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1.  INTRODUCTION

Arctic marine offshore ecosystems are mainly sus-
tained by seasonal organic carbon pulses from phyto-
plankton (i.e. open water algae) and sympagic (i.e.
ice-associated algae) communities (Tamelander et al.

2009). When light conditions and inorganic nutrient
supplies are favorable during spring, the beginning
of a limited period of sea-ice algal production begins,
followed by a phytoplankton bloom (Hegseth 1998,
Leu et al. 2011, 2015). The duration of phytoplankton
and ice algal production is comparable, but in terms
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of biomass, phytoplankton generally exceeds sea-ice
algae (Leu et al. 2011). Once the organic matter is
produced, the vertical export of particulate organic
matter (POM) varies considerably during seasons and
among regions according to biological and physical
processes (e.g. zooplankton grazing pressure, micro-
bial processes), which ultimately control the final
amount and quality of POM that reaches the benthos
(Herndl & Reinthaler 2013).

The Arctic is warming faster than any other region
on Earth (AMAP 2017). As a result, the Arctic sea-
scape changes abruptly, exhibiting accelerated re -
ductions in the thickness and extent of sea ice, with
predictions estimating a seasonally ice-free Arctic
Ocean by 2040 (Comiso et al. 2008, Kędra et al.
2015). Sea ice plays a vital role in the Arctic Ocean
ecosystem by mediating physical and biological pro-
cesses such as primary production (Hunt et al. 2002,
Gradinger 2009, Ramírez et al. 2017), but also by
serving as a habitat for a large number of organisms
(e.g. from bacteria to marine mammals) and as a base
substrate for ice algae (Garrison 1991, Werner 2005).
Consequently, sea ice loss may affect the magnitude
of the set of interactions between habitats (i.e. sym-
pagic−pelagic and sympagic−benthic coupling) in
which exchanges of energy, mass, or nutrients occur
(Wassmann & Reigstad 2011). Benthic fauna depends
largely upon the supply of organic carbon from pri-
mary producers (pelagic and sympagic); thus, ben-
thic consumers and food web structure are sensitive
to changes in the timing, nature, quality, or abun-
dance of nutrients (Kędra et al. 2012). Therefore, the
knowledge of the ecological and biological mecha-
nisms that drive trophic ecology and support species
co-occurrence is important to predict how environ-
mental changes may affect trophic interactions, spe-
cies coexistence, and food web dynamics.

In the Arctic Ocean, the benthic community struc-
ture varies significantly due to ecological (e.g. spe-
cies interactions, resource availability, seasonality)
and environmental gradients (e.g. temperature, salin-
ity, depth, currents, sediment type, bottom topogra-
phy) (Kędra et al. 2013, Roy et al. 2014). Ecological
drivers that include niche complexity coupled with
species interactions shape benthic composition and
influence the transfer of energy through trophic lev-
els (Collin et al. 2011, Roy et al. 2014). Stable isotope
analysis (SIA; carbon and nitrogen), which provides
time- and space-integrated insight on diet and habi-
tat use by consumers, has emerged as a common
approach to examine the structure and dynamics of
ecological communities and carbon flow in food
webs (Post 2002, Layman et al. 2007, Jackson et al.

2011). In turn, the use of the isotopic niche, a low-
dimensional specification of the ‘Hutchinsonian niche’
(Hutchinson 1957), which consists of the area occu-
pied by individuals in the isotopic niche space, has
served to analyze patterns of interactions in various
ecological resolutions (Shipley & Matich 2020), and
to interpret levels of dietary specialization of individ-
uals (Araújo et al. 2007, Karlson et al. 2015). The
characteristics of the niche vary according to intrinsic
(e.g. intra- and interspecific competition) and extrin-
sic factors (e.g. sea-ice cover, resource availability,
seasonality) that influence the dimensions of the
niche (Costa-Pereira et al. 2017, Shipley & Matich
2020). Furthermore, individual levels of dietary spe-
cialization within a population may drive the vari-
ability of the niches (Araújo et al. 2009, Semmens et
al. 2009).

The high densities of ophiuroids, often observed in
dense aggregations, make them the most common
components of benthic assemblages in the Arctic
Ocean (e.g. Piepenburg & Schmid 1996, Starmans et
al. 1999, Sejr et al. 2000, Brooks et al. 2007). With
approximately 73 species recorded, brittle stars (Echi -
nodermata: Ophiuroidea) are present in a wide geo-
graphic and bathymetric distribution (Stöhr et al.
2012, Ravelo et al. 2017). Among the brittle stars
studied, Ophiacantha bidentata is a widespread arc-
tic−boreal ophiuroid with a circumpolar distribution
that can switch from deposit to suspension feeding
depending on food availability (Brooks et al. 2007).
The ophiuroids Ophiocten sericeum and Ophiopleura
borealis have been described as endemic Arctic spe-
cies, and they are considered mobile deposit or pred-
ator−scavenger feeders (Paterson et al. 1982, Piepen-
burg & Schmid 1996, Gallagher et al. 1998). Due to
the high densities that ophiuroids can reach, it is
believed that this group plays a fundamental role in
the functioning of the ecosystem by increasing the
number of trophic links and maintaining trophic cas-
cades in food webs (Pearson & Gage 1984). In general,
brittle stars have been suggested to be opportunistic
facultative deposit or suspension feeders (Jan goux
1982). However, according to changes in the avail-
ability of resources, ophiuroids display wide-ranging
trophic flexibility, using more than one feeding mode
(Pearson & Gage 1984, Brooks et al. 2007).

Even though we have expanded our knowledge
about the diet of brittle stars in the Arctic (e.g.
Graeve et al. 1997, Gallagher et al. 1998), there are
still many knowledge gaps in the trophic ecology of
most ophiuroids and how they coexist using the same
resources while avoiding interspecific competition.
In the present study, we examined changes in the
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isotopic niche structure of ophiuroids in response
to variation in sea-ice conditions, local productivity,
and individual-level differences in feeding behavior.
Three species of coexisting ophiuroids were chosen
as models to test the following hypotheses: (1) de -
pending on sea-ice concentration (SIC), patterns in
species niche structure (i.e. segregation and overlap
of niches) will change across regions, where a higher
overlap of niches will be linked to regions with more
SIC due to brittle stars exploiting more similar food
items; (2) changes in the isotopic niche width of ophi-
uroids will be closely related to sediment δ13C carbon
composition and individual feeding behaviors, in
which niche width reduction will be linked to regions
with higher abundance of resources where con-
sumers ingest the more abundant sources; and (3) a
decrease in niche overlap will be associated with
regions with higher heterogeneity of resources in
which brittle stars can use a higher spectrum of
resources.

2.  MATERIALS AND METHODS

2.1.  Study area

Baffin Bay (BB; Fig. 1) is a semi-enclosed ocean
basin located between Baffin Island and western
Greenland that connects the Arctic Ocean and the
northwest Atlantic Ocean (Dunlap & Tang 2006,
Hamilton & Wu 2013). Annual sea-ice development
in BB begins in late autumn and reaches its maximum
extent around March (Stern & Heide-Jørgensen
2003). Excluding the ice-free months be tween August
and September, BB is partially covered by sea ice
(Tang et al. 2004). 

The Canadian Arctic Archipelago (CAA) to the
north-west of BB extends over an area of 3.3 × 106 km2,
and comprises a large number of islands and chan-
nels between Banks Island in the west and Baffin and
Ellesmere Islands in the east (Melling 2002). In this
region, the sea-ice component is a mixture of both
first-year and multi-year ice (Kwok 2006). The peren-
nial multi-year ice, located almost entirely on Queen
Elizabeth Islands, Western Parry Channel, and
M’Clintock Channel, can represent more than 50%
of the total area covered by ice before the melt sea-
son (Howell et al. 2013). 

The North Water Polynya (NOW) is located be -
tween Greenland and Canada on the northern end of
BB. This region is characterized by low SIC and
exhibits one of the highest levels of primary produc-
tivity recorded for the Arctic Ocean (Barber et al.

2001). Polynyas are areas of open water or with min-
imal sea-ice coverage surrounded by a contiguous
ice pack (Barber & Massom 2007).

2.2.  Sample collection

The Canadian research icebreaker CCGS
‘Amundsen’ visited 15 stations from 19 August to 1
September 2018 and from 20 July to 23 August 2019
to collect sediment and brittle stars (i.e. Ophiacantha
bidentata, Ophiocten sericeum, and Ophiopleura bo -
realis) in 3 different Canadian Arctic regions (Fig. 1).
Brittle stars were found and collected at 9 of the
15 stations (Table S1 in the Supplement at www.
int-res.com/articles/suppl/m683p081_supp.pdf) for
sub  sequent SIA using an Agassiz trawl with an open-
ing of 1.5 m and a net mesh size of 40 mm. In addi-
tion, surface sediment samples were collected from
13 stations (Table 1), from the upper 1 cm of a box
core (0.125 m2). Sediment samples were not collected
at Stns E1 and 177 in BB. From each box core, sedi-
ments were collected for SIA (1 sample per station)
using 60 ml truncated syringes and for pigment
content analysis (3 samples per station) using 10 ml
truncated syringes. Since carbon isotope ratios (δ13C)
vary substantially among primary producers, but
change little between each trophic level (0−1‰;
Peterson & Fry 1987, Post 2002, Layman et al. 2007),
the carbon isotopic composition of surface sediment
was used in the present study as a proxy to deter-
mine the relative contribution of primary carbon food
sources in the diet of ophiuroids. In addition, sedi-
ment surface chlo ro phyll a (chl a) concentration, a
short-term proxy of productivity, was carried out at
Laval University, Quebec, Canada, following the mod-
ified protocols of Riaux-Gobin & Klein (1993) and
Link et al. (2011). After collection, all samples were
frozen for subsequent SIA and pigment analysis.

2.3.  Stable isotope analyses

Sediment and brittle star samples were freeze-dried
at −50°C and ground to a fine powder with a mortar
and pestle. For sediments, carbonates were removed
using 1 N HCl until bubbling ceased. For brittle stars,
a total of 92 individuals were used for SIA (Table S1).
Lipid extraction was carried out in brittle stars using
a solution of dichloro methane: methanol (2:1). Brittle
star samples were then decarbonated by exposing
them to HCl vapors for 48 h in an airtight container.
After acidification, to verify the total removal of car-
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bonate in the samples, drops of acid were applied to
dried material (champagne test) to check that no more
bubbles (i.e. CO2 that would be produced by the
chemical dissociation of the carbonates) formed.

Stable nitrogen and carbon isotope ratios were
measured using a continuous-flow isotope ratio mass
spectrometer (Thermo Electron Delta Advantage) in
the continuous-flow mode (Thermo Electron ConFlo
III) with an ECS 4010 Elemental Analyzer/ZeroBlank
Autosampler (Costech Analytical Technologies) in
the oceanography laboratory at Laval University.
Replicate measurements of international standards
(USGS40 and USGS41 from the International Atomic
Energy Agency; B2151 from Elemental Microanaly-
sis) established measurement errors of ≤0.2‰ for
δ13C and δ15N. Stable isotope ratios were expressed
in delta (δ) units (δ13C, δ15N) as the per mil (‰) differ-
ence with respect to standards: δX (‰) = [(RSample −
RStandard)/RStandard] × 103, where X is 13C or 15N of the
sample and R is the corresponding ratio 13C/12C or
15N/14N. Standards were calibrated against the inter-
national references Vienna PeeDee Belemnite for
carbon and atmospheric air for nitrogen.

2.4.  Trophic positions

The estimation of trophic positions (TPs) was used
to characterize the functional role of individuals in
brittle star species. The TP of ophiuroids was esti-

mated using the ‘OneBaseline’ model in the Bayesian
‘tRophicPosition’ package (Quezada-Romegialli et
al. 2018) using the following equation:

δ15Nc = δ15Nb + ΔN(TP – λ) (1)

where δ15Nc corresponds to the nitrogen stable iso-
tope value of the consumer for which the TP is esti-
mated, δ15Nb represents the nitrogen isotope ratio of
surface sediment bulk organic matter for each region
studied; ΔN corresponds to the trophic discrimination
factor (TDF) for nitrogen, and λ is the TP of baseline
sources. TP of basal primary producers was set to 1.0,
meaning that TP ≤2 (low trophic level) represents
primary consumers, >2 TP <3 (intermediate trophic
level) represents secondary consumers (e.g. omni-
vores), and TP ≥3 (high trophic level) represents top
consumers and scavengers.

2.5.  Sea-ice concentration data

Average SIC was derived from satellite Nimbus-7
SMMR and DMSP SSM/I-SSMIS passive microwave
at a grid cell size of 25 × 25 km (Cavalieri et al. 1996).
The dataset was downloaded from the National
Snow and Ice Data Center (https:// nsidc. org/ data/
NSIDC-0051/versions/1). For each station, we calcu-
lated the average SIC (%) of 2 months: the month
before the sampling and the month of the sampling
date. This average was considered relevant in this

85

Stn Depth Date Latitude Longitude δ13C δ15N SIC nChl Chl a (±SD)
(m) (yyyy-mm-dd) (°N) (°W) (‰) (‰) (‰) (μg g−1)

CAA
312 67 2018-08-19 69.17 100.70 −16.5 7.3 45 3 0.07 ± 0.0
QMG1 39 2018-08-21 68.49 99.89 −22.9 6.7 34 3 0.64 ± 0.6
QMG2 73 2018-08-21 68.31 100.80 −22.7 6.2 43 1 0.05
QMG3 51 2018-08-22 68.33 102.94 −23.9 6.0 32 3 0.06 ± 0.1
QMG4 70 2018-08-22 68.48 103.43 −23.0 7.9 36 2 0.02 ± 0.0
QMGM 112 2018-08-22 68.30 101.74 −23.2 7.0 32 1 0.01

NOW
101 373 2018-08-28 76.38 77.41 −22.8 5.6 0 2 0.16 ± 0.1
108 447 2019-07-22 76.26 74.60 −22.3 5.9 1 10 0.48 ± 0.3
115 663 2019-07-20 76.31 71.24 −22.3 5.5 0 3 0.19 ± 0.1

BB
d5 1838 2019-08-26 69.00 61.41 −21.0 8.6 0 3 0.01 ± 0.0
d4 1809 2019-08-25 68.62 62.01 −21.0 7.8 1 4 0.02 ± 0.0
d3 1570 2019-08-25 68.24 62.59 −21.5 7.9 1 3 0.02 ± 0.0
d2 266 2019-08-25 67.86 63.15 −22.8 6.0 3 3 0.06 ± 0.0

Table 1. Surface sediment dataset derived from sediment stations. Samples were collected in 3 regions in the Canadian Arctic
Ocean: the Canadian Arctic Archipelago (CAA), the North Water Polynya (NOW), and Baffin Bay (BB). One replicate of
sediments (nδ) was used per station for the stable isotope analyses; nChl: number of replicates used for measurements of 

chlorophyll a (chl a) at each station; SIC: sea-ice concentration
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study because the isotopic turnover rate in tissues of
some marine invertebrates with Arctic distributions
(e.g. Onisimus litoralis, Mytilus edulis, and Macoma
calcarea) can vary between 1 and 3 mo, affecting
dynamics in the isotopic composition of consumers
(e.g. McMahon et al. 2006, Kaufman et al. 2008). In
addition, the isotopic composition of consumers may
vary over time due to environmental conditions such
as seasonal sea-ice cover dynamics (Kaufman et al.
2008).

2.6.  Statistical analyses

All statistical analyses were performed using R
Studio version 1.4.1106 (R Core Team 2019) and
graphical procedures with Ocean Data View version
5.1.7 (https://odv.awi.de). Homogeneity of variance
and normality of residuals were verified using the
Shapiro-Wilk test on residuals. Linear models were
employed to simultaneously evaluate the effect of en -
vironmental variables (i.e. depth and SIC) and their
interactions on δ13C and δ15N values found in sediment
and the ophiuroid samples. A Kruskal-Wallis test was
conducted to examine the differences in stable isotope
ratios of carbon and nitrogen in brittle stars among
species, stations, and regions. Significant ef fects im -
plicating categorical factors (SIC, depth, regions, and
species) were further analyzed with Tukey post hoc
tests using the ‘emmeans’ package (v2.27-61) (Lenth
& Lenth 2018). The core isotopic niche space occu-
pied by brittle stars was calculated using the stan-
dard ellipse area in the ‘SIBER’ package in R (Jack-
son et al. 2011). Furthermore, the probabilistic method
of Jackson et al. (2011) was used to estimate the
mode and the credible interval of the Bayesian-simu-
lated standard ellipse areas. Specifically, we used the
sample size-corrected standard ellipse area (SEAc),
which is a more robust approach that encompasses
the core (around 40%) of the isotopic observations
within each species group and is therefore less sensi-
tive to sample size and isotopic outliers (Jackson et
al. 2011). SEAc credibility intervals were based on
1 000 000 iterations and a burn-in of 100 000.

3.  RESULTS

3.1.  Isotopic composition of sediments

Sediment organic matter δ13C values covered a
wide range in the CAA region (from −16.5 to −23.9‰;
mean ± SD = −22.0 ± 2.7‰, n = 6), compared with a

narrower range observed in the NOW (−22.2 to
−22.8‰; mean = −22.4 ± 0.3‰, n = 4) and BB region
(−21.0 to −22.8‰; mean = −21.6 ± 0.8‰, n = 4). At sta-
tions on the west of the CAA region (i.e. Stns QMG3,
QMG4, and QMGM; see Fig. 1), δ13C values of sur-
face sediments were slightly depleted in carbon iso-
topes (≤−23‰). The δ13C values of surface sediments
found in this study overlapped partially with those
determined in previous studies. For instance, δ13C
values ranged from −24.2 to −20.4‰ in the CAA
(Goñi et al. 2013), from −22.7 to −18.8‰ in BB
(Yunda-Guarin et al. 2020), and from −22.9 to −22.1‰
in the NOW (see unpubl. data in Friscourt 2016).
δ15N sediment values covered a wide range among
stations ranging from 5.6 to 8.6‰ (Table 1). The most
15N-enriched values in sediments occurred at the
deepest BB stations, whereas the most 15N-depleted
values were found in the NOW (Table 1). Significant
differences were found in δ15N values of sediments
among regions (ANOVA, F = 7.29, df = 2, p = 0.001).
Linear models revealed a significant effect of depth
on sediment δ15N values (F = 28.59, p < 0.001).

3.2.  Trophic position and isotopic composition of 
brittle stars

TPs of brittle stars ranged between the second and
the fifth trophic level. Ophiacantha bidentata had the
highest modal TP (mean = 4.33), while Ophiocten
sericeum showed the lowest modal TP (mean = 2.63)
in the CAA region (Fig. 2). The greatest modal TP of
O. sericeum (mean = 3.99) was evidenced mainly in
the NOW, where all brittle stars predominantly oc -
cupied high TPs compared to BB. The greatest
modal TP of Ophiopleura borealis (mean = 4.05) was
found in the CAA region. The greatest ranges of TPs
were observed for all 3 species of brittle stars in BB
(Fig. 2).

Brittle stars displayed a wide range of isotopic
compositions among stations and regions (Table 2,
Fig. 3). Linear models revealed a significant effect of
SIC and depth on δ13C values of brittle star species
among regions (p < 0.001; Table S2) and also an
interactive effect of SIC and depth on δ13C values of
ophiuroids (p = 0.03; Table S2). In addition, linear
models showed an interactive effect of SIC and chl a
concentration on δ13C values of ophiuroids (p <
0.001). However, chl a content alone was not an
environmental variable that significantly affected
the δ13C values of ophiuroids (p = 0.33). Significant
differences in δ13C values across species (Kruskal-
Wallis, chi-squared = 41.94, df = 2, p < 0.001) and

A
ut

ho
r c

op
y



Yunda-Guarin et al.: Isotopic niches of ophiuroids

regions (Kruskal-Wallis, chi-squared = 21.36, df = 2,
p < 0.001) were found in this study. Among species,
the most 13C-enriched value (δ13C = −18.2‰) was
found in O. bidentata in the NOW region, while the
most 13C-depleted value (δ13C = −24.9‰) corre-
sponded to O. sericeum in the CAA region (Table S1).
Average δ13C values ranged from −24.5 ± 0.2‰ (O.

sericeum) to −19.0 ± 0.4‰ (O. bidentata) in the CAA
region; from −20.2 ± 0.4‰ (O. sericeum) to −19.1 ±
1.5‰ (O. bidentata) in the NOW; and from −20.5 ±
0.5‰ (O. sericeum) to −19.3 ± 0.4‰ (O. bidentata) in
BB (Table 2).

Linear models revealed an effect of depth on δ15N
values of brittle star species among regions (p < 0.01)
and an interaction effect of SIC and depth on δ15N
values of ophiuroids (p < 0.001; Table S3). Likewise,
significant differences in δ15N values among stations
were found (chi-squared = 24.15, df = 8, p = 0.002).
However, δ15N values showed no significant differ-
ences across regions (chi-squared = 0.32, df = 2, p =
0.85). δ15N varied across species (chi-squared = 26.41,
df = 2, p < 0.001). The most 15N-depleted values were
found in O. sericeum (10.1‰) in the CAA, and the
most 15N-enriched value in O. bidentata (15.2‰) in
the BB region (Table S1). Average δ15N values
ranged from 10.2 ± 0.1‰ (O. sericeum) to 14.5 ± 0.4‰
(O. bidentata) in the CAA; from 11.6 ± 0.8 to 13.8 ±
1.3‰ (O. sericeum) in the NOW; and from 12.6 ±
0.4‰ (O. borealis) to 13.9 ± 0.84‰ (O. bidentata) in
BB (Table 2).

3.3.  Isotopic niche widths and niche overlap of
brittle stars 

The isotopic niche width of brittle star species, meas-
ured as the SEAc, differed by regions (see Figs. 4 & 5).
SEAc ranged from 0.54 to 3.45 for O. bidentata, from
1.22 to 3.31 for O. sericeum, and from 0.52 to 1.21
for O. borealis (Fig. 4). Based on SEAc values, the
largest isotopic niche width was found for O. bi -
dentata in the NOW region (SEAc = 3.45) and O.
sericeum in the CAA region (SEAc = 3.31). In con-
trast, the smallest niche width was found for O.
borealis in the CAA (SEAc = 0.52). The isotopic niche
area of O. sericeum in the CAA pointed to 2 different
sub-groups, one with 13C-depleted values to the
west (Stn QMG4; Table S1), another with more
13C-enriched values to the east. Based on posterior
Bayesian estimates, the probability of an increase in
the amplitude of the SEAc varied within species and
among regions. In the CAA, O. sericeum showed the
highest probability (100%) of having a greater iso-
topic niche width than O. bidentata and O. borealis.
However, in the NOW, O. bidentata showed the
highest probability (99%) of having a wider isotopic
niche width than the other 2 species. Finally, in BB,
O. sericeum had the highest probability of having a
broader isotopic niche width than O. borealis (96%)
and O. bidentata (81%).
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Fig. 2. Estimated trophic position (TP) of brittle stars. Hori-
zontal lines represent the modal TP occupied by different
brittle star species (mean TP values given above the boxes;
black numbers). The middle part of the boxes represents the
interquartile range, i.e. the middle quartiles (or the 75th

minus the 25th percentile). The whiskers represent the vari-
ability outside the 75th and 25th percentile. Estimates were
made using the ‘tRophicPosition’ model across the Arctic
regions: (A) the Canadian Arctic Archipelago, (B) the North 

Water Polynya, and (C) Baffin Bay

A
ut

ho
r c

op
y



Mar Ecol Prog Ser 683: 81–95, 2022

Among regions, the isotopic niches (δ13C vs. δ15N
biplots) revealed differences in overlap of consumers
(Fig. 5). Niche analysis showed that the NOW was
the only region where the 3 brittle stars shared iso-
topic niche space. However, in other regions, our
results showed marked differences in isotopic com-

position, and brittle stars either did not share niche
space (i.e. CAA), or niche overlap only oc curred
between 2 species (i.e. BB; Fig. 5). The area of over-
lap comprised between 13 and 54% of the total iso-
topic niche area among all regions. The greatest
niche overlaps occurred be tween O. seri ceum and

88

Fig. 3. Carbon and nitrogen isotopic composition of sediment and ophiuroids. Stable isotope bi-plots illustrating the isotopic
composition of the brittle star species Ophiacantha bidentata, Ophiocten sericeum, and Ophiopleura borealis across the Arctic
Ocean regions: the Canadian Arctic Archipelago (green), the North Water Polynya (red), and Baffin Bay (yellow). The iso-
topic composition of sediments is represented by a solid symbol (line). Ophiuroid data points are group means with error bars 

representing ±SE. Sample sizes are presented in Tables 1 & 2

Stn Region Depth Date Latitude Longitude n δ13C (±SD) δ15N (±SD) SIC
(m) (yyyy-mm-dd) (°N) (°W) (‰) (‰) (‰)

Ophiacantha bidentata 
312 CAA 67 2018-08-19 69.17 100.70 6 −19.0 ± 0.4 14.5 ± 0.4 45
115 NOW 663 2018-08-29 76.33 71.18 10 −19.1 ± 1.5 13.1 ± 0.6 0
177 BB 694 2018-09-01 67.48 63.68 6 −19.3 ± 0.4 13.9 ± 0.8 3

Ophiocten sericeum 
312 CAA 67 2018-08-19 69.17 100.70 5 −20.0 ± 0.3 11.4 ± 0.2 45
QMG1 CAA 39 2018-08-21 68.49 99.89 3 −20.6 ± 0.3 10.2 ± 0.1 34
QMG4 CAA 70 2018-08-22 68.48 103.43 6 −24.5 ± 0.2 10.2 ± 0.1 36
101 NOW 373 2018-08-28 76.38 77.41 10 −20.2 ± 0.4 11.6 ± 0.8 0
115 NOW 662 2018-08-29 76.33 71.18 7 −19.8 ± 0.4 13.8 ± 1.3 0
177 BB 694 2018-09-01 67.48 63.68 6 −20.5 ± 0.5 12.7 ± 1.0 3

Ophiopleura borealis 
QMGM CAA 112 2018-08-22 68.30 101.74 8 −23.8 ± 0.2 13.8 ± 1.0 32
QMG4 CAA 70 2018-08-22 68.48 103.43 6 −23.6 ± 0.3 14.0 ± 0.6 36
108 NOW 447 2019-07-22 76.26 74.60 3 −20.0 ± 0.3 13.5 ± 0.5 1
115 NOW 662 2018-08-29 76.33 71.18 6 −20.0 ± 0.3 12.1 ± 1.1 0
E1 BB 447 2019-08-23 68.28 65.14 10 −20.4 ± 0.5 12.6 ± 0.4 3

Table 2. Sampling details and isotopic compositions in brittle stars. Samples were collected in 3 regions in the Canadian
Arctic Ocean: the Canadian Arctic Archipelago (CAA), the North Water Polynya (NOW), and Baffin Bay (BB); SIC: sea-ice 

concentration
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O. borealis, which shared at least 54 and 29% of the
isotopic niche area in the NOW and BB regions,
respectively (Fig. 5B,C). Moreover, bi plots showed
differences in resource use among species on a local
and regional scale, revealing greater variability in
re source use by ophiuroids in the CAA than in the
other 2 regions. Finally, isotopic niche and TP models
indicated that O. sericeum encompassed a greater
degree of isotopic variability in its prey, feeding at

lower trophic levels than the other ophiuroids, whereas
individuals of the species O. bidentata fed high in the
food chain.

4.  DISCUSSION

4.1.  Isotopic composition and carbon use 
by consumers

Previous studies denoted a pattern in the δ13C and
δ15N values of benthic fauna in both the Arctic and
Antarctic Oceans with respect to fluctuations in local
oceanographic conditions such as SIC (e.g. Norkko et
al. 2007, Michel et al. 2019, Yunda-Guarin et al. 2020)
and depth (Stasko et al. 2018b). Together, these stud-
ies highlighted the key indirect control of environ-
mental conditions (e.g. SIC and depth) in the isotopic
composition and availability of food re sources, which
ultimately induced benthic food web structure shifts.
For instance, seasonal changes in oceanographic con-
ditions (e.g. depth, SIC, water temperature) and vari-
ability in the composition of food items proved to be 2
important factors altering the isotopic composition of
Arctic amphipods by inducing changes in nitrogen
and carbon turnover rates (Kaufman et al. 2008). Iso-
topic values may also reflect a range of varying pro-
portions of food items assimilated by individuals over
time (Bearhop et al. 2004) or similar food items with
different δ13C isotopic compositions. In our study, SIA
did not provide high resolution of dietary information
of brittle stars according to oceanographic conditions
or food availability. However, δ13C values of surface
sediment organic matter in this study were a useful
indicator of the relative contribution of primary or-
ganic carbon sources to ophiuroids. Considering that
δ13C values in surface sediments in the Arctic Ocean
typically range be tween −22 and −30‰ (average
−26.8‰) for terrestrial sources and between −17 and
−22‰ for marine sources (average −20.6‰) (Kozio -
rowska et al. 2016, Kumar et al. 2016, Włodarska-
Kowalczuk et al. 2019), δ13C values found in surface
sediments in this study suggested a mix of carbon
sources available for benthic consumption (Table 1).
In addition, the δ13C values of primary sources calcu-
lated in previous studies ranged from −13.4 to −20.7‰
in BB, from −7.1 to −25.3‰ in the CAA, and from −8.9
to −14.1‰ in the NOW for sympagic algae, and from
−20.1 to −26.3‰ in BB, from −23.2 to −27.4‰ in the
CAA, and from −22.1 to −27.6‰ in the NOW for sus-
pended POM (SPOM) (Roy 2014, Friscourt 2016,
Yunda-Guarin et al. 2020, M. Gosselin unpubl. data).
Hence, δ13C values of surface sediments found in this
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Fig. 4. Variation in standard ellipse areas for each brittle star
species using SIBER. The sample size-corrected standard el -
lipse area (SEAc; numerical value given above the boxes) of
the 3 brittle stars: Ophiacantha bidentata, Ophiocten seri -
ceum, and Ophiopleura borealis for 3 Canadian Arctic Ocean
regions: (A) the Canadian Arctic Archipelago, (B) the North
Water Polynya, and (C) Baffin Bay. Box plot parameters as in 

Fig. 2
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study implied that ophiuroid diet was influenced by
carbon items from different origins. On the one hand,
de pleted δ13C values in ophiuroids (<−23‰) sug-
gested that brittle stars could use a mix of mostly mar-
ine-derived carbon sources of benthic or pelagic

origin such as SPOM. On the other
hand, in the NOW, BB, and the east part
of the CAA, δ13C values suggested that
brittle stars could rely on at least 2 food
sources: marine-derived carbon and de -
tritus enriched by microbial activity.

4.2.  Niche structure under local
oceanographic conditions and 

food supply

Bayesian estimation of the standard
ellipse area (SEAc) showed differences
in the isotopic niche width of brittle
stars across species and regions. In this
study, linear models revealed a signifi-
cant effect of SIC on δ13C values of
ophiuroids among regions, suggesting
that feeding habits may differ accord-
ing to changes in environmental condi-
tions. However, a clear pattern of the
influence of sea-ice condition on niche
dynamics and structure could not be
established, in part due to a great in-
ter- and intraspecific variability in pat-
terns of resource use by consumers.
For example, results showed that the
isotopic niche area of Ophiocten seri -
ceum within the CAA region was made
up of 2 different sub-groups of individ-
uals, in which in dividuals had marked
differences in δ13C values between
western and eastern stations. In ad -
dition, our results highlighted differ-
ences in patterns of overlap and segre-
gation of niches according to SIC, but
contrary to what we expected, an in-
crease in the segregation of the niches
was linked to regions with more SIC.
In contrast, a higher overlap of niches
was associated with open water re-
gions. In other words, niches were less
similar when the SIC was greater.

Lesser et al. (2020) examined the
connection be tween niche size and
eco system productivity outside of the
environmental influence in niche struc-

ture and found a correlation between increases in
primary productivity and reductions in trophic niche
size. Here, it was not possible to distinguish a clear
trend of niche size reduction of brittle star species
according to sediment chl a concentration, a proxy of
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Fig. 5. Stable isotope bi-plots for each region, illustrating the isotopic niche
and overlap of the 3 Ophiuroidea species. Standard ellipses (solid lines)
enclose the core isotopic niches of the brittle stars: Ophiacantha bidentata
(green), Ophiocten sericeum (red), and Ophiopleura borealis (yellow) across
3 Arctic regions: (A) the Canadian Arctic Archipelago, (B) the North Water 

Polynya, and (C) Baffin Bay
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the amount of local primary production (Table 1),
suggesting that production intensity alone is not the
principal driver of isotopic variability in organisms
and therefore niche characteristics. For example, our
findings highlighted a greater isotopic niche width
for O. sericeum and Ophiacantha bidentata associated
with the CAA and NOW regions, where the highest
concentrations of chl a were recorded (Table 1).
Meanwhile, Ophiopleura borealis displayed the nar-
rowest niche width in the CAA region, suggesting
reliance upon a narrower range of food items or
changes in dietary preferences over time (Bearhop et
al. 2004). However, since sediment pigments are
often considered an extremely short-term proxy of
productivity due to rapid degradation processes, they
are less appropriate descriptors for long-term benthic
responses (Sun et al. 1993). In contrast, isotope val-
ues integrate a measure of carbon and nitrogen over
longer temporal scales (Bearhop et al. 2004). 

Based on δ13C values of individuals, the niche
width of brittle stars could be influenced by differ-
ences in individual-spatial patterns of food selectivity
driven by local variation in carbon items and ecolog-
ical interactions (Bolnick et al. 2010). In this sense,
trends towards broader niches suggest that regions
with more heterogeneity of resources could support
greater dietary variation among consumers, allowing
the exploitation of preferred or more nutritive food
items (Costa-Pereira et al. 2017). In contrast, a reduc-
tion of the niche size among ophiuroids could be
associated with regions with more homogeneous
resources due to a reduction in the number of spe-
cialist individuals. Taken together, these results sug-
gest that the spatial variability in niche structures
(niche breadth) could reflect the degrees of exposure
of consumers to multiple resource pools over time
and individual spatial patterns of dietary selectivity
(see Section 4.3). However, given that our results
correspond to a seasonal timeframe (summer), it is
difficult to infer trends in niche dynamics across all
seasons accurately. Therefore, further studies that
monitor benthic niche dynamics in relation to envi-
ronmental changes, including global warming, over
a long timescale (multiyear) are necessary to more
accurately predict food web variations in areas ex -
posed to rapid environmental changes.

4.3.  Species-specific dietary selectivity and 
niche dynamics

In general, brittle stars are considered generalist
species and employ a large variety of foraging be -

haviors to access a wide diversity of resources (Pear-
son & Gage 1984). These feeding attributes have led
different ophiuroid species to be recognized as eco-
logically equivalent species that share habitat and
food sources (Pearson & Gage 1984). Nevertheless,
foraging behaviors in consumers are dynamic and
tend to vary over time as a response to multiple vari-
ables including prey availability, seasonality, compe-
tition, and even the physiological state of the con-
sumer (Yeakel et al. 2016). Since tendencies in
generalist species towards a particular diet only exist
on a short time scale, it is difficult to establish with
precision the fluctuations in the isotopic composition
of these individuals, especially when their isotopic
composition probably reflects an average of different
food items ingested over time (Bearhop et al. 2004).
As expected, our results showed high variability in
resource-use patterns (i.e. changes in the dietary
niche width) among brittle star species and differ-
ences in species-specific feeding selectivity, which
ultimately led to significant changes in niche width
of these ophiuroids. Based on the isotopic composi-
tion of brittle stars, changes in the relative contribu-
tion of primary sources seem to have affected the
interspecific characteristics of the feeding mode of
ophiuroids. Interestingly and contrary to what is
specified in most of the literature (see Section 1), brit-
tle stars displayed high inter-individual variability in
feeding behavior across stations in which each indi-
vidual showed its own pattern of feeding. Accord-
ingly, the species niche width varied significantly
due to intraspecific variability in foraging behaviors
and individual species trends in dietary selectivity
linked to ecological processes such as productivity
(Semmens et al. 2009, Araújo et al. 2011). For instance,
consumers exhibited greater differences in resource
use in the less productive regions of the CAA and BB,
increasing the segregation of the niches (Robinson &
Strauss 2020). Notably, in the CAA region, a broad
isotopic niche (SEAc) occurred in O. sericeum, which
suggested variation in its feeding selectivity at the
individual level across stations, leading to an expan-
sion of its trophic diversity. In contrast, in the same
region, a reduction of the isotopic niche width (i.e.
low trophic diversity) in O. bidentata and O. borealis
suggested high feeding selectivity or low dietary
evenness over time (Bear hop et al. 2004). This is
also supported by the field experiment conducted
by Mäkelä et al. (2017a) with benthic macrofauna,
showing that differences in food utilization by poly-
chaetes, bivalves, and crustaceans were site-specific,
with no taxa exclusively exhibiting higher rates of ice
algal uptake, suggesting high feeding plasticity.
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Variations in niche width could also be largely
driven by the range of trophic levels at which individu-
als obtained their prey (Bearhop et al. 2004). In connec-
tion with this assumption, an increase in brittle star iso-
topic niche could also be associated with the use of a
greater spectrum of trophic levels at which individuals
obtained their prey. On this basis, the wide difference
in δ15N values among ophiuroids was interpreted as a
reflection of the considerable feeding flexibility of
these invertebrates. Among these, O. sericeum seemed
to consume the widest spectrum of prey items, as shown
by the important variability in both isotopic dimensions.

TP estimates showed that brittle stars fed at various
trophic levels. In most regions, ophiuroids occupied
intermediate to high trophic levels, suggesting that
ophiuroids were predominantly mobile deposit feed-
ers and omnivores (including carnivores/scavengers).
However, brittle stars did not always show a similar
range of TPs within the same region. For example,
in the CAA region, O. sericeum had the most 15N-
depleted values of the 3 study species, which sug-
gested that individuals predominantly fed on lower
trophic levels than the other species. In contrast, in
other regions, such as the NOW, ophiuroids shared
higher mean trophic levels, implying that consumers
relied primarily on heterotrophic prey or reworked or-
ganic matter typically 15N-enriched by microbial ac-
tivity (Mäkelä et al. 2017b). Finally, brittle stars in the
BB region showed the broadest range in TPs, indica-
ting that individuals adopted predominantly omnivo-
rous behavior to exploit a broad spectrum of trophic
resources (i.e. trophic generalists or inter mediate feed-
ing specialists). Based on our results, it seems likely
that individuals within each species do not always
share similar diets and have varied preferences to-
wards different food items. The inter-individual dietary
flexibility observed in brittle stars would suggest that
ophiuroids play an important role in benthic food
webs from the point of view of increasing the number
of trophic links and energy flow pathways from one
trophic level to the next. Considering the high densi-
ties that ophiuroids represent in benthic ecosystems
of the Arctic, for example >400 ind. m−2 in Young
Sound, Greenland, and the Barents Sea (Piepenburg
& Schmid 1996, Blicher & Sejr 2011), brittle stars could
be critical ecological species driving dynamics, func-
tioning, and stability of benthic food webs.

4.4.  Niche overlap and brittle star co-occurrence

The co-occurrence of ecologically similar species is
founded on the partitioning of their ecological niches

or in exploiting different niches driven in some part
by diet shifts (Lush et al. 2017, English et al. 2020).
Some studies have been conducted in the Arctic
Ocean based on approaches using multiple bio-
markers to assess how benthic species co-occur using
common resources (Stasko et al. 2018a, Yunda-Guarin
et al. 2020). However, only a few studies have been
carried out to study ecological interactions of eco-
logically similar species, including trophic relation-
ships and niche partitioning using the isotopic niche
concept. In resource-limited environments, compe-
tition for food sources among sympatric species is
likely to increase during periods of low primary pro-
duction (Chase & Leibold 2003). Therefore, seasonal-
ity and availability of resources may be the main
variables driving competition and restricting species
co- occurrence in space and time (Mac Arthur 1969).
Furthermore, species co-occurrence may also depend
on changes in the diversity of the resources (Costa-
Pereira et al. 2019). According to our analysis, fluctua-
tions in spatial patterns of sediment organic matter
composition and variations in species-specific food se-
lectivity in response to prey availability and/or compe-
tition could have influenced niche partitioning. In this
instance, a greater resource heterogeneity, including
the availability of a high range of sources, for example
in the CAA (Fig. 3), could induce a high degree of inter-
individual dietary variation among individuals avoid-
ing isotopic niche overlap between species in our
study. Costa-Pereira et al. (2019) pointed out that an
increase in niche overlaps may suggest a low degree
of inter-individual diet variation promoted by re-
source homogeneity and omni vorous feeding behav-
iors. Therefore, without considering possible compe-
tition with other species, our re sults suggest that
reductions in niche overlap be tween the 3 species
studied were more closely related to inter-individual
dietary flexibility to exploit different resources.

The greatest niche overlap among brittle stars oc-
curred between O. sericeum and O. borealis in the
NOW region, highlighting moderate levels of re source
partitioning between both species. However, given that
the isotopic niche overlap between these species was
moderate (54%), their co-occurrence could be viable
in natural conditions when species delimited their for-
aging niche using flexible feeding strategies. Con-
versely, O. bidentata exhibited little niche overlap with
the other 2 species in the NOW and complete segre-
gation of their niches in the CAA and BB regions, sug-
gesting limited potential competition with co-occurring
species. In this case, some individuals of O. biden-
tata showed food preferences for a 13C-enriched food
source, increasing plasticity at the species level in for-
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aging behavior. Our results suggest that isotopic niche
aspects might result from past competition, environ-
mental conditions, or changes in organic carbon com-
position that shape individuals into adopting a specific
feeding strategy to satisfy their energy requirements.
Finally, based on Tinker et al. (2008) and our results,
food limitation could lead to behavioral diversification
and dietary specialization of benthic species, including
ophiu roids. Therefore, an increase in the individual
level of diet specialization could be a factor driving
the structure and dynamics of benthic food webs.

4.5.  Concluding remarks

Climate change is expected to lead to shifts in the
availability and abundance of food sources for benthic
consumption in the future Arctic Ocean that are not
yet identified and may affect the dynamics and stabil-
ity of food webs (Kędra et al. 2015). Despite the eco-
logical importance of ophiuroids as key species in
benthic assemblages and trophic cascades in the Arctic
Ocean (Pearson & Gage 1984), only a few studies have
been carried out to date to better understand the
mechanisms that drive feeding ecology and trophic
niches of Arctic brittle star species. Here, ecological
niche analyses of 3 syntopic brittle star species using
the isotopic niche approach provided insight into the
mechanisms driving niche dynamics, feeding behav-
ior, and co-occurrence of ophiuroids. We found some
evidence that SIC is an important driver of niche
structure in ophiuroids. Greater interspecific niche
segregation was indeed associated with regions with
greater SIC. Additionally, changes in organic carbon
composition highlighted a strong in fluence of species-
specific degrees of dietary selectivity shaping niche
structure and overlap. Since the Arctic Ocean ecosys-
tem is experiencing strong changes in abiotic condi-
tions due to climate change that could affect ecosystem
functioning, more studies of this type are needed to
better understand the role of individual species in the
functioning and stability of benthic food webs. Finally,
our results revealed the great ability of some individu-
als to adjust their dietary behaviors according to fluc-
tuations in re source composition, highlighting the dif-
ficulty of generalizing feeding modes of benthic
consumers and the lack of information about trophic
interactions, diets, and habitat use by benthic species.

Data accessibility. The species datasets generated and/or
analyzed during the present study are included in this article
(Tables S1−S3 in the Supplement). Additional datasets, in -
cluding all scripts, are available in GitHub (https:// doi. org/
10.5281/ zenodo. 5584830).
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