Tree based ensemble models regularization
by convex optimization

Bertrand Cornélusse, Pierre Geurts and Louis Wehenkel
Department of Electrical Engineering and Computer Science
University of Liege
B-4000 Liege, Belgium
{bertrand .cornelusse, p.geurts, louis. wehenkel}@ulg .ac.be

Abstract

Tree based ensemble methods can be seen as a way to learn a kernel from a sample
of input-output pairs. This paper proposes a regularization framework to incorpo-
rate non-standard information not used in the kernel learning algorithm, so as to
take advantage of incomplete information about output values and/or of some prior
information about the problem at hand. To this end a generic convex optimization
problem is formulated which is first customized into a manifold regularization
approach for semi-supervised learning, then as a way to exploit censored output
values, and finally as a generic way to exploit prior information about the problem.

1 Motivation

In the standard setting, supervised learning aims at inferring a predictive model mapping an input
space X to an output space ) given a completely labeled sample of input-output pairs. However,
in many applications the available output information for a set of input points is incomplete. For
example, in the setting of semi-supervised learning the output is simply unknown for a subset of the
provided inputs, but under some assumptions taking into account these unlabeled inputs allows the
induction of better predictive models. Between these extreme settings, in the context of censored
data some outputs are only partially specified for a subset of the given inputs in the form of a range
of possible values (e.g. typically a lower bound on the life-time, in the context of survival data). In
other contexts, additional prior knowledge about the target problem is given in the form of hard or
soft constraints. In all these cases, one would like to exploit all the available information together
with the complete sample of input-output pairs so as to infer better predictive models.

In this paper, a general framework is proposed for the regularization of tree based ensemble models.
It exploits a kernel formulation of tree-based predictors and is formulated as a convex optimization
problem where the incomplete data and/or prior knowledge is used as extra information to regularize
the model. Semi-supervised learning and learning from censored data fit naturally into this general
framework. However, other kinds of information can be used, like prior information on the mea-
surement accuracy on the outputs or specific constraints on output values which must be represented
in the model. Relations between input-output pairs can also be imposed as well as some other kinds
of structural properties about the problem.

The convex optimization formulation is presented in Section 2, as well as the consequences in terms
of problem complexity. In Section 3, learning from censored data and manifold regularization for in-
corporating unlabeled data are cast in the general formulation, and the way to incorporate other types
of information is also discussed. Section 4 exposes the related work, while Section 5 concludes.



2 Regularizing an ensemble of regression trees

After an intuitive description of the nature of the problems addressed, the principles of the induction
of ensembles of regression trees are recalled and their regularization is formulated as a convex
optimization problem which is discussed in terms of modeling capacity and solution complexity.

2.1 Nature of the problem

We consider the supervised learning framework, where we typically seek to infer a function f(-) :
X — Y from a completely labeled training sample of input-output observations {(x;, y;)}" ;. For
convenience, we consider the context of regression, where ) C R.

In many cases, additional information can be useful in this inference process. E.g., if for some points
{(ziyy) yite 41 the output is censored, for example right censored, we would wish to regularize f
such that f(x;) > y;, Vi € {n 4+ 1,...,n + ¢}. In semi-supervised learning, we have a (typically
large) number of input points {xz}l n1 Without their associated outputs. We then would like to
exploit regularity assumptions about the input-output relation to bias the learning of the mapping f
from the complete data. But it might also happen that the output targeted by the learning process
is a priori known to satisfy equality constraints for some particular inputs, or even over some given
regions of the input space! (e.g. “f(x) > Ax + b, whenever Bx < ¢”, cf. [1]). More generally,
the additional information at hand might also entail more complex relations involving input-output
pairs at several places (e.g. “f(zx) > f(z},),Vk = 1,..., K”). Another example is in multiple or
structured output prediction if individual models f7(-) are fitted for each individual output 3. E.g.,
if ) C R? then we may wish to couple the individual models to better respect the known structure
of their output relations, so as to satisfy constraints such as “f1(x) > f2(x)”.

2.2 Tree-based ensemble methods

In this paper, we consider the incorporation of prior knowledge and incompletely labeled samples
in the forms suggested in Section 2.1 into tree-based supervised learning methods. The general idea
of regression trees is to recursively split the training sample with tests based on the input space
description z, trying at each split to reduce as much as possible the variation of the output y in the
left and right subsamples of learning cases corresponding to that split. The splitting of a node is
stopped when the output y is constant in the subsample of this node or when some other stopping
criterion is met (e.g., the size of the local subsample is smaller than n,,;, € N). To each leaf a
label is attached so as to minimize the empirical error, which in least squares regression trees is the
local subsample average of outputs. While useful for their interpretability, single trees are usually
not competitive with other methods in terms of accuracy, essentially because of their high variance.
Thus, ensemble methods have been proposed to reduce variance and thereby improve accuracy. In
general, these methods induce an ensemble of M diverse trees and then combine their predictions
to yield a final prediction as a weighted average of the predictions of the individual trees.

In the following, trees are indexed by the letter ¢, [, is the number of leaves in tree ¢, I, ;() is
the leaf indicator function? and n¢,; is the number of labeled objects reaching leaf i. Let I;(z) =
(Lep (@) /s b, ()] /ntylt)T, then the prediction of one tree is Y .-, y;l7 ()l (). If we
concatenate the vectors of leaves of the M trees, [(z) = (wql{ (@), ..., wnlk, (:L))T € R?, where

w; > 0Vi € {1,..., M} are weights associated to the trees such that Ef\il w; = 1, the prediction
of the ensemble is Z ", il (z;)l(z). Equivalently, if we define the kernel K (z,2") = ¥ (2)l(2"),

Z yi KK x’m

'In what follows, (in)equality relations are to be understood as component-wise when they apply to vectors.
21y.:(z) = 1if = reaches leaf i of tree ¢, Iy ;(x) = O otherwise.



2.3 Regularization of a tree ensemble model

To incorporate the information contained in the incomplete data and/or prior knowledge, we must
modify the model described in Section 2.2. In order to remain as generic as possible, we choose
not to modify the tree induction algorithm and the way the kernel function K is computed (e.g.
bagging [2], random forests [3], extra-trees [4], boosting [5], etc). Thus we choose not to modify
the structure of the trees, i.e. the way splits are selected at their internal nodes, but rather to modify
the labels assigned to their leaves. This can be interpreted as a regularization of the model generated
by the tree induction algorithm which assigns constant values to regions of the input space, by the
correction of these assignments through the resolution of an optimization problem. To this end we
consider two possibilities: to modify the vector y of training sample outputs and /or to add a bias to
the labels attached to the leaves of the trees. The first way allows to correct the y; values when they
are corrupted by noise and the second way arises when we do not want to modify these values.

To formulate the corresponding regularization problem, we introduce a vector of decision variables
to denote the leaf biases Az € RP, a vector of modifications to the training sample outputs Ay € R"
and a vector of auxiliary variables v € R}, and we denote by K € R™*" the gram matrix of the

training sample, i.e. K;; = K(z;,z;) and by L the sample partitioning matrix of the ensemble:?
T
L=(T(z1) ... IT(x,)) €R™P.
We also denote by Q(-,-,-) : R™ x R? x R® — R a convex function used to express generically
various compromises in terms of regularization, and by C C R™+P*+7" 3 convex set used to express

hard constraints. Given these notations, we formulate the following optimization problem.

Formulation 1 (General formulation)

min Q(Ay, Az, v) (1
s.t. —v<Ky+ KAy+ LAz—y<v @)
(Ay,Az,v) €C. 3)

The inequality constraints (2) aim at keeping the prediction error on the training sample low through
the vector v which norm is penalized in (1) and/or constrained in (3). The information of the incom-
plete data or prior knowledge may be expressed in the constraints (3) and in the objective (1).

In formulation 1, we express the fact that we want to regularize the model by incorporating the
information from the complete training sample, the incomplete data, and the prior knowledge, by
assuming that these may be expressed by a finite number of constraints on the vectors Ay, Az and
v and/or by an appropriate choice of the objective function. In general, a trade-off must however
be defined between the regularization induced by the prior and the incomplete data and the error
on the complete training sample. Notice also that without prior knowledge or incomplete data, this
formulation allows to globally (re)optimize the leaf labels so as to minimize the error on the training
sample without affecting too much the original model, in a way depending on the definition of (2.

2.4 Problem dimensions and computational complexity

Formulation 1 contains p + 2n variables, and 2n linear constraints, without taking into account the
constraints defining C. For a balanced tree ¢ built from a finite sample size n, the number of leaves [,
is on the order of 1/, thus p = Mn/nyy,. High dimensional problems formulated as LP can be
solved in polynomial time. Anyway if the problem is nonlinear but convex it might still be solved in
polynomial time. Depending on the complexity of the ensemble of trees on which the optimization
problem is formulated, and on the parameter choices, the problem might not be feasible, or might
be feasible only at the price of a significant increase of the error on the training sample. This would
be the case if there were not enough degrees of freedom in the model to incorporate the incomplete
data. A solution would be to penalize constraint (3) violations in (1).

3Up to some normalization, the line 7 of matrix L essentially indicates the leaves reached by the sample 3.



3 Learning from incomplete data

3.1 Censored data

Censored data arise frequently, e.g. in survival analysis where one is interested in the survival time
of patients after the inception of a treatment. In this context, it often arises that people leave the
study at a given instant ¢y for reasons independent of the disease, i.e. their survival time is only
known to be larger than ¢y,. Here we try to use this partial information, as [6] did using support
vector regression for censored data (SVCR). To this end, we learn a tree-based kernel function* K
on the subset of uncensored data {(z;,y;)}; and then impose the information contained in the

censored data {(z;, y;)}/,¢, , thanks to Formulation 2, a particular case of Formulation 1.

Formulation 2 (Censored data formulation)

min Ch||Ay|| + Col|Az|| + Cs||v]| + Callve)| 4)
s.t. —v< Ky+ KAy+ LAz—y<v (5)
—v° < K+ KAy + LAz — ¢, (6)

where y© denotes the vector of censored outputs, v € RS is a vector of auxiliary variables, K¢ €
R*™ with K¥; = K(z;,25), Vi€ {n+1,...,n+c}andVj € {1,...,n}, and

L¢= ((ns1) - U(znse))” € RO,

Constraints (6) with the term Cy||v¢|| of 2 imply that for censored objects an excessive prediction
is not penalized. We did not use hard constraints here for the censored data for feasibility reasons.
Since in survival data the sample outputs are in principle measured with high accuracy, we penalized
||Ay|| very strongly, but we could as well have removed these variables from the formulation.

We compared this approach (Table 1) to unregularized tree-based ensemble methods (denoted by
ET and ET*) and to the SVCR algorithm presented in [6]. We analyzed the four real life data
sets from the R package “survival” on which SVCR is tested in [6], and evaluated the error measure

MAE = L (ZL s — fa)| + S0, max(0, y; — f(:ci))) by 5-fold cross-validation. ET

was used to compute the gram matrix K of formulation 2. In ET* the censored points are included
in the training sample and handled as uncensored points. For SVCR we used a Gaussian kernel. The
parameters of these methods are tuned by grid search while using only the training samples. We
observe that exploiting the censored data via Formulation 2 may indeed improve significantly the
quality of the predictors. This is especially remarkable in the “nwtco” data set where the proportion
of censored outputs is very high. We also notice that using regularized tree-based predictors actually
outperforms, sometimes quite strongly, the SVCR approach to these problems.

Table 1: Comparison of unregularized/regularized tree-based predictors with SVCR (first row gives
the percentage of censored data in each data set). The values reported are the average MAE over the
5 folds =+ one unit standard deviation; T indicates that SVCR scores are reproduced from [6].

| | Tung (28%) [ veteran (7%) | heart (56%) | nwtco (86%) |

ET 144 £11 | 8 +122 146 £57 | 1888 £ 72
ET* 117 £17 | 84 =19 78 +13 224 £38
ET + Formulation2 || 113 £+ 13 | 81 £34 68 +23 98 13
SVCR 144 +14 | 80 £28 138 £48 | 4767

3.2 Manifold regularization for semi supervised learning

We show how the scheme presented in [7] may be casted in our formulation to yield semi-supervised
and/or transductive tree learning algorithms; in [7] an adjacency graph among samples is inferred
from similarities of their inputs, and the scheme regularizes predictions according to this graph. Let

*Using the “Extremely randomized trees” algorithm described in [4] and named ET in the sequel.



{x;}74]™ denote the inputs of our sample, and suppose that we are given the output labels {y;}7,
only for the first n of them. We suppose also to be given an ensemble of M tree structures and a
similarity graph over the whole sample (we denote by L its (n + m) X (n + m) Laplacian).

Our objective is to compute ensemble predictions over the complete sample that are “regular” with

respect to the similarity graph. To this end we exploit the full set of inputs {;}!7™ in each tree
t € {1,..., M} to compute the values n;;, ¥i = 1,...,l; so as to define the ensemble kernel

K'(-,-), from which we compute the gram matrix K’ € R(m)x(n+m) gyer {g,}71m:

[ Kéé Kéu
W= (i ).
where K, K;, and K, are submatrices corresponding respectively to the kernel evaluations be-
tween labeled, between labeled and unlabeled, and between unlabeled cases. We use Formulation 3

to compute predictions regularized along the similarity graph:

Formulation 3 (Manifold regularization for semi-supervised learning)

min V|3 + Cly + Ay)TK' LK (y + Ay) (7)
st —v < (K| Kp,) (y+Ay) —ye < v (8)
Ay, =0, )

where y = (ygT, yIT € R™+™ denotes a vector of output labels obtained by completing the n given
labels with m labels equal to zero (y,, = 0), and Ay = (Ay/, AyD)T.

Note that in this formulation, we do not allow to adjust the given output labels (9) nor use leaf biases
Az, but in (8) the outputs Ay, contribute to the predictions for the labeled sample {x;}? .

3.3 Other types of prior knowledge and objectives

Obviously, the formulations 2 and 3 could be merged to handle both types of data in a com-
mon formulation. However, formulation 1 is not limited to the incorporation of incomplete data.
For example, to approximate the dynamics of a non-linear system with known equilibrium points
(z7,y7) Vj € J, itis possible to force the value f(x) for these points by expressing (3) as

> K(wi,2}) (i + Ayi) + @) Az =yf, Vi€ J. (10)

i=1

We have observed experimentally that adding such constraints may significantly enhance the preci-
sion of the inferred model. We have also successfully used our framework to incorporate other types
of prior knowledge, such as relations between different output space dimensions.

Also, e-insensitive formulations may be handled by the incorporation of appropriate constraints in
the set C. These may be used to inject prior knowledge about the accuracy of the sensors used to
measure the output values or to trade-off empirical accuracy with generalization performance.

4 Related work

Many developments in supervised learning can be considered as the incorporation of (more or less
explicit) constraints on the learned input-output map. Model regularization imposes global con-
straints on the smoothness of input-output maps and semi-supervised learning [8] imposes local
constraints among the predictions at nearby samples derived from similarity measures.

In this paper, we have focused on the regularization of tree-based models by the incorporation of
incomplete data (and possibly other sources of additional prior knowledge about the problem) into
predictive models. To the best of our knowledge, there is no related work using tree-based learning
algorithms. In support vector machines, the explicit incorporation of constraints has already received
a lot of attention (see [9, 10] and the references therein). The definition of the model derived from
these methods as the solution of a convex (quadratic or linear) optimization problem indeed makes
the incorporation of regularization terms and additional constraints natural. At first sight, one main



advantage of these approaches with respect to tree-based ones is the simultaneous handling of both
fitting the training data and satisfying the constraints, whereas, in our case, the optimization only
acts as a corrector for the tree-based learning algorithm. However, our Formulation 1 incorporates
the quality of the fitting of the training data, meaning that it could be able to learn a useful model
even if the initial tree model is not determined from the training data (but for example randomly
built). Furthermore, the tree-based ensemble methods allow to learn a kernel over the input-space
from the data in a supervised way, contrary to many approaches which assume that this kernel is
given. Additionally, exploiting a learned tree model may take benefit of the main advantages of
tree-based methods, such as for example their embedded feature selection mechanism.

5 Conclusion and further work

We have proposed a generic extension of tree-based ensemble methods which allows to incorporate
incomplete data but also prior knowledge about the problem. The framework is based on a convex
optimization problem allowing to regularize a tree based ensemble model by adjusting either (or
both) the labels attached to the leaves of an ensemble of regression trees or the outputs of the ob-
servations of a training sample. It allows to incorporate weak additional information in the form of
partial information about output labels (like in censored data or semi-supervised learning) or — more
generally — to cope with observations of varying degree of precision, or strong priors in the form
of structural knowledge about the sought model. In addition to enhancing the precision by exploit-
ing additional information, the proposed approach may be used to produce models which naturally
comply with feasibility constraints which need to be satisfied in many practical decision making
problems, specially in contexts where the output space is of high-dimension and/or structured by
invariances, symmetries and other kinds of constraints.

Further work will aim at validating these ideas on practical problems and incorporating them within
the algorithms used to grow ensembles of trees.
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