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THÉORIE DES ERREURS DE RECTITUDE 

ET DE PLANÉITÉ 
 

1. Encadrement d’un compact de Rn par deux hyperplans 
parallèles 

 
Dans ce qui suit, nous traiterons la rectitude dans R2 et la planéité dans R3. Comme les 

formalismes sont extrêmement voisins, nous ferons l’exposé dans le cadre général Rn. 
Etant donné un vecteur unitaire nR∈a , l’équation 
 

RccT ∈=    avec            ,xa  
 
définit un hyperplan de cet espace (à deux dimensions, il s’agit d’une droite et à trois 
dimensions, il s’agit d’un plan). Soit alors K un compact de Rn. Comme la fonction  
 

xaax Tf =),(  
 

est continue sur le compact K, elle y atteint ses bornes supérieure et inférieure. En d’autres 
termes, il existe un point de y de K  tel que  
 

),(sup axaya KMT

Kx

T Δ

∈
==  

 
et un point z de K tel que  
 

),(inf axaza KmT
Kx

T Δ

∈
==  

 
Il est clair que pour tout point x de K, on a  
 

),(),( axaa KMKm T ≤≤  
 

ce qui signifie que K est tout entier du côté pointé par a par rapport à l’hyperplan 
d’équation 
 

),( axa KmT =  
 

et tout entier du côté pointé par (-a) par rapport à l’hyperplan d’équation  
 

),( axa KMT =  
 

c’est-à-dire que ces deux plans encadrent le compact K. On ne peut en trouver de 
meilleurs, puisque chacun touche K. Nous appellerons valeur d’encadrement de K pour la 
direction a le nombre 



 3

 
( ) ),(),(,enc aaa KmKMK −=  

 
qui n’est autre que la distance des deux hyperplans.  
 
 
2. Passage à l’enveloppe convexe de K 
 
2.1 – Ensembles convexes de Rn 

 

2.1.1 – Définition 
 
Un ensemble B de Rn est dit convexe si pour tout couple de points x et y de B, on a  
 

( ) B∈+− yx θθ1  
 

chaque fois que [ ]1,0∈θ . Géométriquement, cela signifie que le segment qui joint deux points 
de B est entièrement contenu dans B.  
 
 

2.1.2 - Théorème  
 
Un ensemble B de Rn est convexe si et seulement si pour tout ensemble fini de nombres αi 

tels que 
 

[ ] ∑
=

==∈
r

1i
1et          ,...,1   ,1,0 ii ri αα  

 
on a  
 

∑
=

∈
r

i
ii B

1
xα  

 
chaque fois que les xi sont des éléments de B.  
 
 Cette condition est évidemment suffisante, puisqu’elle contient la définition de la 
convexité comme cas particulier. Montrons qu’elle est nécessaire. Si B est convexe, elle est 
évidemment vraie pour r = 2. Montrons que si elle est vraie pour kr ≤ , elle est vraie pour 

1+= kr . On a  
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Or, l’expression entre crochets est un élément de B par hypothèse, et la somme de son 
coefficient et de celui de xk+1 vaut l’unité.  
 
 
 

2.2 – Définition de l’enveloppe convexe 
 

Etant donné un ensemble A de Rn, on appelle enveloppe convexe de A et on note conv(A) 
l’ensemble des points de la forme 

 

∑
=

=
r

i
ii

1
xz α  

 
avec 
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2.3 – Premières propriétés 
 
 2.3.1 – Convexité 
 
 Commençons par montrer que l’enveloppe convexe de A est convexe. Soient deux 
points x et y de conv(A). On a  
 

    ,,   avec   et        
1 1

Aji
r

i

s

j
jjii ∈== ∑ ∑

= =
yxyyxx βα  

 
les αi et βi suivant les règles ci-dessus. Alors, pour θ compris entre 0 et 1,  on a  
 

( ) ( ) ( )∑ ∑
= =

∈+−=+−
r
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s

j
jjii K

1 1
conv11 yxyx θβαθθθ  

 
car 
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2.3.2 – Minimalité de l’enveloppe convexe 
 
 Montrons que tout ensemble convexe B qui contient A contient également conv(A). 
Soit en effet un point de conv(A). Il est de la forme  
 

∑
=

=
r

i
ii

1
xx α  

 
où les coefficients αi répondent aux règles ci-dessus et les xi sont éléments de A. Comme B 
contient A, les xi sont également éléments de B. Mais alors, il en est de même de x du fait que 
B est convexe (théorème 2.1.2) 
 
 
 
 .Soit alors K  un compact de Rn. Montrons d’abord que son enveloppe convexe est 
également compacte. 
 
 
 2.4 – Théorème de Carathéodory  
 
 D’une certaine manière, tout point de l’enveloppe convexe d’un ensemble A de Rn est 
la moyenne pondérée d’un certain nombre fini r de points de A. A priori, r peut être aussi 
grand que l’on veut. Le théorème de Carathéodory exprime que ce nombre peut toujours être 
ramené à n+1, où n est la dimension de l’espace. Très précisément, 
 
 Dans Rn, tout point de l’enveloppe convexe d’un ensemble A est de la forme 
 

∑
+

=
=

1

1

n

i
iixx α  

 
où les coefficients αi sont positifs ou nuls  et de somme 1 et où  les xi sont des éléments de A.  
 
 Pour démontrer ce théorème, considérons un point quelconque de l’enveloppe convexe 
de A. Il a évidemment la forme 
 

∑
=

=
r

i
ii

1
xx α  

 

où chaque xi est élément de A, chaque αi est non négatif, et ∑
=

=
r

i
i

1
1α . Quitte à recalculer r, on 

peut supposer qu’aucun des αi n’est nul. Supposons que 1+> nr  (sinon, il n’y a rien à 
prouver). Nous allons montrer que l’on peut ramener la moyenne à (r – 1) points de A. En 
effet, comme l’espace est de dimension n < (r – 1), les )1( −r  points 112 ....,, xxxx −− r  sont 
linéairement dépendants, ce qui signifie qu’il existe des nombres réels λ2, …, λr non tous nuls 
tels que  
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( ) 0
2
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=
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i
ii xxλ  

 
En posant  
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−=
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1 λλ  

 
on peut transformer cette relation en  
 

∑
=

=
r

i
ii

1
0xλ  

 
où les λi ne sont pas tous nuls et vérifient par ailleurs 
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Pour que cette relation soit possible, l’un au moins des λi doit être strictement positif. Pour 
tout nombre réel β, on a alors 
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En particulier, si l’on choisit pour β le nombre défini par la relation 
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(ce qui implique forcément que λj est positif). On remarque que pour cette valeur de β, on a 
pour tout i allant de 1 à r 
 

0≥−=− i
j

j
ii i

λ
λ

α
αβλα  

 
En effet, si λi est négatif ou nul, c’est évident et si λi est strictement positif, cela résulte du fait 
que 
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Par ailleurs, il est clair que  
 



 7

( )∑ ∑ ∑
= = =

=−=−=−
r

i

r

i

r

i
iiii

1 1 1
10.1 βλβαβλα  

 
Enfin, comme par construction, 0=− jj βλα , on obtient 
 
 

( )∑
≠=

−=
jirài

iii
,1

xx βλα  

 
soit une moyenne de (r – 1) points.  
 
 On peut répéter ce processus jusqu’à obtenir une moyenne de (n + 1) points au plus, ce 
qui démontre le théorème. 
 
 
 2.5 – Corollaire 
 
 Ce théorème admet un corollaire important : l’enveloppe convexe d’un compact de Rn 
est compacte.  
 
 En effet, soit K un compact de Rn. En vertu du théorème de Carathéodory, son 
enveloppe convexe est  
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Or, l’ensemble Δ de Rn+1 défini par  
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est compact. Dès lors, conv(K) est l’image dans Rn du compact 1x +Δ nK de R2n+2, par la 

fonction continue ∑
+

=
=

1

1

n

i
iixx α . Or, on sait que l’image d’un compact par une fonction 

continue est compacte.  
 
  
 2.6 – Identité des encadrements de K et de conv(K) 
 
 Si nous avons introduit l’enveloppe convexe, c’est parce qu’elle possède la propriété 
suivante : Soit K un compact de Rn. Pour un vecteur unitaire a donné, K et conv(K) ont les 
mêmes hyperplans encadrants ),(),( axaaxa KMetKm TT == . 
 



 8

 Soient en effet m(K,a) et M(K,a) les valeurs obtenues pour K. Il suffit de montrer que 
pour tout point x de conv(K), on a ),(),( axaa KMKm T ≤≤ . Or, ceci est évident, car pour 
 

i
r

i
ixx ∑

=
=

1
α  

 
avec les αi non négatifs et de somme égale à l’unité, on a 
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La conséquence de cette proposition est que, dans tout ce qui suit, on peut supposer K 
convexe. 
  

 
3. Continuité de la valeur d’encadrement par rapport à la 

direction a 
 
Nous allons montrer que lorsque a varie sur la sphère unité, la valeur d’encadrement 

enc(K,a) du compact K varie continûment. Le point de départ de la démonstration est le fait 
que pour K∈x  ,  
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x K

TT

∈
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ce qui constitue une borne uniforme. Dès lors,  
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On a alors 
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et 
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si bien que 
 

xaaaaxaaa
xx KK

KMKMKM
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ce qui signifie que M(K,a) est une fonction continue de a.  
 
 Par ailleurs,  
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et 
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donc 
 

xaaaaxaaa
Kxx ∈∈

−+≤≤−− sup*),(*),(sup*),( KmKmKm
K

 

 
et m(K,a) est également continue.  
 
 La proposition découle alors du fait que ).,(),(),enc( aaa KmKMK −= . 
 
  
 4. Existence d’un encadrement optimal 
 
 Nous dirons que l’encadrement par des plans de normale a est optimal si pour toute 
autre orientation a* de la normale, on a  
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),enc(*),enc( aa MM ≥  
 

Un tel encadrement existe, car la fonction enc(K,a), continue sur la sphère unité de Rn qui est 
compacte, y atteint ses bornes supérieure et inférieure. C’est cette valeur optimale de la valeur 
d’encadrement qui mesure le défaut (de planéité à trois dimensions et de rectitude à deux 
dimensions) : 
 

  ),enc(min)def(
1

a
a

KK
=

=  

 
  

5. Un critère de non-optimalité 
 
 La recherche du défaut est assez délicate dans le cas général. Mais en pratique, on 
dispose d’un nombre fini de points de mesure, ce qui ramène K à un nombre fini de points. 
L’enveloppe linéaire de K est alors un polyèdre dans l’espace ou un polygone dans le plan. Le 
contact de cette enveloppe avec l’un des hyperplans formant un encadrement peut alors être : 
 
 ● Dans le plan : un sommet ou un côté de l’enveloppe. 
 
 ● Dans l’espace ; un sommet, une arête ou une face de l’enveloppe. 
 
 On conçoit que dans un certain nombre de situations, il peut être possible de donner à 
la normale une petite perturbation sans modifier la zone de contact des deux hyperplans 
d’encadrement. Cela étant, on peut énoncer le théorème suivant :  
 
 Si le contact de l’enveloppe avec deux hyperplans encadrants de normale a reste 
inchangé pour une direction de perturbation  b, c'est-à-dire pour 
 

] [ 1,0,,    avec       1* 2 =≠−∈+−= bbaa ηηηεεε  
 

alors l’encadrement n’est pas optimal. 
 
 Choisissons en effet y  et z dans conv(K) tels que  
 

{ } { }),(:et             ),(: axaxzaxaxy KMKm TT =∈=∈  
 

On a 
 

)(),enc(1)()(1*),( 22 yzbayzbyzaa −+−=−+−−= TTT KKenc εεεε  
 

Dans le cas où 0)( ≠− yzbT , l’encadrement de normale a n’est pas optimal, car en 
choisissant ε de signe contraire à ce produit et suffisamment petit, on obtient 
 

),enc()(),enc(1*),enc( 2 ayzbaa KKK T <−−−= εε  
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Et si 0)( =− yzbT , on obtient 
 

),enc(),enc(1*),enc( 2 aaa KKK <−= ε  
 

Donc, dans les deux cas, l’encadrement n’est pas optimal. 
 
 
 6. Application dans le plan 
 
 Dans le plan, un polygone convexe peut être encadré par deux droites de trois 
manières différentes : 
 
 M1 – Les deux droites encadrantes contiennent chacune un côté du polygone. 
 
 M2 – Un des droites encadrantes contient un côté du polygone et l’autre n’en contient 
qu’un sommet. 
 
 M3 – Le contact du polygone avec les deux droites encadrantes est limité à un sommet 
de chaque côté.  
 
Il résulte du critère de non-optimalité que la situation M3 n’est pas optimale. Dès lors, on peut 
affirmer que l’encadrement ne peut être optimal que si l’un au moins des deux plans contient 
un côté du polygone. Ceci limite la recherche à un nombre fini de directions. La stratégie est 
donc la suivante : pour chaque côté, d’équation cT =xa , on calcule les distances aux 
sommets xi par  
 

cd i
T

i −= xaxa )(  

 
et la valeur 
 

)(max),enc( i
isommets
dK xa a=  

 
Le défaut de rectitude est donné par 
 

),enc(min)def( a
a

KK
normaledecôté

=  

 
 

● Exercice – Dans le cas M2, soit AB le côté situé sur une des droites d’encadrement (droite 
n°1) et soit C le sommet situé sur l’autre droite d’encadrement (droite n°2). Montrer que 
l’encadrement ne sera optimal que si la projection orthogonale de C sur la droite n°1 est 
contenue dans le segment ouvert ]A,B[. 
 
(Remarque : on peut changer les axes pour que les deux droites soient horizontales et que la 
droite n°2 soit située au-dessus de la droite n°1. Supposons qu’une masse unitaire soit placée 
en C. Le problème posé a un rapport direct avec la stabilité du système soumis à la gravité.)  
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 7. Application dans l’espace 
 
 Dans l’espace à trois dimensions, l’encadrement d’un polyèdre convexe peut se faire 
selon les schémas suivants : 
 
 S1 – L’un au moins des plans d’encadrement contient une face du polyèdre et l’autre, 
un sommet de celui-ci. 
 
 S2 – Les deux plans d’encadrement ont chacun une arête commune avec le polyèdre, 
et ces arêtes sont gauches. 
 
 S3 – Les deux plans d’encadrement ont chacun une arête en commun avec le polyèdre, 
et ces arêtes sont coplanaires (et donc, parallèles). 
 
 S4 – Un des plans d’encadrement a une arête en commun avec le polyèdre et l’autre, 
un sommet seulement. 
 
 S5 – Les deux plans d’encadrement ont leur contact avec le polyèdre limité à un 
sommet. 
 
Les schémas S3, S4 et S5 donnent lieu à des perturbations possibles de la direction des plans 
sans modification des contacts ; ces encadrements ne sont donc pas optimaux.  En définitive, 
l’encadrement doit correspondre au schéma S1 ou au schéma S2, c’est-à-dire que l’ensemble 
des deux plans doit contenir au moins quatre sommets du polyèdre.  
 
● Exercice - Montrer que dans le cas S1, si le plan n°1 contient une face ABC et le plan n°2 
contient le sommet D, il faut encore que la projection orthogonale de D sur le plan n°1 soit 
intérieure au triangle ABC. (Analogue à l’exercice précédent). 
 
 
 8. Algorithme de recherche de la valeur optimale 
d’encadrement d’un polyèdre K de R3 
 
 a) Pour chaque face ),,( 321 xxx , on calcule la normale unitaire 
 

( ) ( )
( ) ( )1312

1312
xxxx
xxxx

a
−×−
−×−

=  

 
où le signe ×  représente le produit vectoriel. L’équation du plan contenant la face est alors 
 

11 CTT Δ
== xaxa  

 
Pour chaque sommet xi, on calcule alors sa distance au plan  
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i
T

ii Cdd −= xaoù            
 

La plus grande de ces valeurs, obtenues pour un sommet xi0, est enc(K,a). 
 

 La projection du point xi0 dans la face (x1, x2, x3) est donnée par  
 

axy iii d−= 00  
 

Cette projection vérifie 
 

( ) ( )13120 xxxxy −+−= βαi  
 

les coefficients α et β s’obtenant par les équations 
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i
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i
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Les conditions pour que la projection soit intérieure au triangle (x1, x2, x3) sont 
 

1et        0,0 <+>> βαβα  
 

Si cette condition n’est pas vérifiée, il faut écarter l’encadrement correspondant, car il n’est 
certainement pas optimal. 
 
 En parcourant toutes les faces, on peut déterminer  
 

( )aK,encinf)(deffaces
excluesnonfaces

K =  

 
 
 b) Il faut alors examiner les couples d’arêtes, et ne retenir que les arêtes gauches. Un 
couple d’arêtes est à exclure s’il relève d’un des cas suivants : 
 
Cas 1 : Les deux arêtes ont un sommet commun. Elles sont donc concourantes.  
 
 Ce cas étant exclu, on calcule le produit vectoriel 
 

( ) ( )1312 xxxxv −×−=  
 

On peut alors reconnaître les cas suivants : 
 
Cas 2 : 0=v  : les arêtes sont alors parallèles. 
 
 Ce cas exclu, la normale unitaire au plan contenant la direction des deux arêtes est 
donnée par 
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v
va =  

 
Le plan contenant l’arête (x1, x2) a pour équation 
 

1xaxa TT =  
 

L’équation du plan contenant l’arête (x3, x4) est 
 

3xaxa TT =  
 

Cas 3 : 31 xaxa TT =  : les arêtes sont concourantes (ou leur prolongement l’est).  
 
 Ce dernier cas exclu, nos sommes sûr que les deux arêtes sont gauches. Posant 
 

( )
( )31

31

,sup

,inf

xaxa

xaxa
TT

TT

M

m

=

=
 

 
il faut alors vérifier que les plans d’équation Mm TT == xaxa et       encadrent le polyèdre, 
c’est-à-dire que pour tout sommet xi , on ait  
 

Mm i
T ≤≤ xa  

 
ce qui mène au dernier cas d’exclusion : 
 
Cas 4 : il existe un sommet xi tel que Mm i

T
i

T >< xaxa ou        . Dans ce cas, les deux 
arêtes ne définissent pas un encadrement.  
 
 Ayant passé avec succès ces quatre cas d’exclusion, on obtient une nouvelle valeur  
 

mMK −=),enc( a  
 

à comparer aux précédentes. Si )(defarêtes K  est la plus petites de cesvaleurs pour les 
différents couples d’arêtes retenus, on a finalement 
 

( ) ( )( ))def,definf)def( arêtesfaces KKK =  
 
 
 9. Exercices 
 
 1) En pratique, l’ensemble de points dont on veut déterminer le défaut de planéité est 
naturellement fort plat, ce qui pose des problèmes de précision lors de la détermination de 
l’enveloppe convexe. Si l’on admet que l’ensemble de points est approximativement 
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horizontal, on est tenté de dilater les coordonnées z, c’est-à-dire d’opérer la transformation 
suivante : 
 

 grandnt relativeme       avec     ,,, ααzZyYxX ===  
 
 Deux questions se posent alors : 
 a) Cette transformation préserve-t-elle l’enveloppe convexe ? 
 
 b) Comment se transforment les composantes de la normale obtenue pour le meilleur 
plan ? 
 
 2) Dans le cas d’une surface en secteur de cylindre, quelle est la direction des plans 
formant le meilleur encadrement ? 

 
 
 
 

 
 

 
 

 
 
 


