering
was carried out within the first 24 h after delivery and a 1-mm tail
incision was done to distinguish cross-fostered pups. Samples used
from all cross-fostering experiments originated from 17 EDC-
exposed and 16 control dams from the F1 generation.

Maternal Behavior
To assess EDC mixture effects on maternal behavior throughout
generations, a set of maternal behaviors were quantified in EDC
mixture and control lactating females in F0 to F3 generation.
Additionally, we quantified maternal behavior in F1 dams (EDC
mixture–exposed or control dam with either control or EDC mix-
ture–exposed pups from another dam) with cross-fostered pups
and in F2 cross-fostered lactating females (EDC mixture exposed
or nonexposed females raised by an EDCmixture–exposed or con-
trol dam).Maternal behavior was recorded with an infrared camera
(Bell and Howell DNV16HDZ-BK) for 1 h during the dark phase
from lactational day 2 to 8 directly in the home cage under undis-
turbed conditions. Randomization was done to avoid recording ev-
ery female at the same hour of the day. A set of in-nest behaviors
(licking/grooming, arched-back/blanket/passive nursing, and nest
building) and off-nest behaviors (eating/drinking, grooming, active
or resting alone) were quantified as reviewed in Lonstein et al.
(2015) by an experimenter blinded to the condition. Briefly, each
video was visualized by an experimenter blinded to the condition
and at the same time that the duration of each behavior was man-
ually counted using a data sheet. Licking and grooming was deter-
mined when the female engaged in licking the anogenital regions
of the pup. Nursing behavior was defined by pups attached to the
dam’s nipple. Arched-back nursing or blanket-posture nursing
(lying down on the side) were quantified separately. Passive nurs-
ing was defined as pups attached to the dams when the dams were
engaged in activities outside the nest (being active, eating/
drinking). Off-nest behaviors were quantified when the female was
eating/drinking, grooming herself, or resting alone outside the
nest. Total duration of every behavior was quantified within each
1-h period recording.

Figure 1.Multi- and transgenerational design of an EDC mixture exposure on maternal behavior and sexual maturation via the female lineage. Adult female
rats (F0) were exposed to a mixture of 13 EDCs at relevant exposure concentrations starting 2 wk before mating and until the end of lactation. Mating was car-
ried out for period of 2 wk. Depending on the day of pregnancy during mating, adult females were exposed for a total of 49–56 d, which spanned the period
before, during, and after gestation. The four subsequent generations were evaluated for sexual maturation (VO, GnRH interval interpulse, estrous cycle, and
folliculogenesis) and maternal behavior (from P2 to P8). Massive parallel RNA sequencing was carried out using hypothalamic (MBH-PoA) explants from the
F1 and F3 generation to decipher direct (F1) vs. transgenerational (F3) target genes of the EDC mixture exposure, followed by qPCR validation at three time
points, P6, 21, and 60. Target genes were studied for histone posttranslational modifications and DNA methylation using chromatin immunoprecipitation
(ChIP) and bisulfite sequencing (BS), respectively. Note: EC, estrus cycle; EDC, endocrine-disrupting chemical; VO, vaginal opening.
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Pubertal Onset and Estrous Cyclicity
To assess the effect of an EDC mixture exposure on sexual matu-
ration throughout generation, females were followed for vaginal
opening (from the F1 to the F4 generation) and estrus cyclicity
(from the F1 to the F3 generation) as described previously
(Franssen et al. 2014; Toro et al. 2018). Briefly, from P25,
females were daily inspected for vaginal opening by two experi-
menters. From the P40 and until P70, estrous cycle was evaluated
using vaginal smears taken every morning. Regular cycles were
defined as a sequence of diestrus 1, diestrus 2, proestrus, and
estrus in 4 consecutive days (Goldman et al. 2007). The percent-
age of females having a regular cycle and the time spent in every
stage of the cycle were calculated from 6–10 weeks of age.

Ovarian Histology and Uterus Weight
To assess the effect of an EDC mixture exposure on folliculogen-
esis throughout generations, ovaries from F1 to F3 females were
removed at P70 for histological quantification of follicle develop-
ment. Females were anesthetized with isoflurane (IsoFlo®; Zoetis)
and culled by quick decapitation. After removal, ovaries were
weighted together with the uterus and fixed overnight in 4% para-
formaldehyde, dehydrated in 70% EtOH, and paraffin-embedded.
Histological analysis was done in 8-lm coronal sections (micro-
tome RM2245; Leica), after deparaffinization and staining with
hematoxylin and eosin. For quantification, every other sections
throughout the whole ovary were digitalized using an automated
digital microscopy system DotSlide (Olympus BX51TF).
DotSlide images taken at a magnification of 10 ×, which were in
a proprietary format, were converted into a standard TIFF format,
and 3-fold decimated, which made them easier to handle.
Thereafter, follicles at every stage of folliculogenesis (primordial,
primary, secondary, antral, and atretic), cystic follicles and
corpora lutea were manually quantified by an experimenter
blinded to treatment with Aperio ImageScope software (version
12.3.2.8013; SCR_014311; Leica Biosystems). Total ovarian vol-
ume was automatically calculated using an original program
developed using the image analysis toolbox of the MatLab
(SCR_001622; The Mathworks, Inc.) software. The algorithm
developed to measure the ovarian volume used the traditional
tools of signal treatment (Gonzales and Woods 2008) and mathe-
matical morphology (Soille 1999). Briefly, images were auto-
matically segmented (Otsu 1979), followed by visual inspection
and manual correction if necessary. Next, morphological opera-
tions were carried out to fill gaps and to eliminate small noise
artifacts (close, erosion, and reconstruction functions). Finally,
volumetric measurements were done using binary 3D image
reconstruction. The follicles were classified according to well-
established criteria (Hirshfield and Rees Midgley 1978; Peters
1969). Briefly, primordial follicles were defined as an oocyte sur-
rounded by a partial or complete layer of squamous granulosa cells.
Primary follicles displayed a single layer of granulosa cell with cu-
boidal shape. Secondary follicles corresponded to follicles display-
ing several layers of cuboidal granulosa cells surrounded by theca
cells without follicular fluid (antrum). Antral follicles were identi-
fied by their size and the presence an antrum. Atretic follicles cor-
responded to a shrunken oocyte surrounded by a granulosa cell
layer. Cystic follicles were counted when follicles did not display
an oocyte and contained a large antrum with few or no granulosa
cells. Finally, corpora lutea were identified by the presence of
luteal cells. Double counting of late-stage follicles was avoided by
digitally marking each follicle throughout the consecutive images.
Each follicle was counted once whenever the oocyte was present.
As analysis were done in every other section, we applied a
2-fold correction factor for quantification of early stage follicles

(primordial and primary follicles) to compensate for sections not
analyzed. Measurements were expressed as number of follicles or
corpora lutea per volume (cubicmillimeters).

Hypothalamic Explants Incubation and GnRH Assay
To assess the effect of an EDC mixture on juvenile GnRH fre-
quency after direct in utero and lactational (F1 generation) and
transgenerational (F3 generation) exposure, GnRH interpulse
interval was measured using a hypothalamic explants incubation
system followed by a GnRH assay from prepubertal females
(P20) of the F1 and F3 generation, as described previously
(Bourguignon and Franchimont 1984; Matagne et al. 2004).
Briefly, females were anesthetized with isoflurane (IsoFlo®;
Zoetis) and culled by quick decapitation. Thereafter, brain was
dissected by performing two sagittal incisions along the lateral
hypothalamic sulci and two transversal incisions of 2 mm ahead
from the anterior boundaries of the optic chiasm and along the
caudal margin of the mammillary bodies. Once dissected, hypo-
thalamic (MBH-PoA) explants were transferred into an individ-
ual chamber, in a static incubator, submerged in MEM. The
ex vivo explant incubation chamber contained a water-saturated
atmosphere of 95% O2, 5% CO2 at 37.5°C. Incubation medium
was then collected and renewed every 7.5 min for a period of 4 h.
All hypothalamic explants were incubated at the same time dur-
ing the same day for each generation.

The GnRH released into the incubation medium was meas-
ured in duplicate using radioimmunoassay as described previ-
ously (Bourguignon et al. 1989a). Briefly, samples were
preincubated with the highly specific CR11-B81 (AB_2687904)
rabbit anti-GnRH antiserum (initial dilution 1:20,000) (provided
by Dr. V.D. Ramirez, Urbana, Illinois) during 24 h at 4°C. GnRH
labeled with 125I (30,000 CPM) and rabbit serum (dilution
1:100) were added for 24 h at 4°C. Finally, precipitation was
induced by a solution of sheep anti-rabbit antiserum (dilution
1:200; CER Groupe), polyethylene glycol (60 g=L), tween, and
cellulose. Radioactivity was counted on a gamma counter
(Wallac CliniGamma). The intra-assay and interassay coefficients
of variation were 7% and 10%. Undetectable values were
assigned the limit of detection (5 pg=7:5-min fraction).

DNA and RNA Extraction, Reverse Transcription, and Real-
Time Polymerase Chain Reaction (RT-PCR)
Expression of genes involved in the hypothalamic control of pu-
berty, reproduction, and maternal behavior were studied by quan-
titative real-time polymerase chain reaction (qPCR) analysis
using the half of MBH-PoA explants from females exposed and
nonexposed to an EDC mixture from the F1 and F3 generations
at different time points (P6, P21, and P60). Additionally, MBH-
PoA explants were dissected from cross-fostered (EE, CE, EC,
and CC) females at P21. All MBH-PoA explants were dissected
at the same time of the day and alternating between control and
EDC-exposed females. Adult P60 MBH-PoA explants were dis-
sected on diestrus. Females were anesthetized with isoflurane
(IsoFlo®; Zoetis) and culled by quick decapitation. Thereafter, the
MBH-PoA was rapidly dissected as described in the previous
section. Additionally, MBH-PoA was divided in two by section-
ing along the interhemispheric fissure. Total RNA and DNA
were extracted from the half MBH-PoA tissue using All Prep
DNA/RNA Mini kit (Qiagen) following the manufacturer’s
instructions. Five hundred nanograms of bulk RNA for each sam-
ple were reverse transcribed using the Transcriptor first strand
cDNA synthesis kit (Roche). For real-time quantitative PCR
reactions, the cDNA of our samples were diluted 10-fold, and
4 lL were added to a mix of 5 lL FastStart Universal SYBR®
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Green Master (Roche), 0:4 lL of nuclease-free water and 0:3 lL
of forward and reverse primer (see primer sequences in Table
S1). Primers were synthesized by Integrated DNA Technologies,
Inc. qPCR was performed using a Quant Studio 12K Flex
(Applied Biosystems) under the following conditions: initializa-
tion: 2 min at at 50�C, 10 min at at 95�C, followed by 40 cycles
of denaturation: 15 sec at 95�C and elongation and data collec-
tion: 60 s at 60�C. Cycle threshold (Ct) values were obtained
from each individual amplification curve, and the average Ct was
calculated for each target gene in each sample. Quantification of
relative gene expression was performed using the DDCt method
implemented with the Pfaffl equation, which takes into account
reaction efficiency depending on primers (Pfaffl 2001) All assays
had efficiencies between 1.9 and 2.1. b-actin was used as house-
keeping gene.

Bisulfite Sequencing
Genomic bulk DNA was bisulfite converted (BC), using the EZ
DNA Methylation-Gold kit (Zymo Research) according to the
manufacturer’s instructions. The BC DNA was used as input ma-
terial for PCR amplification followed by library preparation and
deep sequencing. Primers were designed to amplify a 302-base
pair (bp) region of the rat Th promoter, including exon 1 (−139
to +164 bp from the Th TSS) (Table S1). Amplification was car-
ried out on a C1000 Thermal Cycler (Bio-Rad) with 20 ng of BC
DNA per reaction. The amplification conditions were: 40 cycles
of 94°C for 30 sec, 55°C for 30 sec, and 72°C for 1 min; sequenc-
ing libraries were prepared using the NETFLEX® DNA
Sequencing Kit (BIOO Scientific) according to manufacturer’s
instructions. The libraries were evaluated using an Agilent 2100
Bioanalyzer (Agilent Technologies) and were normalized to
2 nM with 10mM Tris-HCl. The libraries were then pooled and
sequenced on a MiSeq (Illumina, Inc.) by the Molecular and
Cellular Biology Core (Oregon National Primate Research
Center) to generate 250 base, paired-end reads. The reads were
trimmed using Trim Galore (http://www.Bioinformatics.
Babraham.Ac.Uk/Projects/Trim_galore/) and aligned to the rat
reference genome (Ensemble Rat Rnor_6) using Bismark
(Krueger and Andrews 2011). Alignment data was converted to
CpG methylation rate using the Bismark methylation extractor.
Only reads with a >98% cytosine conversion and >98% align-
ment were used; no sample was excluded from the analysis. The
CpG methylation rates were calculated as the ratio of methylated
reads over the total number of reads. Methylation rates for CpGs
with fewer than 10 reads were excluded from further analysis;
samples had an average of 1,750 × read coverage.

Immunohistochemistry
To assess the expression of proteins related tomaternal behavior, ty-
rosine hydroxylase (TH) immunoreactivity was measured in EDC
mixture exposed and nonexposed F1 females at P21. TH-ir was
measured in the substantia nigra (SN), the ventral tegmental area
(VTA), and the median preoptic area (mPoA). Females were anes-
thetized with pentobarbital sodium (50 mg=kg, intraperitoneal) and
sequentially perfused with PBS and 4% paraformaldehyde. Brains
were subsequently removed and post-fixed in 4% paraformaldehyde
at 4°C overnight. Thereafter, coronal sections (30 lm)were cut on a
vibratome and used for immunohistofluorescence.

For immunohistochemistry, sections were incubated in
phosphate-buffered saline (PBS) and blocked with 10% donkey
serum for 1 h at room temperature and then were incubated over-
night with the primary antibody anti-TH (1:1000, Th-mouse;
22941, ImmunoStar) for 24 h at room temperature or 4°C.
Thereafter, a goat antimouse fluorophore-conjugated secondary

antibody (1:400, AlexaFluor 488, ab150113) was incubated for
2 h at room temperature. A high-resolution Zeiss microscope
LSM880 implemented with the fast Airyscan detector was used
for visualization. Three slides per animal per region of interest
(ventral midbrain sections containing the SN and VTA or mPoA
sections) were used for quantification. An observer blind to con-
dition outlined each region of interest for nuclei-specific analysis.
Region area and number of immunoreactive cells were automati-
cally quantified using Imaris 9.3. Statistics were performed on
the total cell count per animal per region across slice sections.

Massively Parallel RNA Sequencing
Poly A mRNA was purified from 1 lg total bulk RNA using
NETFLEX poly A beads (Perking-Elmer), followed by library
preparation using the NETFLEX® Rapid Directional RNA-seq
Kit 2.0 (Perking-Elmer). In short, after fragmentation with diva-
lent cations and heat, mRNA was used as template for reverse
transcription using random hexamer primers. cDNAs were then
blunted and 30 end A-tailed to facilitate adaptor ligation. Six
base-pair Illumina adaptors were ligated, followed by 12 rounds
of PCR amplification. Free dNTPs were removed using AMPure
XP beads (BeckmanCoulter). Distribution of DNA sizes in the
library was confirmed by Bioanalyzer analysis (Agilent). Library
titer was determined by RT-PCR (Kapa Biosystems) on a Quant
Studio 12K Flex Real Time PCR System (ThermoFisher). Four
samples were sequenced per lane on a HiSeq 4000 (Illumina).
Sequencing was done using a single-read 100-cycle protocol. The
resulting base call files (.bcl) were converted to standard fastq
formatted sequence files using Bcl2Fastq (Illumina). Sequencing
quality was assessed using FastQC (Babraham Bioinformatics).
The RNAseq procedure was carried out by the Genomics and
Cell Characterization Core Facility at the University of Oregon.
To determine the differential gene expression values we used the
gene-level edgeR analysis package. We performed an initial trim-
ming and adapter removal pass using Trimmomatic. After this,
reads were aligned to the rn6 build of the rat genome with
Bowtie2/TopHat2 and assigned to gene-level genomic features
with the Rsubread featureCounts package (Liao et al. 2019) based
on the Ensembl 83 annotation set. Differential expression
between experimental groups was analyzed using the generalized
linear modeling approaches implemented in edgeR [version 3.7;
Robinson et al. (2010)]. Lists of differentially expressed genes/
transcripts were identified based on significance of pairwise com-
parison of experimental groups. Gene ontology and enrichment
analysis were performed using the database for annotation, visu-
alization, and integrated discovery (DAVID). RNAseq data sets
are accessible through Gene Expression Omnibus (GEO) Series
accession number GSE168151 (https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE168151).

Chromatin Immunoprecipitation (ChIP) Assay
To assess activatory and repressive histone modifications at specific
gene promoters affected by EDC mixture exposure, we performed
ChIP assay using extracted chromatin from the hypothalamus of
prepubertal rats at P21. As described previously (Mueller et al.
2011), ChIP procedure was carried out by crosslinking tissue in
PBS containing a protease inhibitor cocktail (PI, 1mM phenylme-
thylsulfonylfluoride, 7 lg=mL aprotinin, 0:7 lg=mL pepstatin A,
and 0:5 lg=mL leupeptin), a phosphatase inhibitor cocktail (PhI,
1mM b-glycerophosphate, 1mM sodium pyrophosphate, and
1mMsodiumfluoride), and anHDAC inhibitor (20mM sodiumbu-
tyrate) at 4°C, and 1% formaldehyde for 10 min at room tempera-
ture. After two washing steps in PBS, samples were lysed with
200 lL sodium dodecyl sulfate (SDS) buffer (0.5% SDS, 50mM
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Tris-HCl, and 10mM EDTA) containing protease, phosphatase,
andHDAC inhibitors and sonicated for 45 s to yield chromatin frag-
ments of ∼ 500 bp, using the microtip of a Fisher Scientific FB 705
sonicator. Size fragmentationwas confirmed by agarose gel electro-
phoresis. The sonicated chromatin was clarified by centrifugation at
14,000 rpm. for 10 min at 4°C, brought up to 1 mL in Chip Dilution
Buffer (16:7mM TrisHCl, pH 8.1, 150mM NaCl, 1:2mM EDTA,
1.1%TritonX-100, and 0.01%SDS) containing the PI and PhI cock-
tails and the histone deacetylase (HDAC) inhibitor described above.
The samples were then stored at −80�C for subsequent immunopre-
cipitation. For this step, chromatin was precleared with Protein A/G
beads (Dynabeads™; Invitrogen) for 1 h at 4°C. Then 25- to 50-lL
aliquots of chromatin were incubated with 2–5 lg of the antibodies
described in Table S2. The complexes were incubated with 25 lL
of protein A or G beads solution (Dynabeads™) at 4°C overnight
with mild agitation. The next day the beads were washed first with
0:5 mL low-salt wash buffer (20mM Tris-HCl, pH 8.1, 150mM
NaCl, 2mM EDTA, 1% Triton X-100, and 0.1% SDS), followed by
high-salt wash buffer (20mM Tris-HCl, pH 8.1, 500mM NaCl,
2mM EDTA, 1% Triton X-100, and 0.1% SDS), LiCl buffer
(10mM Tris-HCl, pH 8.1, 250 M LiCl, 1% Nonidet P-40, 1% so-
dium deoxycholate, and 1mM EDTA), and finally with TE buffer
(10mMTris-HCl, pH 8.0, and 1mMEDTA). Thereafter, the immu-
nocomplexes were eluted with 100 lL of 0:1 M NaHCO3 and 1%
SDS at 65°C for 45 min. To reverse the crosslinking reaction, we
added 4 lL of 5 M NaCl and incubated the samples at 95°C for 30
min. We recovered the DNA using ChIP DNA Clean &
Concentrator columns (Zymo Research) and stored the resulting
material at −80�C before qPCR analysis. All the chemicals men-
tioned abovewere purchased fromSigma-Aldrich.

qPCR Detection of Chromatin Immunoprecipitated DNA
Genomic regions of interest were amplified by qPCR. Primer
sequences and accession numbers of the genes analyzed are
shown in Table S1. PCR reactions were performed using 1 lL of
each immunoprecipitate (IP) or input samples, primer mix (1 lM
each primer), and SYBR® Green Power Up Master Mix™
(Thermo Fisher) in a final volume of 10 lL. Input samples con-
sisted of 10% of the chromatin volume used for immunoprecipita-
tion. The thermocycling conditions used were as follows: 95°C
for 5 min, followed by 40 cycles of 15 sec at 95°C and 60 sec at
60°C. Data are expressed as percentage of IP signal/input signal.

Statistics
All statistical analyzes were performed using Prism (version 7.0,
GraphPad). Data was subjected to a normality, and an equal var-
iance test and parametric test were used when conditions were
accomplished. Parametric test used were one-way or two-way
analysis of variance (ANOVA) followed by Student–Newman–
Keuls or Sidak’s for multiple comparisons, respectively; or
Student’s t-test to compare two groups. When comparing percen-
tages, groups were subjected to an arcsine transformation before
statistical analysis to convert the values from a binomial to a nor-
mal distribution. Data that did not reach normality were analyzed
using a Mann-Whitney test. When making multiple comparisons,
a was adjusted by using the Bonferroni correction. The investiga-
tor was group blinded in all physiological and molecular determi-
nation. Sample sizes, reported in figure captions, were defined
based on previous studies and calculation of an adequate statisti-
cal power. Report of descriptive, statistical values and effect size
are available in Tables S3–S6. Effect sizes were calculated
according to Cohen’s delta formula. The level of statistical signif-
icance was p<0:05.

Results

Reproductive Outcomes across Generations after
Developmental Exposure to the EDCMixture
Sexual maturation was followed in four generations (F1 to F4) of
female rats after exposure of F0 females to a mixture of 13 antian-
drogenic and estrogenic EDC or vehicle (corn oil) (CTL) (Figure 1).
Although F1 females, which were directly exposed to EDC
in utero and through lactation (F1-EDC), had normal pubertal tim-
ing (Figure 2A) determined by age at vaginal opening, germline
(F2 generation) and transgenerationally exposed (F3 and F4 gener-
ation) females had significantly delayed vaginal opening (Figure
2B–2D; Table S3). Vaginal opening was delayed on average by
3.9, 3.9, and 3.1 d in F2 (CTL: 34:73± 1:33, EDC: 37:93±1:58,
p< :001), F3 (CTL: 34:29± 1:92, EDC: 38:2± 1:32, p< :001),
and F4 (CTL: 31:36±1:36, EDC: 34:5± 1:4, p< :001) EDC vs.
control females, respectively.

To compare EDC effects on GnRH secretion maturation after
direct in utero and lactational (F1) vs. transgenerational (F3) ex-
posure, ex vivo hypothalamic explant incubation was carried out
at P20. Maturation of GnRH secretion preceding puberty is char-
acterized by a reduction of GnRH interpulse interval between
P15 and P25 in hypothalamic explants incubated individually
(Bourguignon and Franchimont 1984). Although GnRH inter-
pulse interval was not affected after direct EDC mixture exposure
in F1-EDC at P20 (Figure 2A), it was modestly but significantly
higher in transgenerationally exposed F3-EDC females (CTL:
42:03± 0:94, EDC: 44:06±1:08, p< :05) (Figure 2C; Table S3).
In addition, estrous cyclicity was disrupted in germline (F2) and
transgenerationally exposed (F3-EDC) females (Figure 3B–C left,
Table S3), with a significantly lower proportion of females show-
ing regular cycles (28.3% p< :05 and 41.7% p< :01, respectively).
Alterations were characterized by a higher proportion of time
spent in estrus and by a lower proportion of time spent in diestrus.
Additionally, F3-EDC females spent significantly less time in pro-
estrus (CTL: 24:08± 5:24, EDC: 17:73± 8:87, p< :05). No alter-
ations in estrous cyclicity were observed after direct in utero and
lactational (F1) EDC exposure.

At P70, ovaries from directly (F1 and F2) and transgeneration-
ally (F3) exposed females were evaluated for ovarian folliculogen-
esis. Direct in utero and lactational exposure to EDC did not affect
follicular development in F1-EDC females (Figure 3A, center). In
contrast, germline (F2-EDC) and transgenerationally (F3-EDC)
exposed females displayed a significantly lower number of antral
follicles (F2 CTL: 2:55±1:16, EDC: 0:74± 0:88, p< :05; F3
CTL: 1:2± 0:85, EDC: 0:29± 0:37, p< :05) and higher number of
atretic follicles (F2 CTL: 18:08± 6:79, EDC: 33:62±25:12,
p< :05; F3 CTL: 10:64± 10:06, EDC: 13:70± 8:08, p< :01)
(Figure 3B–C center) compared to controls. Additionally, F2-EDC
females had a significantly higher number of primordial follicles
(F2 CTL: 21:7±16:52, EDC: 9:09± 7:62, p< :05) and higher
number of cysts (F2 CTL: 0:63±1:06, EDC: 1:13± 1:36) (Figure
3B center). Exposure to the EDC mixture also led to a lower nor-
malized ovarian weight (ovarian weight per body weight) in germ-
line (F2) and transgenerationally (F3) exposed females (Figure
3A–C, right; Table S3). No differences were observed in adult
bodyweight (Figure S1; Table S5).

Transgenerational Epigenetic Programing after
Developmental Exposure to the EDCMixture
We hypothesized that the transgenerational delay in pubertal
onset and GnRH secretion maturation observed in F3-EDC
females could be due to transcriptional and epigenetic disruption
of the hypothalamic networks controlling pubertal development.
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We used massive parallel RNA sequencing to identify gene regu-
latory pathways altered by transgenerational EDC exposure in
the MBH-PoA of F3-EDC females at P21, corresponding to the

juvenile phase of prepubertal development. Gene ontology analy-
sis showed that the main down-regulated biological processes
were neurohypophyseal hormone activity, neuropeptide receptor
activity, and dopamine signaling. Some of the down-regulated
molecular functions affected included GABA, dopamine, and
glutamate signaling, whereas xenobiotic processes were up-
regulated (Figure S2).

mRNA expression of hypothalamic genes critical for pubertal
onset was quantified at P6, P21, and P60 in transgenerationally
exposed females (F3) using qPCR. We selected genes to be vali-
dated based on a functional analysis of RNAseq data and existing
literature regarding the transcriptional control of female puberty
in rats. Hypothalamic expression of Kiss1, Esr1, and Oxt was sig-
nificantly lower in F3-EDC females at P21 (p< :05) and P60
(p< :05) (Figure 4A; Table S3). We also identified a set of genes
involved in the control of energy balance and reproduction (Cart,
Pomc, Grin2d, Grid2, and Avp) and stress responsiveness (Nr3c1
and Crh) that were altered at P21 in F3-EDC females in compari-
son with controls (Figure 4A; Figure S3; Table S5).

To gain insight into the potential contribution of histone modi-
fications to the transcriptional changes caused by the transgenera-
tional EDC exposure, we used ChIP assay to quantitate the
repressive (H3K27me3 and H3K9me3) and activating (H3K4me3,
K3K9ac) histone modifications at the promoter region of target
genes in theMBH-PoA of F3 control and EDC transgenerationally
exposed females (Figure 4B; Figure S4; Tables S3 and S5).
Transcriptional down-regulation caused by transgenerational EDC
mixture exposure was consistently associated with either higher
expression in repressive histone marks or lower expression of acti-
vating histone modifications at the promoter region of genes criti-
cal for the onset of puberty. We observed higher expression of the
repressive marks H3K27me3 at the promoter region of the Kiss1
gene (p< :01), whereas an abundance of activating marks
H3K4me3 or K3K9ac was observed to be lower at Esr1 (p< :05),
Kiss1 (p< :01), and Oxt (p< :05) (Figure 4B; Figure S4; Table S3
and S5). No difference in histone landscape was detected at the
Cart andGrin2d promoter, whereas lower expression of the activa-
tory H3K4me3 was detected at the Pomc promoter (p< :05)
(Figure 4B; Figure S4; Table S5). Furthermore, we observed a
higher expression of repressive H3K9me3 and H3K27me3 to-
gether with a higher expression in activatory H3K4me3 at the
Nr3c1 promoter of F3 EDC-exposed females.

Maternal Behavior across Generations after Developmental
Exposure to the EDCMixture
Because EDCs have been shown to affect maternal care
(Boudalia et al. 2014) and more specifically licking and grooming
behavior (Seta et al. 2005), we aimed at exploring the effects of
the EDC mixture on maternal care throughout generations. Direct
adult exposure to the EDC mixture in the F0 did not alter mater-
nal care (Figure 5A). In contrast, impaired maternal behavior
characterized by lower levels of licking and grooming (Figure
5B–D; Table S3) was found in dams exposed in utero and
through lactation (time spent licking and grooming: F1, CTL:
9:18±3:27 min; EDC: 5:84± 3:59 min, p< :05), via the germ-
line (F2, CTL: 11:93±3:72 min; EDC: 6:38± 3:49 min, p< :01)
and transgenerationally (F3, CTL: 13:79± 2:4 min; EDC:
9:71±2:79 min, p< :01) in comparison with control dams. Time
spent licking and grooming was found to be lower on average in
F1 (5.84 min, 36.38%), F2 (6.38 min, 46.52%), and F3 (9.71 min,
29.58%) generations, respectively. Additionally, females exposed
in utero (F1 1.93 min, p< :05) or via germs cells (F2 1.62 min,
p< :05) spent more time resting alone or being active outside the
nest, respectively (Figure 5B–D; Table S3). No differences were

Figure 2. Pubertal timing (VO) and GnRH interpulse interval across genera-
tions (F1–F4 generation) after exposure to EDCmixture or vehicle (F0 genera-
tion). (A–D, left) Cumulative percentage of female rats reaching VO in
F1 (n=51–56=group), F2 (n=50–52=group), F3 (n=15–24=group) or
F4 (n=47–64=group). Samples originate from 15 litters per group per genera-
tion. Data were analyzed with Student’s t-test using the average of the day at
vaginal opening as variable. (A and C, right). GnRH interpulse interval was
measured in F1 and F3 females at P20 ex vivo. Hypothalamic explants were incu-
bated individually, and sequential samplingwas carried out every 7.5 min for 4 h
followed by radioimmunoassay for GnRH (n=4=group). Sample originates
from four different litters per group per generation. Data were analyzed using
Student’s t-test. Bars represent mean±SEM (*p<0:05, ***p<0:001 vs. CTL).
Summary data are reported in Table S3. Note: CTL, control; EDC, endocrine-
disrupting chemical; SEM, standard error of themean; VO, vaginal opening.
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observed in nest building or in average in-nest activity throughout
generations (Figures S5–S8 and Table S5).

We further aimed at identifying hypothalamic targets potentially
involved in the alterations of maternal care caused by the EDCmix-
ture that may explain the transmission of the maternal phenotype
across generations.We comparedmassive parallel RNA sequencing

gene ontology results obtained from MBH-PoA explants at P21
after direct in utero and lactational (F1 generation) vs. transgenera-
tional (F3 generation) EDC mixture exposure. Gene ontology
analysis of RNAseq done in MBH-PoA after direct in utero and
lactational (F1) EDC exposure showed down-regulated genes
related to D2 dopamine receptor binding, glutamate binding and

Figure 3. Estrous cycle, ovarian follicle development, and ovarian weight across generation (F1–F3 generation) of female rats exposed to EDC mixture or ve-
hicle (F0 generation). (A–C, left) Percentage of females showing regular cycle and average time spent in each stage of the estrous cycle in F1 (n=20=group),
F2 (n=15=group), or F3 (n=14–15=group) animals. Samples originate from eight different litters per group per generation. Data were analyzed using a two-
way ANOVA (A–C, middle). Average number of ovarian follicles, corporal lutea, and cysts per cubic millimeter in F1, F2, and F3 females at P60
(n=9–10=group). Samples originate from eight different litters per group per generation. Data were analyzed using a two-way ANOVA (A–C, right).
Normalized ovarian weight (ovarian weight per body weight in grams) measured at P60 in F1 (n=14=group), F2 (n=16=group), and F3 (n=9–10=group)
females. Samples originate from eight different litters per group per generation. Data was analyzed using Student’s t-test. Bars represent mean±SEM
(*p<0:05, **p<0:01, ***p<0:001 vs. CTL). Summary data are reported in Table S3. Note: ANOVA, analysis of variance; CTL, control; D, diestrus; E, estrus;
EDC, endocrine-disrupting chemical; P, proestrus; Reg. cycle, regular cycle; SEM, standard error of the mean.
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neurotransmitter uptake (Figure S9). After transgenerational (F3)
exposure, down-regulated genes belonged to the following
enriched categories: social behavior, maternal behavior, grooming
behavior, and synaptic dopaminergic transmission (Figure S2).

Common target genes identified in F1 and F3 females and
related to dopaminergic signaling were validated using RT
qPCR. Critical dopaminergic signaling genes Th, Dnm1 and
Darpp32, involved in maternal motivation, showed significantly
lower expression in the MBH-PoA of F1-EDC animals at P21
and/or P60 (Figure 6A; Table S3). The dopaminergic receptor 1
(Drd1) was found to be up-regulated, a possible sign of a com-
pensatory mechanism induced by lower synaptic dopamine levels
(Figure 6A). Genes associated with stress responsiveness (Nr3c1
and Crh) were not altered (Figure S10A).

To determine whether hypothalamic transcriptional altera-
tions in dopaminergic signaling observed in the F1 generation
involved epigenetic mechanisms, we studied Th DNA methyla-
tion and histone modifications. Although we identified no differ-
ence in DNA methylation (Figure 6B; Table S3), we observed
higher levels of the repressive histone H3K27me3 modification
in the MBH-PoA of F1-EDC females (p< :05) (Figure 6C). No
differences were observed in H3K9me3, H3K4me3, or H3K9ac
status. Furthermore, no alterations in histone modification landscape

were detected in the 50 regulatory regions of Darpp32 or Drd1
(Figure S10B and Table S5).

To further characterize whether the alterations in dopaminer-
gic signaling are related to the observed disruption of licking and
grooming behavior, we quantified TH-immunoreactivity in the
SN, VTA, and mPoA of F1 females at P21. A lower number of
TH-immunopositive cells was observed in the mPoA of in utero
EDC-exposed females (CTL: 3:98± 0:61, EDC: 2:53± 0:36,
p< :001) (Figure 6D–E; Table S3), confirming mRNA expres-
sion results. No differences were observed in the VTA or nucleus
accumbens (NAc).

To determine whether transcriptional alterations in dopami-
nergic signaling observed in the F1 generation are transmitted
across generations and through maternal care, we studied mRNA
expression levels of dopaminergic genes in the F3 generation. Th
and Drd1 mRNA expression were found to be significantly
lower in the MBH-PoA of transgenerationally exposed F3-EDC
females (p< :05) (Figure 6F). Th down-regulation was associated
with higher DNA methylation at 3 specific CpGs of the Th pro-
moter (p< :05), as well as enhanced repressive H3K27me3 his-
tone mark (p< :05) (Figure 6G–H). No differences were found in
the activating histone modifications H3K4me3 and H3K9ac.

Reproductive Function and Maternal Behavior after EDC
Exposure and Cross-Fostering
Our data identified a multigenerational transmission of maternal
care, starting with the F1 all the way down to the F3 generation.
Sexual maturation was found to be delayed in germ cell (F2) and
transgenerationally exposed (F3–F4) generations and associated
with epigenetic reprograming of the hypothalamus as identified
in the F3 generation. Because no difference in sexual maturation,
estrous cycle, or folliculogenesis were found in in utero and lac-
tationally exposed females of the F1 generation, we hypothesized
that the delay in sexual maturation in F2 and consecutive genera-
tions could be explained by hypothalamic reprograming caused
by variations in maternal care, as described previously (Cameron
et al. 2008a). To determine whether delayed puberty is caused
via transgenerational female germ-cell inheritance or via a nonge-
nomic multigenerational experience-based mechanism involving
maternal care, a cross-fostering paradigm was carried out.

Control F2 pups raised byCTL (CC) or in utero and lactationally
EDC–exposed (EC) F1 dams showed normal vaginal opening and
estrous cyclicity. To the contrary, germline EDC-exposed pups (F2
generation) raised by EDC (EE) or CTL (CE) F1 dams, indistinc-
tively showed a delay in vaginal opening (p< :01) (Figure 7A;
Table S4) and disrupted estrous cycles, characterized by a higher
proportion of time spent in estrus and a lower proportion of time
spent in diestrus (Figure 7B). F2 EDC-exposed pups displayed a
delay in vaginal opening, independently of being raised by an EDC
dam displaying low licking and grooming or by a CTL dam display-
ing normal maternal care. Furthermore, adult F2 females that under-
went cross-fostering and were raised by an EDC dam (EE and EC)
showed less licking and grooming behavior (Figure 7C).

To further explore the germline vs. nongenomic transmission
of the phenotype, we examined the hypothalamic expression of
the genes critical for pubertal onset, Kiss1, Esr1, and Oxt at P21
in females from the germline-exposed F2 generation. These ani-
mals showed a down-regulation in the hypothalamic expression
of Kiss1, Esr1, and Oxt mRNA at P21, independently of being
raised by an EDC (EE) or by a control (CE) dam (Figure 7E–G,
up; Table S4). Down-regulation of Kiss1, Esr1, and Oxt found in
the F2 was consistently associated with a repressive chromatin
state (Figure 7E–G, down; Figure S11 and Table S6). A higher
expression of the repressive mark H3K27me3 was found at the
Kiss1p in EE pups. In germline EDC-exposed pups (EE and CE),

Figure 4. Kiss1, Esr1, Oxt, Cart, and Pomc mRNA expression and promoter
chromatin state in F3 females ancestrally exposed to EDC mixture or vehi-
cle. (A) Expression of Kiss1 Esr1, Oxt, Cart, and Pomc mRNA in the MBH-
PoA of infant (P6), prepubertal (P21), and adult (P60) female rats as deter-
mined by qPCR (n=6=group). Samples originated from six different litters
per group. RNA expression data were normalized by dividing each individ-
ual value by the average of the control group at every time point. (B)
Abundance of the TrxG-dependent activating marks H3K4me3 and H3K9ac
and the PcG-dependent repressive mark H3K27me3 at the Kiss1, Esr1, Oxt,
and Pomc promoter in the prepubertal MBH-PoA of females ancestrally
exposed to a mixture of EDC (F3 generation), as measured by ChIP
(n=6=group). EDC data was normalized to control. Samples originated
from six different litters per group. Dotted red lines represent repressive his-
tone modifications (H3K27me3). Green solid lines represent activatory his-
tone modifications (H3K27me3 and H3K9ac). Bars represent mean± SEM
(*p<0:05, **p<0:01, ***p<0:001 vs. CTL, Student’s t-test). Summary data
are reported in Table S3. Note: AU, arbitrary units; ChIP, chromatin immu-
noprecipitation; EDC, endocrine-disrupting chemicals; Oxt, oxytocin; SEM,
standard error of the mean; Th, tyrosine hydroxylase.
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Esr1p was associated with lower expression of the activatory
mark H3K9ac. Finally, Oxtp was associated with lower expres-
sion of the activatory H3K4me3 in EE pups.

These results show that cross-fostering could not restore nor-
mal pubertal timing in germ-cell EDC exposed animals, nor did
EDC exposed dams cause delayed sexual maturation of unexposed
pups. Our results strongly suggest that in these rats, delayed sexual
maturation was caused by a germ-cell inheritance of the EDCmix-
ture effects, independent of maternal care. To confirm these results,
we further explored the consequences of cross-fostering on vaginal
opening and hypothalamic gene expression in the transgeneration-
ally exposed females of the F3 generation. These F3 females (EE
and CE) displayed delayed vaginal opening, independent of

maternal care. Furthermore, transgenerationally EDC-exposed F3
animals showed a down-regulation in the hypothalamic expression
ofKiss1, Esr1, andOxt at P21, independently of being raised by an
EDC (EE) or control (CE) dam (Figure 7I–K, up). Down-
regulation of Kiss1, Esr1, and Oxt found in the F3 generation was
consistently associated with a repressive chromatin state (Figure
7I–K, down). For instance, in EDC exposed pups (EE and CE)
from the F3 generation, theKiss1pwas found to be associated with
higher expression of the repressive H3K27me3. Furthermore,
Esr1p and Oxtp were found to be associated with lower levels of
H3K9ac andH3K4me3, respectively.

In our cross-fostering paradigm, maternal care was shown to
be transmitted through experience of being raised by an EDC

Figure 5.Maternal behavior displayed by female rats exposed to a mixture of EDC throughout four generations. (A–D, left) Time spent by dams displaying licking
and grooming behavior toward pups after direct (F0 generation, n=15=group), in utero, and through lactation (F1 generation, n=10− 11=group, obtained from 5
different litters per group), germ-cell (F2 generation, n=11=group obtained from 5 different litters per group) or ancestral (F3 generation, n=11=group, obtained
from 5 different litters per group) exposure to an EDCmixture or vehicle from P2 to 8. Bar graphs show pooled time spent licking and grooming from P2–8. (A–D,
right). Time spent by dams resting alone outside the nest not being involved in maternal care in F0–F3 females. Bar graphs show pooled time spent resting alone
from P2–8. Plotted lines represent average time±SEM (*p<0:05 vs. CTL, two-way ANOVA followed by Sidak’s multiple comparisons test). Summary data are
reported in Table S3. Note: ANOVA, analysis of variance; CTL, control; EDC, endocrine-disrupting chemical; SEM, standard error of themean.

Environmental Health Perspectives 087003-12 129(8) August 2021



Figure 6. Dopaminergic signaling proteins, mRNA expression and chromatin state in the female rat in utero (F1 generation) and ancestrally (F3 generation)
exposed to EDC mixture or vehicle. (A) Expression of Th, Dnm1, Drd1, and Darpp32 mRNA in the MBH-PoA of infant (P6), prepubertal (P21) and adult
(P60) F1 female as determined by qPCR (n=6=group). Samples originates from six different litters per group. RNA expression data were normalized by divid-
ing each individual value by the control group average value at every time point. (B) Methylation state at 13 CpG sites of the Th gene promoter from MBH-
PoA explants of F1 females at P21 (n=6=group). Samples originates from six different litters per group. (C) Abundance of the TrxG-dependent activating
marks H3K4me3 and H3K9ac and the PcG-dependent repressive mark H3K27me3 and H3K9me3 at the Th promoter in the prepubertal MBH-PoA of F1
females, as measured by ChIP (n=6=group). Samples originate from 6 different litters per group. (D) Abundance of Th-immunoreactive cells (green) within
the mPoA of F1 prepubertal female rats. (E) Quantification of Th immunoreactivity in the SN, VTA, and mPoA of F1 females. Bars represent mean number of
cells per cubic millimeter ± SEM; (F) Expression of Th and Drd1 mRNA in the MBH-PoA of infant (P6), prepubertal (P21), and adult (P60) F3 females
(n=6=group). Samples originates from 6 different litters per group. (G) Methylation state at 13 CpG sites of the Th gene promoter from MBH-PoA explants
of F3 females at P2 (n=6=group) Samples originates from six different litters per group. (H) Abundance of H3K4me3, H3K9ac, H3K27me3, and H3K9me3
histone posttranslational modifications at the Th promoter in the prepubertal MBH-PoA of F3 females, as measured by ChIP (n=6=group). Dotted red lines
represent repressive histone modifications (H3K27me3 and H3K9me3). Green solid lines represent activatory histone modifications (H3K27me3 and H3K9ac).
EDC data from panels A, C, F, and H were normalized to control data. Samples originates from six different litters per group. Bars represent mean± SEM
(*p<0:05, **p<0:01, ***p<0:001 vs. CTL). Data was analyzed using either two-way ANOVA (6A), followed by Sidak’s multiple comparisons test or
Student’s t-test (6B–H). Summary data are reported in Table S3. Note: 3V, third ventricle; ANOVA, analysis of variance; AU, arbitrary units; ChIP, chromatin
immunoprecipitation; CTL, control; EDC, endocrine-disrupting chemical; SN, substantia nigra; Th, tyrosine hydroxylase; VTA, ventral tegmental area.
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Figure 7. Sexual maturation and mRNA expression data in cross-fostered F2 offspring. (A) Average age at vaginal opening of cross-fostered germ cell (F2)
EDC-exposed pups or controls raised by either in utero EDC-exposed dams or controls (n=12–19=group). Samples originates from 6–12 F1 generation litters
per group. (B) Percentage of cross-fostered females having regular cycle and time spent in each stage of the estrous cycle (n=10=group). (C) Time spent by
cross-fostered F2 dams displaying licking and grooming (n=8=group). (D) Average age at VO in F3 females (n=10=group). Samples originates from
6–10 litters. (E–H and M–P) Expression of Kiss1, Esr1, Oxt, and Th mRNA in the MBH-PoA of cross-fostered F2 and F3 pups at P21, as determined by qPCR
(n=6=group). Samples originates from six litters. Data from the CE, EC, and EE groups were normalized to the CC group. (I–L and Q–T) Abundance of the
TrxG-dependent activating marks H3K4me3, H3K9ac, or the PcG-dependent repressive mark H3K27me3 at the Kiss1, Esr1, Oxt, and Th promoter in the pre-
pubertal MBH-PoA of cross-fostered F2 and F3 females, as measured by ChIP (n=6=group). Samples originates from six litters. Summary data are reported
in Table S4. Bars represent mean±SEM (*p<0:05, **p<0:01, ***p<0:001 vs. CC; †p<0:05, ††p<0:01, †††p<0:001 vs. CE, one-way ANOVA). Note:
ANOVA, analysis of variance; CC, control pup raised by control dam; CE, germ-cell EDC-exposed pup raised by control dam; ChIP, chromatin immunopreci-
pitation; D, diestrus; E, estrus; EC, control pup raised by in utero EDC-exposed dam; EDC, endocrine-disrupting chemical; EE, germ-cell EDC-exposed pup
raised by in utero EDC-exposed dam; Oxt, oxytocin; P, proestrus; Reg. cycle, regular cycle; SEM, standard error of the mean; Th, tyrosine hydroxylase; VO,
vaginal opening.
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dam, rather than through direct EDC mixture exposure. Because
we observed lower dopaminergic signaling in the hypothalamus
of transgenerationally exposed juvenile females (Figure 6F), we
further sought to determine whether Th mRNA expression was
transmitted via altered maternal care or via EDC-mixture expo-
sure–induced germline transmission. Our cross-fostering para-
digm revealed that Th mRNA levels were down-regulated in F2
and F3 generations when raised by an EDC-exposed mother, in-
dependently of their ancestral (EE or EC) exposure, suggesting
that the alterations in the dopaminergic system are transmitted
through altered maternal care (Figure 7H and I; Table S4). Th
downregulation was associated with higher levels of the repres-
sive H3K27me3 histone marks in the F3-exposed generation as
found in the previous experiment (Figure 7L; Figure S11).

Discussion
The potential multi- and transgenerational effects of developmen-
tal exposure to a low-dose EDC mixture on the neuroendocrine
regulation of reproduction and maternal behavior via the maternal
lineage in the female rat has never been addressed, to the best of
our knowledge. In the present report, we provide evidence that in
rats an EDC mixture exposure induced multi- and transgenera-
tional alterations of maternal care and sexual maturation, respec-
tively, through epigenetic reprogramming of the hypothalamus.
The reproductive phenotype, found in germline-exposed F2 and
transgenerationally exposed F3 females, is defined by a delay in
vaginal opening, altered folliculogenesis, and estrous cyclicity. A
similar transgenerational reproductive phenotype was observed
after developmental exposure to pesticides, jet fuel, DEHP, and
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) alone or in mixture.
Alterations were characterized by abnormal puberty timing,
lower number of primordial follicles, and accelerated follicle
recruitment (Table 2; Manikkam et al. 2012a, 2012b; Nilsson
et al. 2012; Pocar et al. 2017). In our model, delayed sexual mat-
uration in the F3 generation was accompanied by a modest but
consistent delay in GnRH secretion maturation. The transgenera-
tional consequences of the EDC mixture on sexual maturation
were further confirmed by the presence of a delay in vaginal
opening in the F4 generation. Furthermore, germline (F2) and
transgenerationally exposed (F3) females had a significantly
lower number of antral follicles and higher number of atretic fol-
licles. This phenotype suggests a diminished ovarian efficiency, a
sign of subfertility. Surprisingly, no significant reproductive
effects were detected in the F1 generation that was directly
exposed to the EDC mixture during embryonic and lactational
development, which suggests that the reproductive phenotype
may be a consequence of germline exposure. However, we also
observed slightly but not significantly higher levels of atretic fol-
licles in EDC-exposed F1 females, which might indicate a direct
effect of EDCs on ovarian function as the expression of hypo-
thalamic key players was not affected in F1 females.

The activation of the GnRH network during the juvenile pe-
riod involves the transcriptional activation of KNDy neurons in
the arcuate nucleus (ARC) (Han et al. 2015; Seminara et al.
2003). Developmental exposure to EDCs (Table 1) have been
found to disrupt ARC kisspeptin neurons in adults, as shown for
DnBP (Hu et al. 2013), DEHP (Liu et al. 2018; Yu et al. 2020)
and BPA (Losa-Ward et al. 2012; Losa et al. 2011; Ruiz-Pino
et al. 2019). Here, we hypothesized that KNDy neurons could be
a putative target of the EDC mixture disrupting puberty. In our
study, we aimed at identifying and comparing hypothalamic tran-
scriptional and epigenetic targets of direct in utero and lactational
(F1) exposure to the EDC mixture vs. transgenerational (F3) ex-
posure. RNAseq validation analysis using MBH-PoA hypothala-
mic explants from F3 females transgenerationally exposed to the

EDC mixture showed that the reproductive effects were associ-
ated with lower Kiss1, Oxt, and Esr1 expression. These three
genes play a crucial role in the control of the GnRH pulse genera-
tor during puberty and ovulation (Clarkson et al. 2010; Parent
et al. 2008; Seminara et al. 2003; Wintermantel et al. 2006; Yeo
and Herbison 2014). We found that F3 descendants of EDC-
treated animals showed a disbalanced histone configuration at the
Kiss1 promoter with higher expression of the repressive
H3K27me3 and lower H3K4me3, a histone modification found at
promoter regions of activated genes, suggesting that the delay in
pubertal timing is mediated by an alteration of the epigenetic
switch of PcG and TrG complexes. These results suggest that
EDC mixture exposure affects the epigenetic programming of the
hypothalamus transgenerationally. The EDC mixture may be spe-
cifically targeting the ARC kisspeptin population because of the
quiescence of kisspeptin AVPV neurons during the juvenile pe-
riod (Toro et al. 2018). However, because we used MBH-PoA
explants in bulk, an approach that included different cell popula-
tions, futures studies including single-cell approaches should be
used to characterize whether transgenerational effects of the EDC
mixture target specific kisspeptin populations.

We have previously shown that metabolic cues target KNDy
neurons through epigenetic modifications affecting pubertal timing
(Vazquez et al. 2018). Undernutrition-induced delay in pubertal
onset was found to be related to developmentally higher levels of
the repression histone deacetylase sirtuin 1, responsible for lower
expression ofH3K9/16ac at theKiss1 gene promoter (Vazquez et al.
2018). We showed here that the loss in Esr1 expression was associ-
ated with lower levels of H3K9ac at its promoter region, suggesting
a role of the sirtuin deacetylases as putative mediators of EDC
effects on reproduction. Our results indicate striking similarities
between the epigenetic changes involved in the EDC-induced
reprograming of the hypothalamus and those induced by undernutri-
tion. In both cases, we identified a predominant role of the PcG and
sirtuins in repressing gene expression by inducing higher levels of
the repressive role of H3K27me3 and decreasing the effects of
H3K9ac at the promoter region of puberty activating genes. This ob-
servation is in line with several reports suggesting that EDCs func-
tion as metabolic disruptors by sharing common intracellular
pathways (Heindel et al. 2017). However, we did not find differen-
ces in body weight across generations, whereas some of the studied
EDCs are known obesogens (Loganathan et al. 2021; Stahlhut et al.
2007). These EDCs, however, have never been studied inmixture at
the doses used in this exposure. Surprisingly, we also found that the
hypothalamic expression of Pomc and Cart, two postulated meta-
bolic activators of the GnRH system (Parent et al. 2000; Roa and
Herbison 2012), were transiently higher in exposed females. One
could expect that such up-regulation of anorexigenic factors would
be associated with modified weight gain. Future studies should
address the expression ofmetabolic signals in specific nuclei.

Although delayed sexual maturation has been observed in
many studies using single EDCs used in this study (Franssen et al.
2016; Naulé et al. 2014), contradicting results have also been
reported following exposure to BPA at various doses (Fernandez
et al. 2009; Franssen et al. 2016; Losa-Ward et al. 2012). These
contradictory effects have been found to be explained by differen-
ces in cellular and molecular alterations in the hypothalamic con-
trol of reproduction (reviewed in López-Rodríguez et al. 2019).
The divergence of the results may be caused by differences in dose,
route of administration, windows of exposure, and, as in our case,
the synergistic or additive effect of EDCs (Kortenkamp 2007).

We observed a delay in GnRH neuron maturation in the trans-
generationally EDC-exposed females of the F3 generation. This
hypothalamic incubation model has been shown to be a robust
and reproductive tool to measure GnRH pulsatility (Bourguignon
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et al. 1989b; Rasier et al. 2007). Previous data have shown that
GnRH secretion at this developmental stage was particularly sen-
sitive to early exposure to EDCs (Franssen et al. 2016) and asso-
ciated with consistent early or late vaginal opening. Although
modest, longer GnRH interpulse interval in exposed animals
were consistent with the delay in pubertal timing and the hypo-
thalamic epigenetic reprogramming, suggesting a delayed matu-
ration of the GnRH network.

Alterations in maternal care has been found to be transmitted
through generations via a multigenerational nongenomic mecha-
nism, affecting reproductive development by modulating hypo-
thalamic Esr1 expression (Peña et al. 2013) and affecting the
hypothalamic response to stress (Schmauss et al. 2014). In our
study, in utero and lactational (F1), germ cell (F2) and transge-
nerationally EDC-exposed (F3) females showed diminished pup
licking behavior and a longer proportion of time being active out-
side the nest. Only a single study has reported effects of BPA on
licking and grooming behavior (Seta et al. 2005). Gene ontology
analysis of hypothalamic RNAseq demonstrated that the dopami-
nergic system is one of the main targets of the EDC mixture in
the F1 generation. In particular, EDC-exposed F1 females
showed a significant loss in Th expression, suggesting a lower
maternal motivation (Fang et al. 2018). This effect is limited to
the mPoA because there was no TH staining loss in either the SN
or the VTA. Although we found that lower levels of TH is cell-
specific, it is not clear whether the low levels of TH in the mPoA
is sufficient to explain the shorter time spent licking and groom-
ing their pups. For instance, we did not observe differences in
Esr1 in the F1 generations, known to be associated with low lick-
ing and grooming behavior (Peña et al. 2013). However, dopami-
nergic signaling alterations in the hypothalamus were found to be
persistently affected transgenerationally and appeared to be medi-
ated by epigenetic mechanisms. In exposed F3 females, Th pro-
moter showed higher expression of the repressive H3K27me3a,
and H3k9me3, as well as modestly higher levels in CpG methyla-
tion at three independent sites throughout the Th promoter. These
findings show that the epigenetic reprograming of the Th locus of
the F3 generation differs from F1. Moreover, although we
observed lower maternal care from the F1 to the F3 generation,
levels of licking and grooming were found to be variable between
generations. Although we suggest that direct in utero and lacta-
tional exposure to the EDC mixture alters dopaminergic signaling
and induces a multigenerational transmission of altered maternal
care down to the F3 generation, further studies may address the
question on whether maternal motivational brain circuits are
being impaired. A maternal motivational paradigm by using a
pup retrieval test could be used to determine whether alterations
specifically target that component of maternal care.

Surprisingly, the reproductive phenotype appeared only after
germline exposure (F2) to the EDC mixture. We did not find dif-
ferences in sexual maturation in F1, as shown previously by using
the same EDC mixture at high doses (Axelstad et al. 2014;
Johansson et al. 2016). Although we observed a trend toward
higher levels of atretic follicles, we did not observe differences in
estrous cyclicity which would suggest a diminished reproductive
capability. Because natural variations in licking and grooming
behavior have been related to sexual maturation (Cameron et al.
2008b) and our reproductive phenotype started to appear in the
F2 generation, we carried out a cross-fostering experiment. The
cross-fostering paradigm aimed at determining whether maternal
and reproductive phenotype were related to each other.
Additionally, we aimed at determining whether the reproductive
phenotype was caused via germline inheritance or via nonge-
nomic transmission. We identified that the reproductive pheno-
type was transmitted through the female germline and was not

explained by impaired maternal behavior, because the cross-
fostering of the F2 generation with nonexposed mothers did not
normalize pubertal timing or the epigenetically mediated down-
regulation of hypothalamic Kiss1, Esr1, and Oxt expression in
the F2 or F3 generations. Germline-exposed (F2) pups raised by
control or EDC dams displayed a delay in pubertal timing, which
was also found in the transgenerationally exposed EDCs. A more
modest effect in estrous cyclicity was observed in the F2 genera-
tion, suggesting that maternal care could partially restore the
reproductive phenotype at adulthood, as suggested previously
(Krishnan et al. 2019).

Concomitantly with the germline transmission of the repro-
ductive phenotype, the cross-fostered EDC-exposed animals
raised by control females showed a normalization of the hypo-
thalamic dopaminergic network by higher Th expression, indicat-
ing that the reduction in maternal behavior is in fact learned and
multigenerationally transmitted from the F1 generation. The tran-
scriptional down-regulation of Th expression was found to be
associated with epigenetic modifications. These results indicate
that transgenerational disruption of sexual maturation and hypo-
thalamic expression of genes critical for puberty induced by ex-
posure to an EDC mixture in the female rat may happen through
germ cell alterations. This EDC-induced epigenetic reprogram-
ming needs to be resistant to erasure and to be transmitted across
multiple generations (Jirtle and Skinner 2007). Thereafter, EDC-
induced germ cell alterations flowed from germline to soma (Lim
and Brunet 2013), affecting in this case the organization of the
GnRH network. The mechanism by which EDCs affect germline
programming and induce somatic alterations is largely unknown.
It is unlikely that transgenerational alterations caused by the EDC
mixture through the germline are restricted to the hypothalamus.
Further studies should determine the developmental window at
which the germ cells epigenome is more sensitive to environmen-
tal alterations. The combination of single-cell approaches to-
gether with transgenic models should help tracking epigenetic
modifications from the germline to somatic tissues. In our model,
we aimed at ensuring genetic background consistency by housing
together one control and one EDC-exposed female with the same
male during mating. Although this protocol allowed controlling
for male genetic variance, we may have introduced a potential
source of contamination through urine and feces when females
were sharing housing.

Finally, we found transcriptional and epigenetic alteration of
stress response genes in F3 females raised under diminished
maternal care. F1-EDC females did not show differences in hypo-
thalamic Nr3c1 or Crh expression while receiving normal mater-
nal care from their F0 mothers. This finding confirms those of
previous studies in rodents showing that maternal care induced
increased responses of the HPA axis, decreasing Nr3c1 transcrip-
tional levels via epigenetic alterations throughout generations
(Liu et al. 1997; Weaver et al. 2004).

Altogether, the present study showed that developmental ex-
posure to human-relevant doses of an EDC mixture altered the
hypothalamic epigenetic programming of key puberty-activating
genes in the female rat across generations, likely through the
germline and maternal lineage. In addition, we showed that direct
exposure to the EDC mixture down-regulated the hypothalamic
dopaminergic network, affecting maternal behavior in a multige-
nerational and reversible manner.
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