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Introduction

It is well known that for any natural number m, the cardinal B-spline
Nm+1 = χ[0,1] ∗ . . . ∗ χ[0,1] (m + 1factors) can be used as a scaling function to
construct orthogonal and biorthogonal bases of wavelets in L2(R), with different
properties (see for example [3], [8]).

But, in approximation theory for instance, other splines are also very popu-
lar: the deficient splines (see some recent results in [5], [9]). In the paper [1], one
can find a direct approach of the problem of the explicit construction of scaling
functions, multiresolution analysis and wavelets with symmetry properties and
compact support, involving deficient splines of degree 5 and regularity 3. Other
results can also be found in [6], [7].

The present paper is a continuation of [1]. It gives an explicit construction
of the dual basis of the deficient splines wavelets basis obtained in [1]. The dual
is also generated by two wavelets, which are deficient splines with symmetry
properties and exponential decay.

1 Definitions, notations, deficient spline wavelets

For m ∈ N, the set of deficient splines of degree 2m+ 1 is the set

V0 = {f ∈ L2(R) : f |[k,k+1] = P
(2m+1)
k , k ∈ Zand f ∈ Cm+1(R)}.

For m = 1, it is the set of classical cardinal cubic splines. For m = 2 we denote
it as the set of



deficient quintic splines

and, in this note, we only consider this case.
In this section, we recall the explicit and direct construction of a Riesz basis

of wavelets consisting of deficient splines wavelets with compact support and
symmetry property of [1].

1 Proposition. The following functions ϕa andϕs

ϕa(x) =


x4 − 11

15x
5 if x ∈ [0, 1]

−9
8(x− 3

2) + 3(x− 3
2)3 − 38

15(x− 3
2)5 if x ∈ [1, 2]

−(3− x)4 + 11
15(3− x)5 if x ∈ [2, 3]

0 if x < 0 or x > 3

ϕs(x) =


x4 − 3

5x
5 if x ∈ [0, 1]

57
80 −

3
2(x− 3

2)2 + (x− 3
2)4 if x ∈ [1, 2]

(3− x)4 − 3
5(3− x)5 if x ∈ [2, 3]

0 if x < 0 or x > 3

are respectively antisymmetric and symmetric with respect to3
2 and the family

{ϕa(.− k), k ∈ Z} ∪ {ϕs(.− k), k ∈ Z}

constitutes a Riesz basis of V0.�
For every j ∈ Z we define

Vj = {f ∈ L2(R) : f(2−j .) ∈ V0}.

2 Proposition. The sequence Vj (j ∈ Z) is an increasingsequence of closed
sets of L2(R) and ⋂

j∈Z
Vj = {0},

⋃
j∈Z

Vj = L2(R).

Moreover, the functions ϕa, ϕs satisfy the followingscaling relation ϕ̂s(2ξ)

ϕ̂a(2ξ)

 = M0(ξ)

 ϕ̂s(ξ)

ϕ̂a(ξ)


where M0(ξ) is the matrix (called filter matrix)

M0(ξ) =
e−3iξ/2

64

 51 cos( ξ2) + 13 cos(3ξ
2 ) −9i(sin( ξ2) + sin(3ξ

2 ))

i(11 sin(3ξ
2 ) + 21 sin( ξ2)) −7 cos(3ξ

2 ) + 9 cos( ξ2))

 .

�
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For every j ∈ Z, we denote by Wj the orthogonal complement of Vj in Vj+1.
Using standard techniques of Fourier analysis in the context of wavelets, one
obtains the following result.

3 Proposition. A function f belongs to W0 if and only ifthere existsp, q ∈
L2
loc, 2π− periodic such that

f̂(2ξ) = p(ξ)ϕ̂s(ξ) + q(ξ)ϕ̂a(ξ)

and

M0(ξ) W (ξ)
(
p(ξ)
q(ξ)

)
+M0(ξ + π) W (ξ + π)

(
p(ξ + π)
q(ξ + π)

)
= 0 a.e.

where M0 is the filter matrix obtained in Proposition 2 and W (ξ) is the matrix

W (ξ) =
(

ωs(ξ) ωm(ξ)
ωm(ξ) ωa(ξ)

)
with

ωa(ξ) =
+∞∑
l=−∞

|ϕ̂a(ξ + 2lπ)|2 =
23247− 21362 cos ξ − 385 cos(2ξ)

311850

ωs(ξ) =
+∞∑
l=−∞

|ϕ̂s(ξ + 2lπ)|2 =
14445 + 7678 cos ξ + 53 cos(2ξ)

34650

ωm(ξ) =
+∞∑
l=−∞

ϕ̂s(ξ + 2lπ)ϕ̂a(ξ + 2lπ) = − i

51975
sin ξ (6910 + 193 cos ξ).

�

4 Theorem. There exists deficient splines wavelets with support in[0, 5] and
symmetry properties (with respect to 5

2).
More precisely, there exists real numbers

p
(s)
j , q

(s)
j , p

(a)
j , q

(a)
j , j = 0, . . . , 7

verifying

p
(s)
j = p

(s)
7−j , q

(s)
j = −q(s)7−j , p

(a)
j = −p(a)

7−j , q
(a)
j = q

(a)
7−j , j = 0, 1, 2, 3

such that the family {ψs(.− k) : k ∈ Z}∪ {ψa(.− k) : k ∈ Z} constitute a Riesz
basis of W0, where

ψ̂s(2ξ) =
7∑
j=0

p
(s)
j e−ijξϕ̂s(ξ) +

7∑
j=0

q
(s)
j e−ijξϕ̂a(ξ)
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ψ̂a(2ξ) =
7∑
j=0

p
(a)
j e−ijξϕ̂s(ξ) +

7∑
j=0

q
(a)
j e−ijξϕ̂a(ξ).

�

Explicit values of the coefficients can be found in [1]. It follows that the
family

{2j/2ψs(2j .− k) : j, k ∈ Z} ∪ {2j/2ψa(2j .− k) : j, k ∈ Z} (*)

constitute a Riesz basis of L2(R) of deficient splines wavelets with compact
support and symmetry properties. The symmetry properties can be written as
follows ̂̃

ψs(ξ) = e−5iξ̂̃ψs(−ξ), ̂̃
ψa(ξ) = −e−5iξ̂̃ψa(−ξ).

Here are pictures of ϕs, ϕa

and of ψs, ψa (up to a multiplicative constant)

2 The dual basis

The following result is classical in the context of frames and Riesz basis (see
for example [2], [4]).

5 Proposition. If fm (m ∈ N) is a Riesz basis of an Hilbert space H, there
exists a unique sequence gm (m ∈ N) of elements of H such that < fm, gk >=
δkm for every m, k ∈ N. More precisely one has

gm = S−1fm, m ∈ N

where S is the frame operator

S : H → H f 7→
+∞∑
m=1

< f, fm > fm.

The sequence gm (m ∈ N) is also a Riesz basis and is called the dual Riesz basis
of fm (m ∈ N). It also satisfies

f =
+∞∑
m=1

< f, fm > gm =
+∞∑
m=1

< f, gm > fm

for every f ∈ H.�
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Now, we want to give an explicit construction of the dual basis of the Riesz
basis (*).

But before doing so, let us install some notations and let us also briefly recall
some additional properties concerning the wavelet basis (*). We denote by Wψ

the matrix similar to W (see Proposition 3) but defined using the functions
ψa, ψs instead of ϕa, ϕs, i.e.

Wψ(ξ) =
(

ωψs(ξ) ωψs,ψa(ξ)
ωψs,ψa(ξ) ωψa(ξ)

)
where

ωψa(ξ) =
+∞∑
l=−∞

|ψ̂a(ξ + 2lπ)|2, ωψs(ξ) =
+∞∑
l=−∞

|ψ̂s(ξ + 2lπ)|2

ωψs,ψa(ξ) =
+∞∑
l=−∞

ψ̂s(ξ + 2lπ)ψ̂a(ξ + 2lπ).

These functions have the following properties.

6 Property. The functions ωψa , ωψs , ωψs,ψa are 2π- periodic trigonometric
polynomials such that

ωψa(ξ) ≥ c > 0, ωψs(ξ) ≥ c > 0, ωψa(−ξ) = ωψa(ξ), ωψs(−ξ) = ωψs(ξ)

and
ωψs,ψa(ξ) = −ωψs,ψa(ξ) = ωψs,ψa(−ξ)

for every ξ ∈ R. There are also A,B > 0 such that

A ≤ det(Wψ(ξ)) ≤ B, ∀ξ ∈ R.

Proof. The proof is direct, using the support and the symmetry properties
of the functions ψa, ψs and the Riesz condition satisfied by the basis (*). �

Since the wavelets of different levels are orthogonal to each other (that is to
say, the spaces Wj and Wj′ are orthogonal if j 6= j′), it suffices to consider one
scale (say, j = 0) to construct the dual. That’s the reason why we present the
construction of the dual as follows.

7 Theorem. The functions ψ̃1, ψ̃2 defined as

̂̃
ψ1(ξ) = α1(ξ)ψ̂a(ξ) + β1(ξ)ψ̂s(ξ),

̂̃
ψ2(ξ) = α2(ξ)ψ̂a(ξ) + β2(ξ)ψ̂s(ξ)
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where

α1(ξ) =
ωψs(ξ)

det(Wψ(ξ))
, β1(ξ) =

ωψs,ψa(ξ)
det(Wψ(ξ))

,

α2(ξ) = β1(ξ) = −β1(ξ), β2(ξ) =
ωψa(ξ)

det(Wψ)(ξ)

are such that the family of functions{
2j/2ψ̃i(2j .− k) : i = 1, 2; j, k ∈ Z

}
is the dual basis of the basis of wavelets (*).

Proof. First, we look for a function ψ̃1 in W0 such that

< ψa(.− k), ψ̃1 >L2(R)= δ0k and < ψs(.− k), ψ̃1 >L2(R)= 0

for every k ∈ Z. Since {ψs(. − k) : k ∈ Z} ∪ {ψa(. − k) : k ∈ Z} constitute a
Riesz basis of W0, we look in fact for 2π-periodic and L2

loc functions α1, β1 such
that ̂̃

ψ1(ξ) = α1(ξ)ψ̂a(ξ) + β1(ξ)ψ̂s(ξ)

and such that

< e−ik.ψ̂a, α1ψ̂a+β1ψ̂s >L2(R)= 2πδ0k and < e−ik.ψ̂s, α1ψ̂a+β1ψ̂s >L2(R)= 0

for every k ∈ Z. The last equalities are equivalent to
∫ 2π
0 e−ikξ

(
α1(ξ)ωψa(ξ) + β1(ξ)ωψs,ψa(ξ)

)
dξ = 2πδ0k∫ 2π

0 e−ikξ
(
α1(ξ)ωψs,ψa(ξ) + β1(ξ)ωψs(ξ)

)
dξ = 0

, ∀k ∈ Z

hence also to {
α1(ξ)ωψa(ξ) + β1(ξ)ωψs,ψa(ξ) = 1
α1(ξ)ωψs,ψa(ξ) + β1(ξ)ωψs(ξ) = 0.

Using matrices, this can be rewritten as(
ωψs(ξ) ωψs,ψa(ξ)
ωψs,ψa(ξ) ωψa(ξ)

) (
β1(ξ)
α1(ξ)

)
= Wψ(ξ)

(
β1(ξ)
α1(ξ)

)
=

(
0
1

)
.

The solutions of this system is(
β1(ξ)
α1(ξ)

)
=

1
det(Wψ(ξ))

(
−ωψs,ψa(ξ)
ωψs(ξ)

)
=

1
det(Wψ(ξ))

(
ωψs,ψa(ξ)
ωψs(ξ)

)
.
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We proceed exactly in the same way to find a function ψ̃2 in W0 such that

< ψa(.− k), ψ̃2 >= 0 and < ψs(.− k), ψ̃2 >= δ0k

for every k ∈ Z. In this case, the final system is

Wψ(ξ)
(
β2(ξ)
α2(ξ)

)
=

(
1
0

)
which gives the solutions.

Since the spaces Wj and Wj′ are orthogonal if j 6= j′, we obtain, for
j, j′, k, k′ ∈ Z:

< 2j/2ψa(2j .−k), 2j
′/2ψ̃1(2j

′
.−k′) >= δjj′δkk′ , < 2j/2ψs(2j .−k), 2j

′/2ψ̃1(2j
′
.−k′) >= 0

and

< 2j/2ψa(2j .−k), 2j
′/2ψ̃2(2j

′
.−k′) >= 0, < 2j/2ψs(2j .−k), 2j

′/2ψ̃1(2j
′
.−k′) >= δjj′δkk′

hence the conclusion.�

8 Proposition. The functions ψ̃1, ψ̃2 are deficient splines with exponen-
tial decay and symmetry properties (ψ̃1, ψ̃2 are respectively antisymmetric and
symmetric relatively to 5/2).

Proof. By construction, these functions are deficient splines. Their explicit
expressions in terms of the Fourier transforms of the wavelets ψa, ψs and the
form of the coefficients αi, βi give the exponential decay and the symmetry
properties.�

Here are pictures of an approximation of the dual functions ψ̃1, ψ̃2 (up to a
constant factor).

The author is grateful to Professors P. Butzer and P. Wojdyllo for discussions
during the meeting in Strobl, Austria, May 2003.
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