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THEORIE DES ERREURS DE RECTITUDE
ET DE PLANEITE

1. Encadrement d’un compact de R" par deux hyperplans
paralleles

Dans ce qui suit, nous traiterons la rectitude dans R’ et la planéité dans R’. Comme les
formalismes sont extrémement voisins, nous ferons I’exposé dans le cadre général R".

Etant donné un vecteur unitaire a € R", I’équation

a X=c, avec ceR

définit un hyperplan de cet espace (a deux dimensions, il s’agit d’une droite et a trois
dimensions, il s’agit d’un plan). Soit alors K un compact de R". Comme la fonction

f(x,a):aTx

est continue sur le compact K, elle y atteint ses bornes supérieure et inférieure. En d’autres
termes, il existe un point de y de K tel que

A

aTy = sup aTx:M(K,a)
xek
et un point z de K tel que
T T A
a’ z=inf a” x=m(K,a)
xekK

Il est clair que pour tout point X de K, on a
m(K,a) < alx < M(K,a)

ce qui signifie que K est tout entier du coté pointé par a par rapport a 1’hyperplan
d’équation

al'x =m(K,a)
et tout entier du coté pointé par (-a) par rapport a I’hyperplan d’équation
alx=M (K,a)

c’est-a-dire que ces deux plans encadrent le compact K. On ne peut en trouver de
meilleurs, puisque chacun touche K. Nous appellerons valeur d’encadrement de K pour la
direction a le nombre



enc(K,a)= M(K,a)—m(K,a)

qui n’est autre que la distance des deux hyperplans.

2. Passage a I’enveloppe convexe de K

2.1 - Ensembles convexes de R"

2.1.1 — Définition

Un ensemble B de R" est dit convexe si pour tout couple de points X ety de B, on a
(1-6)x+&y B

chaque fois que 6 € [0,1]. Géométriquement, cela signifie que le segment qui joint deux points
de B est entiérement contenu dans B.

2.1.2 - Théoréme

Un ensemble B de R" est convexe si et seulement si pour tout ensemble fini de nombres a;
tels que

a; € [0,1], i=1..r et Z“i =1
ona

r
Zaixi eB
i=1

chaque fois que les X;sont des éléments de B.

Cette condition est évidemment suffisante, puisqu’elle contient la définition de la
convexité comme cas particulier. Montrons qu’elle est nécessaire. Si B est convexe, elle est
é¢videmment vraie pour » = 2. Montrons que si elle est vraie pour » <k, elle est vraie pour
r=k+1.0na

k+1 k k ko g
l

zaixi =Zaixi+ak+1xk+1 = Zaj Z Xi | T Ok +1Xk+1

i=1 i=1 '

k
j=1 i=1 Zaj




Or, I’expression entre crochets est un élément de B par hypothése, et la somme de son
coefficient et de celui de X;+; vaut ["unité.

2.2 — Définition de I’enveloppe convexe

Etant donné un ensemble A de R", on appelle enveloppe convexe de A et on note conv(A4)
I’ensemble des points de la forme

r
Z= Zaixi
i=1

avee

XI'EA

a; €[0,1]

Zai =1

i=l

2.3 — Premieres propriétés
2.3.1 — Convexité

Commencons par montrer que ’enveloppe convexe de A est convexe. Soient deux
points X et y de conv(A). On a

N
X:Zaixi et Y= zﬂfy] avee Xi’yj EA,
i=1 j=1

les o; et f; suivant les regles ci-dessus. Alors, pour § compris entre O et 1, on a

(-Ox+ 0y =3 (-0, + 308,y ; e conv(K)

i=1 j=1

car

(1—9)Zrza,. +GZS:,BJ- =(1-0)+0=1
i=1 j=1



2.3.2 — Minimalité de I’enveloppe convexe

Montrons que fout ensemble convexe B qui contient A contient également conv(A).
Soit en effet un point de conv(A4). Il est de la forme

ou les coefficients a; répondent aux régles ci-dessus et les X; sont éléments de 4. Comme B
contient 4, les X; sont également éléments de B. Mais alors, il en est de méme de X du fait que
B est convexe (théoréme 2.1.2)

.Soit alors K un compact de R". Montrons d’abord que son enveloppe convexe est
également compacte.

2.4 — Théoreme de Carathéodory

D’une certaine maniére, tout point de I’enveloppe convexe d’un ensemble 4 de R" est
la moyenne pondérée d’un certain nombre fini » de points de 4. A priori, » peut étre aussi
grand que 1’on veut. Le théoréme de Carathéodory exprime que ce nombre peut toujours étre
ramené a n+1, ou n est la dimension de I’espace. Tres précisément,

Dans R", tout point de I’enveloppe convexe d'un ensemble A est de la forme

n+l

X = Zaixi
i=1

ou les coefficients o; sont positifs ou nuls et de somme 1 et ou les X; sont des éléments de A.

Pour démontrer ce théoréme, considérons un point quelconque de 1I’enveloppe convexe
de 4. 1l a évidemment la forme

ou chaque X; est ¢lément de 4, chaque o; est non négatif, et Zal« = 1. Quitte a recalculer », on
i=1

peut supposer qu’aucun des o; n’est nul. Supposons que » >n+1 (sinon, il n’y a rien a

prouver). Nous allons montrer que 1’on peut ramener la moyenne a (» — 1) points de 4. En

effet, comme I’espace est de dimension n < (r — 1), les (» —1) points X, —Xj,....,X,. — X sont

linéairement dépendants, ce qui signifie qu’il existe des nombres réels 4y, ..., 4, non tous nuls

tels que



En posant

on peut transformer cette relation en

i/ll'xi = O
i=1

ou les 4; ne sont pas tous nuls et vérifient par ailleurs

Pour que cette relation soit possible, I'un au moins des 4; doit étre strictement positif. Pour
tout nombre réel £, on a alors

r r r
X= D aX; =By Aix; = > (@ = A X
i=1 i=l1 i=l1
En particulier, si I’on choisit pour £ le nombre défini par la relation
A A;
1 max { b =—L
B i<isrla;]  a;

(ce qui implique forcément que /; est positif). On remarque que pour cette valeur de S, on a
pour tout i allantde 1 a r

a.
ai—ﬂ/tl-:ai —/1—]/1,20

J

En effet, si 4; est négatif ou nul, c’est évident et si 4; est strictement positif, cela résulte du fait
que

. a;
a9
A A

Par ailleurs, il est clair que



r r

Yl =pri)=2e; =Y 4 =1-p0=1
i=1

i=1 i=1

Enfin, comme par construction, & j— PA j= 0, on obtient

x= (@i =P

i=lar,i#j
soit une moyenne de (» — 1) points.

On peut répéter ce processus jusqu’a obtenir une moyenne de (n + 1) points au plus, ce
qui démontre le théoréme.

2.5 — Corollaire

Ce théoréme admet un corollaire important : /’enveloppe convexe d’un compact de R"
est compacte.

En effet, soit K un compact de R". En vertu du théoréme de Carathéodory, son
enveloppe convexe est

n+l n+l
conV(K):{XeR" X= Y a;X; avec X; €K, a; 20, Y g :1}

Or, ’ensemble 4 de R"*' défini par

n+l1
A:{(al, ..... ,an+1):ai20,izl,....n+l et Zaizl }
i=1

est compact. Dés lors, conv(K) est I’image dans R" du compact Ax K" lde R, par la
n+l1

fonction continueX = Zaixi. Or, on sait que I’image d’un compact par une fonction
i=l1

continue est compacte.

2.6 — ldentité des encadrements de K et de conv(K)

Si nous avons introduit I’enveloppe convexe, c’est parce qu’elle posséde la propriété
suivante : Soit K un compact de R". Pour un vecteur unitaire a donné, K et conv(K) ont les

mémes hyperplans encadrants alx= m(K,a) et alx= M(K,a).



Soient en effet m(K,a) et M(K,a) les valeurs obtenues pour K. Il suffit de montrer que

T

pour tout point X de conv(K), ona m(K,a)<a” X< M(K,a). Or, ceci est évident, car pour

X = Zaixi

i=1
avec les o; non négatifs et de somme égale a I’unité, on a
<) aM(K,a)=M(K,a)

=1
.
i=1 > a;m(K,a) =m(K,a)

La conséquence de cette proposition est que, dans tout ce qui suit, on peut supposer K
convexe.

3. Continuiteé de la valeur d’encadrement par rapport a la
direction a

Nous allons montrer que lorsque a varie sur la sphére unité, la valeur d’encadrement
enc(K,a) du compact K varie continiiment. Le point de départ de la démonstration est le fait
que pour X e K ,

a7 x-al|a*-al| <l sup
€

ce qui constitue une borne uniforme. Dés lors,

sup|a* x—a” x| < a*~a] sup x|
xek xekK
On a alors
M(K,a*) = sup(a*T x)z sup aTx+(a*T x—aTx)J
xeK xekK
< sup (aTX)+ sup ax! X—aTX‘
xeK xek
< M(K,a)+|a*—a] sup ]
xekK
et



M(K,a)= sup(aTX): sup I_a*T X—(a*T X—aTX)J
xekK xekK

T

< sup(a*T X)+ sup a*l x-a

XxeK XeK
< M(K,a*)+|a* a] sup x|
xekK

|

si bien que

M(K,a)—[a*-a] sup x| < M (K,a*) < M (K )+ |a*—a]| sup |
XeK XeK

ce qui signifie que M(K,a) est une fonction continue de a.

Par ailleurs,

m(K,a*) = inf (a*T x)z inf aTx—(aTx—a*T X)J

xeK xeK
> inf (aTX)— sup alx—a*l X‘
xekK xeK
> m(K.a) - a*—al| sup x|
xekK
et
m(K,a) = inf (aTx): inf fa*” x—(a*T x—aTx)J
xeK xeK
> inf (a*T x)— sup a*l x—aTx‘
XeK xeK
> m(K,a*)—[a*—al sup x|
xeK
donc

m(K,a) —[a*—al sup [X| < m(K,a*) < m(K,a) +|a* —a] sup x|
xeK xeK

et m(K,a) est également continue.

La proposition découle alors du fait que enc(K,a) = M (K,a)—m(K,a)..

4. Existence d’un encadrement optimal

Nous dirons que 1’encadrement par des plans de normale a est optimal si pour toute
autre orientation a* de la normale, on a



enc(M,a*) > enc(M,a)

Un tel encadrement existe, car la fonction enc(K,a), continue sur la sphére unité de R" qui est
compacte, y atteint ses bornes supérieure et inférieure. C’est cette valeur optimale de la valeur
d’encadrement qui mesure le défaut (de planéité a trois dimensions et de rectitude a deux
dimensions) :

def(K') = minenc(K,a)

Jef}=1

5. Un critére de non-optimalité

La recherche du défaut est assez délicate dans le cas général. Mais en pratique, on
dispose d’un nombre fini de points de mesure, ce qui rameéne K a un nombre fini de points.
L’enveloppe linéaire de K est alors un polyedre dans I’espace ou un polygone dans le plan. Le
contact de cette enveloppe avec 1’'un des hyperplans formant un encadrement peut alors étre :

e Dans le plan : un sommet ou un c6té de I’enveloppe.

e Dans I’espace ; un sommet, une aréte ou une face de 1’enveloppe.

On congoit que dans un certain nombre de situations, il peut étre possible de donner a
la normale une petite perturbation sans modifier la zone de contact des deux hyperplans

d’encadrement. Cela étant, on peut énoncer le théoréme suivant :

Si le contact de [’enveloppe avec deux hyperplans encadrants de normale a reste
inchangé pour une direction de perturbation b, c'est-a-dire pour

a*=vl-g2a+eh  avec selnnl . nzo0,

bl =1
alors l’encadrement n’est pas optimal.

Choisissons en effet y et z dans conv(K) tels que
ye{><:aTx=m(K,a)} et 2e{><:aTx=M(K,a)}
Ona

enc(K,a”‘):\/1—8261T(Z—y)+(st(Z—y):\/I—g2 enc(K,a)+5bT(Z—y)

Dans le cas ou b’ (z-y)#0, I’encadrement de normale a n’est pas optimal, car en
choisissant ¢ de signe contraire a ce produit et suffisamment petit, on obtient

enc(K,a*)=+1- &2 enc(K,a) — |€|‘bT(Z - y)‘ <enc(K,a)

10



Et si bT(Z —y) =0, on obtient

enc(K,a*)=+1- &2 enc(K,a) < enc(K,a)

Donc, dans les deux cas, I’encadrement n’est pas optimal.

6. Application dans le plan

Dans le plan, un polygone convexe peut étre encadré par deux droites de trois
manieres différentes :

M1 — Les deux droites encadrantes contiennent chacune un c6té du polygone.

M2 — Un des droites encadrantes contient un coté du polygone et ’autre n’en contient
qu’un sommet.

M3 — Le contact du polygone avec les deux droites encadrantes est limité a un sommet
de chaque coté.

I1 résulte du critére de non-optimalité que la situation M3 n’est pas optimale. Dés lors, on peut
affirmer que /’encadrement ne peut étre optimal que si ['un au moins des deux plans contient
un coté du polygone. Ceci limite la recherche a un nombre fini de directions. La stratégie est

donc la suivante : pour chaque coté, d’équation al X =c, on calcule les distances aux
sommets X; par

dy(X;) = ‘aTx,- —c‘

et la valeur

enc(K,a)= max dy(X;)
sommets i

Le défaut de rectitude est donné par

def(K) = min enc(K,a)

coté de normalea

® Exercice — Dans le cas M2, soit AB le coté situé sur une des droites d’encadrement (droite
n°l) et soit C le sommet situé sur l’autre droite d’encadrement (droite n°2). Montrer que
I’encadrement ne sera optimal que si la projection orthogonale de C sur la droite n°l est
contenue dans le segment ouvert |4,B].

(Remarque : on peut changer les axes pour que les deux droites soient horizontales et que la

droite n°2 soit située au-dessus de la droite n°l. Supposons qu’une masse unitaire soit placée
en C. Le probleme posé a un rapport direct avec la stabilité du systeme soumis a la gravité.)
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7. Application dans I’espace

Dans I’espace a trois dimensions, I’encadrement d’un polyedre convexe peut se faire
selon les schémas suivants :

S1 — L’un au moins des plans d’encadrement contient une face du polyédre et 1’autre,
un sommet de celui-ci.

S2 — Les deux plans d’encadrement ont chacun une aréte commune avec le polyedre,
et ces arétes sont gauches.

S3 — Les deux plans d’encadrement ont chacun une aréte en commun avec le polyedre,
et ces arétes sont coplanaires (et donc, parall¢les).

S4 — Un des plans d’encadrement a une aréte en commun avec le polyeédre et 1’autre,
un sommet seulement.

S5 — Les deux plans d’encadrement ont leur contact avec le polyédre limité a un
sommet.

Les schémas S3, S4 et S5 donnent lieu a des perturbations possibles de la direction des plans
sans modification des contacts ; ces encadrements ne sont donc pas optimaux. En définitive,
I’encadrement doit correspondre au schéma S1 ou au schéma S2, c’est-a-dire que /’ensemble
des deux plans doit contenir au moins quatre sommets du polyédre.

® FExercice - Montrer que dans le cas S1, si le plan n°l contient une face ABC et le plan n°2

contient le sommet D, il faut encore que la projection orthogonale de D sur le plan n°l soit
intérieure au triangle ABC. (Analogue a [’exercice précédent).

8. Algorithme de recherche de la valeur optimale
d’encadrement d’un polyédre K de R®

a) Pour chaque face (Xy,X5,X3), on calcule la normale unitaire

(X2 =x1)x (x5 =x;)
||(X2 = X1 )% (x5 —Xl)”

a=

ou le signe x représente le produit vectoriel. L’équation du plan contenant la face est alors
A
aTx = aTX1 = Cl

Pour chaque sommet X;, on calcule alors sa distance au plan

12



d;| ou d;=alx-C;
La plus grande de ces valeurs, obtenues pour un sommet Xjo, est enc(K,a).
La projection du point Xjy dans la face (X;, Xz, X3) est donnée par
Yio =Xjo —d;a
Cette projection vérifie
Yio = a(Xz =xp)+ Blx3 —x)

les coefficients a et S s’obtenant par les équations

alx, - X1||2 + Bxa = %) (x3 =)= (X3 = x; ) i
a(x3 = %) (X3 =x1)+ Blxs = x| = (x3 = %) 40
Les conditions pour que la projection soit intérieure au triangle (X;, Xz, X3) sont

a>0, p>0 et a+pf<l1

Si cette condition n’est pas vérifiée, il faut écarter 1’encadrement correspondant, car il n’est
certainement pas optimal.

En parcourant toutes les faces, on peut déterminer
defpyees (K) = inf enc(K,a)

faces non exclues

b) Il faut alors examiner les couples d’arétes, et ne retenir que les arétes gauches. Un
couple d’arétes est a exclure s’il reléve d’un des cas suivants :
Cas 1 : Les deux arétes ont un sommet commun. Elles sont donc concourantes.
Ce cas ¢tant exclu, on calcule le produit vectoriel
v =[xy =% )x(x3 —xq)
On peut alors reconnaitre les cas suivants :

Cas 2 : ||v|| =0 : les arétes sont alors paralléles.

Ce cas exclu, la normale unitaire au plan contenant la direction des deux arétes est
donnée par

13



a="
vl

Le plan contenant I’aréte (X;, X;) a pour équation

aTX = aTXI

L’¢équation du plan contenant 1’aréte (X3, X4) est

aTX = aTX3

Cas3:al X| = al X3 : les arétes sont concourantes (ou leur prolongement 1’est).
Ce dernier cas exclu, nos sommes siir que les deux arétes sont gauches. Posant

m=inf(aTX1,aTX3)

M =sup aTxl,aTx3

T T

il faut alors vérifier que les plans d’équation a" x=m et a

c’est-a-dire que pour tout sommet X; , on ait

X = M encadrent le polyédre,

m<alx; <M

ce qui méne au dernier cas d’exclusion :

T

Cas 4 : il existe un sommet X; tel que aTXl- <m ou a X;>M . Dans ce cas, les deux

arétes ne définissent pas un encadrement.
Ayant passé avec succes ces quatre cas d’exclusion, on obtient une nouvelle valeur

enc(K,a)=M —m

a comparer aux précédentes. Si def,aies(K) est la plus petites de cesvaleurs pour les
différents couples d’arétes retenus, on a finalement

def(K) = inf(deffaces (K )’ defyrgtes (K )))

9. Exercices

1) En pratique, [’ensemble de points dont on veut déterminer le défaut de planéité est
naturellement fort plat, ce qui pose des problemes de précision lors de la détermination de
[’enveloppe convexe. Si l'on admet que [’ensemble de points est approximativement
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horizontal, on est tenté de dilater les coordonnées z, c’est-a-dire d’opérer la transformation

suivante :

X=x, Y=y, Z =0z, avec a relativement grand

Deux questions se posent alors :
a) Cette transformation préserve-t-elle [’enveloppe convexe ?

b) Comment se transforment les composantes de la normale obtenue pour le meilleur
plan ?

2) Dans le cas d’une surface en secteur de cylindre, quelle est la direction des plans
formant le meilleur encadrement ?
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