

Note di Matematica **00**, n. 0, 2005, 1–8.

A Riesz basis of wavelets and its dual with quintic deficient splines

F. Bastin

Department of Mathematics B37, University of Liège, B-4000 Liège, Belgium
f.bastin@ulg.ac.be

Received:; accepted:

Abstract. In this note, the dual of the Riesz basis of quintic splines wavelets obtained in [1] is explicitly constructed.

Keywords: Wavelets, quintic deficient splines, Riesz basis, dual basis

MSC 2000 classification: primary 42C40, secondary 41A15

Introduction

It is well known that for any natural number m , the cardinal B-spline $N_{m+1} = \chi_{[0,1]} * \dots * \chi_{[0,1]}$ ($m+1$ factors) can be used as a scaling function to construct orthogonal and biorthogonal bases of wavelets in $L^2(\mathbb{R})$, with different properties (see for example [3], [8]).

But, in approximation theory for instance, other splines are also very popular: the deficient splines (see some recent results in [5], [9]). In the paper [1], one can find a direct approach of the problem of the explicit construction of scaling functions, multiresolution analysis and wavelets with symmetry properties and compact support, involving deficient splines of degree 5 and regularity 3. Other results can also be found in [6], [7].

The present paper is a continuation of [1]. It gives an explicit construction of the dual basis of the deficient splines wavelets basis obtained in [1]. The dual is also generated by two wavelets, which are deficient splines with symmetry properties and exponential decay.

1 Definitions, notations, deficient spline wavelets

For $m \in \mathbb{N}$, the set of deficient splines of degree $2m+1$ is the set

$$V_0 = \{f \in L_2(\mathbb{R}) : f|_{[k,k+1]} = P_k^{(2m+1)}, k \in \mathbb{Z} \text{ and } f \in C_{m+1}(\mathbb{R})\}.$$

For $m = 1$, it is the set of classical cardinal cubic splines. For $m = 2$ we denote it as the set of

deficient quintic splines

and, in this note, we only consider this case.

In this section, we recall the explicit and direct construction of a Riesz basis of wavelets consisting of deficient splines wavelets with compact support and symmetry property of [1].

1 Proposition. *The following functions φ_a and φ_s*

$$\varphi_a(x) = \begin{cases} x^4 - \frac{11}{15}x^5 & \text{if } x \in [0, 1] \\ -\frac{9}{8}(x - \frac{3}{2}) + 3(x - \frac{3}{2})^3 - \frac{38}{15}(x - \frac{3}{2})^5 & \text{if } x \in [1, 2] \\ -(3 - x)^4 + \frac{11}{15}(3 - x)^5 & \text{if } x \in [2, 3] \\ 0 & \text{if } x < 0 \text{ or } x > 3 \end{cases}$$

$$\varphi_s(x) = \begin{cases} x^4 - \frac{3}{5}x^5 & \text{if } x \in [0, 1] \\ \frac{57}{80} - \frac{3}{2}(x - \frac{3}{2})^2 + (x - \frac{3}{2})^4 & \text{if } x \in [1, 2] \\ (3 - x)^4 - \frac{3}{5}(3 - x)^5 & \text{if } x \in [2, 3] \\ 0 & \text{if } x < 0 \text{ or } x > 3 \end{cases}$$

are respectively antisymmetric and symmetric with respect to $\frac{3}{2}$ and the family

$$\{\varphi_a(\cdot - k), k \in \mathbb{Z}\} \cup \{\varphi_s(\cdot - k), k \in \mathbb{Z}\}$$

constitutes a Riesz basis of V_0 . \square

For every $j \in \mathbb{Z}$ we define

$$V_j = \{f \in L^2(\mathbb{R}) : f(2^{-j}\cdot) \in V_0\}.$$

2 Proposition. *The sequence V_j ($j \in \mathbb{Z}$) is an increasing sequence of closed sets of $L^2(\mathbb{R})$ and*

$$\bigcap_{j \in \mathbb{Z}} V_j = \{0\}, \quad \overline{\bigcup_{j \in \mathbb{Z}} V_j} = L^2(\mathbb{R}).$$

Moreover, the functions φ_a, φ_s satisfy the following scaling relation

$$\begin{pmatrix} \widehat{\varphi}_s(2\xi) \\ \widehat{\varphi}_a(2\xi) \end{pmatrix} = M_0(\xi) \begin{pmatrix} \widehat{\varphi}_s(\xi) \\ \widehat{\varphi}_a(\xi) \end{pmatrix}$$

where $M_0(\xi)$ is the matrix (called filter matrix)

$$M_0(\xi) = \frac{e^{-3i\xi/2}}{64} \begin{pmatrix} 51 \cos(\frac{\xi}{2}) + 13 \cos(\frac{3\xi}{2}) & -9i(\sin(\frac{\xi}{2}) + \sin(\frac{3\xi}{2})) \\ i(11 \sin(\frac{3\xi}{2}) + 21 \sin(\frac{\xi}{2})) & -7 \cos(\frac{3\xi}{2}) + 9 \cos(\frac{\xi}{2}) \end{pmatrix}.$$

\square

For every $j \in \mathbb{Z}$, we denote by W_j the orthogonal complement of V_j in V_{j+1} . Using standard techniques of Fourier analysis in the context of wavelets, one obtains the following result.

3 Proposition. *A function f belongs to W_0 if and only if there exists $p, q \in L^2_{loc}$, 2π -periodic such that*

$$\widehat{f}(2\xi) = p(\xi)\widehat{\varphi_s}(\xi) + q(\xi)\widehat{\varphi_a}(\xi)$$

and

$$\overline{M_0(\xi)} \overline{W(\xi)} \begin{pmatrix} p(\xi) \\ q(\xi) \end{pmatrix} + \overline{M_0(\xi + \pi)} \overline{W(\xi + \pi)} \begin{pmatrix} p(\xi + \pi) \\ q(\xi + \pi) \end{pmatrix} = 0 \text{ a.e.}$$

where M_0 is the filter matrix obtained in Proposition 2 and $W(\xi)$ is the matrix

$$W(\xi) = \begin{pmatrix} \omega_s(\xi) & \omega_m(\xi) \\ \omega_m(\xi) & \omega_a(\xi) \end{pmatrix}$$

with

$$\begin{aligned} \omega_a(\xi) &= \sum_{l=-\infty}^{+\infty} |\widehat{\varphi_a}(\xi + 2l\pi)|^2 = \frac{23247 - 21362 \cos \xi - 385 \cos(2\xi)}{311850} \\ \omega_s(\xi) &= \sum_{l=-\infty}^{+\infty} |\widehat{\varphi_s}(\xi + 2l\pi)|^2 = \frac{14445 + 7678 \cos \xi + 53 \cos(2\xi)}{34650} \\ \omega_m(\xi) &= \sum_{l=-\infty}^{+\infty} \widehat{\varphi_s}(\xi + 2l\pi) \overline{\widehat{\varphi_a}(\xi + 2l\pi)} = -\frac{i}{51975} \sin \xi (6910 + 193 \cos \xi). \end{aligned}$$

□

4 Theorem. *There exists deficient splines wavelets with support in $[0, 5]$ and symmetry properties (with respect to $\frac{5}{2}$).*

More precisely, there exists real numbers

$$p_j^{(s)}, q_j^{(s)}, p_j^{(a)}, q_j^{(a)}, \quad j = 0, \dots, 7$$

verifying

$$p_j^{(s)} = p_{7-j}^{(s)}, \quad q_j^{(s)} = -q_{7-j}^{(s)}, \quad p_j^{(a)} = -p_{7-j}^{(a)}, \quad q_j^{(a)} = q_{7-j}^{(a)}, \quad j = 0, 1, 2, 3$$

such that the family $\{\psi_s(\cdot - k) : k \in \mathbb{Z}\} \cup \{\psi_a(\cdot - k) : k \in \mathbb{Z}\}$ constitute a Riesz basis of W_0 , where

$$\widehat{\psi_s}(2\xi) = \sum_{j=0}^7 p_j^{(s)} e^{-ij\xi} \widehat{\varphi_s}(\xi) + \sum_{j=0}^7 q_j^{(s)} e^{-ij\xi} \widehat{\varphi_a}(\xi)$$

$$\widehat{\psi}_a(2\xi) = \sum_{j=0}^7 p_j^{(a)} e^{-ij\xi} \widehat{\varphi}_s(\xi) + \sum_{j=0}^7 q_j^{(a)} e^{-ij\xi} \widehat{\varphi}_a(\xi).$$

□

Explicit values of the coefficients can be found in [1]. It follows that the family

$$\boxed{\{2^{j/2}\psi_s(2^j \cdot - k) : j, k \in \mathbb{Z}\} \cup \{2^{j/2}\psi_a(2^j \cdot - k) : j, k \in \mathbb{Z}\}} \quad (*)$$

constitute a Riesz basis of $L^2(\mathbb{R})$ of deficient splines wavelets with compact support and symmetry properties. The symmetry properties can be written as follows

$$\widehat{\psi}_s(\xi) = e^{-5i\xi} \widehat{\psi}_s(-\xi), \quad \widehat{\psi}_a(\xi) = -e^{-5i\xi} \widehat{\psi}_a(-\xi).$$

Here are pictures of φ_s, φ_a

and of ψ_s, ψ_a (up to a multiplicative constant)

2 The dual basis

The following result is classical in the context of frames and Riesz basis (see for example [2], [4]).

5 Proposition. *If f_m ($m \in \mathbb{N}$) is a Riesz basis of an Hilbert space H , there exists a unique sequence g_m ($m \in \mathbb{N}$) of elements of H such that $\langle f_m, g_k \rangle = \delta_{km}$ for every $m, k \in \mathbb{N}$. More precisely one has*

$$g_m = S^{-1}f_m, \quad m \in \mathbb{N}$$

where S is the frame operator

$$S : H \rightarrow H \quad f \mapsto \sum_{m=1}^{+\infty} \langle f, f_m \rangle f_m.$$

The sequence g_m ($m \in \mathbb{N}$) is also a Riesz basis and is called the dual Riesz basis of f_m ($m \in \mathbb{N}$). It also satisfies

$$f = \sum_{m=1}^{+\infty} \langle f, f_m \rangle g_m = \sum_{m=1}^{+\infty} \langle f, g_m \rangle f_m$$

for every $f \in H$. □

Now, we want to give an explicit construction of the dual basis of the Riesz basis (*).

But before doing so, let us install some notations and let us also briefly recall some additional properties concerning the wavelet basis (*). We denote by W_ψ the matrix similar to W (see Proposition 3) but defined using the functions ψ_a, ψ_s instead of φ_a, φ_s , i.e.

$$W_\psi(\xi) = \begin{pmatrix} \omega_{\psi_s}(\xi) & \omega_{\psi_s, \psi_a}(\xi) \\ \omega_{\psi_s, \psi_a}(\xi) & \omega_{\psi_a}(\xi) \end{pmatrix}$$

where

$$\begin{aligned} \omega_{\psi_a}(\xi) &= \sum_{l=-\infty}^{+\infty} |\widehat{\psi_a}(\xi + 2l\pi)|^2, & \omega_{\psi_s}(\xi) &= \sum_{l=-\infty}^{+\infty} |\widehat{\psi_s}(\xi + 2l\pi)|^2 \\ \omega_{\psi_s, \psi_a}(\xi) &= \sum_{l=-\infty}^{+\infty} \widehat{\psi_s}(\xi + 2l\pi) \overline{\widehat{\psi_a}(\xi + 2l\pi)}. \end{aligned}$$

These functions have the following properties.

6 Property. *The functions $\omega_{\psi_a}, \omega_{\psi_s}, \omega_{\psi_s, \psi_a}$ are 2π - periodic trigonometric polynomials such that*

$$\omega_{\psi_a}(\xi) \geq c > 0, \quad \omega_{\psi_s}(\xi) \geq c > 0, \quad \omega_{\psi_a}(-\xi) = \omega_{\psi_a}(\xi), \quad \omega_{\psi_s}(-\xi) = \omega_{\psi_s}(\xi)$$

and

$$\overline{\omega_{\psi_s, \psi_a}(\xi)} = -\omega_{\psi_s, \psi_a}(\xi) = \omega_{\psi_s, \psi_a}(-\xi)$$

for every $\xi \in \mathbb{R}$. There are also $A, B > 0$ such that

$$A \leq \det(W_\psi(\xi)) \leq B, \quad \forall \xi \in \mathbb{R}.$$

Proof. The proof is direct, using the support and the symmetry properties of the functions ψ_a, ψ_s and the Riesz condition satisfied by the basis (*). \square

Since the wavelets of different levels are orthogonal to each other (that is to say, the spaces W_j and $W_{j'}$ are orthogonal if $j \neq j'$), it suffices to consider one scale (say, $j = 0$) to construct the dual. That's the reason why we present the construction of the dual as follows.

7 Theorem. *The functions $\tilde{\psi}_1, \tilde{\psi}_2$ defined as*

$$\widehat{\tilde{\psi}_1}(\xi) = \alpha_1(\xi) \widehat{\psi_a}(\xi) + \beta_1(\xi) \widehat{\psi_s}(\xi), \quad \widehat{\tilde{\psi}_2}(\xi) = \alpha_2(\xi) \widehat{\psi_a}(\xi) + \beta_2(\xi) \widehat{\psi_s}(\xi)$$

where

$$\alpha_1(\xi) = \frac{\omega_{\psi_s}(\xi)}{\det(W_\psi(\xi))}, \quad \beta_1(\xi) = \frac{\omega_{\psi_s, \psi_a}(\xi)}{\det(W_\psi(\xi))},$$

$$\alpha_2(\xi) = \overline{\beta_1(\xi)} = -\beta_1(\xi), \quad \beta_2(\xi) = \frac{\omega_{\psi_a}(\xi)}{\det(W_\psi(\xi))}$$

are such that the family of functions

$$\left\{ 2^{j/2} \tilde{\psi}_i(2^j \cdot - k) : i = 1, 2; j, k \in \mathbb{Z} \right\}$$

is the dual basis of the basis of wavelets (*).

Proof. First, we look for a function $\tilde{\psi}_1$ in W_0 such that

$$\langle \psi_a(\cdot - k), \tilde{\psi}_1 \rangle_{L^2(\mathbb{R})} = \delta_{0k} \quad \text{and} \quad \langle \psi_s(\cdot - k), \tilde{\psi}_1 \rangle_{L^2(\mathbb{R})} = 0$$

for every $k \in \mathbb{Z}$. Since $\{\psi_s(\cdot - k) : k \in \mathbb{Z}\} \cup \{\psi_a(\cdot - k) : k \in \mathbb{Z}\}$ constitute a Riesz basis of W_0 , we look in fact for 2π -periodic and L^2_{loc} functions α_1, β_1 such that

$$\widehat{\tilde{\psi}_1}(\xi) = \alpha_1(\xi) \widehat{\psi_a}(\xi) + \beta_1(\xi) \widehat{\psi_s}(\xi)$$

and such that

$$\langle e^{-ik \cdot} \widehat{\psi_a}, \alpha_1 \widehat{\psi_a} + \beta_1 \widehat{\psi_s} \rangle_{L^2(\mathbb{R})} = 2\pi \delta_{0k} \quad \text{and} \quad \langle e^{-ik \cdot} \widehat{\psi_s}, \alpha_1 \widehat{\psi_a} + \beta_1 \widehat{\psi_s} \rangle_{L^2(\mathbb{R})} = 0$$

for every $k \in \mathbb{Z}$. The last equalities are equivalent to

$$\begin{cases} \int_0^{2\pi} e^{-ik\xi} \left(\overline{\alpha_1(\xi)} \omega_{\psi_a}(\xi) + \overline{\beta_1(\xi)} \omega_{\psi_s, \psi_a}(\xi) \right) d\xi = 2\pi \delta_{0k}, \\ \int_0^{2\pi} e^{-ik\xi} \left(\overline{\alpha_1(\xi)} \omega_{\psi_s, \psi_a}(\xi) + \overline{\beta_1(\xi)} \omega_{\psi_s}(\xi) \right) d\xi = 0 \end{cases}, \quad \forall k \in \mathbb{Z}$$

hence also to

$$\begin{cases} \alpha_1(\xi) \omega_{\psi_a}(\xi) + \beta_1(\xi) \omega_{\psi_s, \psi_a}(\xi) = 1 \\ \alpha_1(\xi) \omega_{\psi_s, \psi_a}(\xi) + \beta_1(\xi) \omega_{\psi_s}(\xi) = 0. \end{cases}$$

Using matrices, this can be rewritten as

$$\begin{pmatrix} \omega_{\psi_s}(\xi) & \overline{\omega_{\psi_s, \psi_a}(\xi)} \\ \omega_{\psi_s, \psi_a}(\xi) & \overline{\omega_{\psi_a}(\xi)} \end{pmatrix} \begin{pmatrix} \beta_1(\xi) \\ \alpha_1(\xi) \end{pmatrix} = \overline{W_\psi(\xi)} \begin{pmatrix} \beta_1(\xi) \\ \alpha_1(\xi) \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

The solutions of this system is

$$\begin{pmatrix} \beta_1(\xi) \\ \alpha_1(\xi) \end{pmatrix} = \frac{1}{\det(W_\psi(\xi))} \begin{pmatrix} -\overline{\omega_{\psi_s, \psi_a}(\xi)} \\ \overline{\omega_{\psi_s}(\xi)} \end{pmatrix} = \frac{1}{\det(W_\psi(\xi))} \begin{pmatrix} \omega_{\psi_s, \psi_a}(\xi) \\ \omega_{\psi_s}(\xi) \end{pmatrix}.$$

We proceed exactly in the same way to find a function $\tilde{\psi}_2$ in W_0 such that

$$\langle \psi_a(\cdot - k), \tilde{\psi}_2 \rangle = 0 \quad \text{and} \quad \langle \psi_s(\cdot - k), \tilde{\psi}_2 \rangle = \delta_{0k}$$

for every $k \in \mathbb{Z}$. In this case, the final system is

$$\overline{W_\psi(\xi)} \begin{pmatrix} \beta_2(\xi) \\ \alpha_2(\xi) \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

which gives the solutions.

Since the spaces W_j and $W_{j'}$ are orthogonal if $j \neq j'$, we obtain, for $j, j', k, k' \in \mathbb{Z}$:

$$\langle 2^{j/2} \psi_a(2^j \cdot - k), 2^{j'/2} \tilde{\psi}_1(2^{j'} \cdot - k') \rangle = \delta_{jj'} \delta_{kk'}, \quad \langle 2^{j/2} \psi_s(2^j \cdot - k), 2^{j'/2} \tilde{\psi}_1(2^{j'} \cdot - k') \rangle = 0$$

and

$$\langle 2^{j/2} \psi_a(2^j \cdot - k), 2^{j'/2} \tilde{\psi}_2(2^{j'} \cdot - k') \rangle = 0, \quad \langle 2^{j/2} \psi_s(2^j \cdot - k), 2^{j'/2} \tilde{\psi}_2(2^{j'} \cdot - k') \rangle = \delta_{jj'} \delta_{kk'}$$

hence the conclusion. \square

8 Proposition. *The functions $\tilde{\psi}_1, \tilde{\psi}_2$ are deficient splines with exponential decay and symmetry properties (ψ_1, ψ_2 are respectively antisymmetric and symmetric relatively to $5/2$).*

Proof. By construction, these functions are deficient splines. Their explicit expressions in terms of the Fourier transforms of the wavelets ψ_a, ψ_s and the form of the coefficients α_i, β_i give the exponential decay and the symmetry properties. \square

Here are pictures of an approximation of the dual functions $\tilde{\psi}_1, \tilde{\psi}_2$ (up to a constant factor).

The author is grateful to Professors P. Butzer and P. Wojdyllo for discussions during the meeting in Strobl, Austria, May 2003.

References

- [1] F. BASTIN AND P. LAUBIN: *Quintic deficient splinewavelets*, Bull. Soc. Roy. Sc. Liège, Vol 71 (3), 2002, 121-144.
- [2] *Wavelets: mathematics and applications*, Studies in advanced mathematics, CRC 1994, edited by John J. Benedetto, Michael W. Frazier.

- [3] C.K. CHUI AND J.Z. WANG: *On compactly supported spline wavelets and a duality principle*, Trans. Amer. Math. Soc., 330, 2, 1992, 903-915.
- [4] I. DAUBECHIES: *Ten lectures on wavelets*, CBMS 61, Siam, 1992.
- [5] O. GILSON, O. FAURE, P. LAUBIN: *Quasi-optimal convergence using interpolation by non-uniform deficient splines*, to appear in the Journal of Concrete and Applicable Mathematics 2003.
- [6] T.N.T. GOODMAN, S.L. LEE: *Wavelets of multiplicity r*, Trans. Amer. Math. Soc. 342, 1, 1994, 307-324
- [7] T.N.T. GOODMAN, S.L. LEE, W.S. TANG: *Wavelets in wandering subspaces*, Trans. Amer. Math. Soc., 338, 2, 1993, 639-654
- [8] Y. MEYER: *Ondelettes et opérateurs*, I, II, III, Hermann, Paris, 1990.
- [9] S.S. RANA, Y.P. DUBEY: *Best error bounds of deficient quintic splines interpolation*, Indian J. Pure Appl. Math., 28, 1997, 1337-1344