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THÉORIE DE L’ERREUR DE CIRCULARITÉ 
 

 
 1. Définitions 
 
 Soit K un ensemble fini de points Pi = (xi,yi) de R2. Soit encore C = (a, b) un point 
quelconque du même plan. Nous appellerons valeur d’encadrement de K de centre C la 
grandeur 
 

CPCPC
PP

−−−=
∈∈ KK

K infsup),enc(  

 
 

 2. Continuité de la valeur d’encadrement 
 
 Il est assez facile de montrer que la valeur d’encadrement dépend continûment du 
point C. En effet, 
 
 a) On a pour tout point P de K  
 

( ) ( ) *sup** CCCQCCCP*CCCPCP
Q

−+−≤−+−≤−+−=−
∈K

 

 
et cette dernière borne est indépendante de P. Par conséquent,  
 

*sup*sup CCCPCP
PP

−+−≤−
∈∈ KK

 

 
En intervertissant les rôles de C et de C*, on obtient  
 

**supsup CCCPCP
PP

−+−≤−
∈∈ KK

 

 
Il résulte de ces deux inégalités que  
 

)1(*sup*sup*sup CCCPCPCCCP
PPP

−−−≤−≤−−−
∈∈∈ KKK

 

 
 

 b) Puisque 
 

** CCCPCP −+−≤−  
 

on a, pour tout point P de K, 
 

**inf** CCCQCCCPCP
Q

−−−≥−−−≥−
∈K
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et cette borne est indépendante du point P considéré. Dès lors, 
 

**infinf CCCPCP
PP

−−−≥−
∈∈ KK

 

 
En intervertissant les rôles de C et C* on obtient encore 
 

*inf*inf CCCPCP
PP

−−−≥−
∈∈ KK

 

 
La combinaison de ces deux inégalités donne 
 

*inf*inf*inf CCCPCPCCCP
PPP

−+−≤−≤−−−
∈∈∈ KKK

 

 
soit, après changement de signe du tout, 
 

)2(*inf*inf*inf CCCPCPCCCP
PPP

−+−−≤−≤−−−−
∈∈∈ KKK

                      

 
 
 c) En additionnant les relations (1) et (2), on obtient 
 

*2),enc(*),enc(*2),enc( CCCCCCC −+≤≤−− KKK  
 

Ainsi, la valeur d’encadrement de K,  enc(K,C), considérée comme fonction du centre C, est 
non seulement continue, mais encore lipschitzenne, la constante de Lipschitz valant 2. On sait 
que les fonctions lipschitziennes admettent presque partout des dérivées bornées. 
 
 
 3. Borne inférieure de la valeur d’encadrement ; notion de 
meilleur centre 
 
 Comme de toute évidence, 
 

CPCP
PP

−≥−
∈∈ KK

infsup  

 
il est clair que la valeur d’encadrement vérifie toujours 
 

0),enc( ≥CK  
 

La nullité de la valeur d’encadrement ne se produit que si le point C est le centre d’un cercle 
passant par tous les points de K, ce qui suppose en particulier que ceux-ci forment un cercle 
parfait. Dans le cadre d’une mesure des erreurs de circularité, ce cas doit évidemment être 
considéré comme exceptionnel. Dans tous les cas intéressants, on a  
 

0),enc(inf
20 >=

∈
C

C
KE

R
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La question qui se pose alors est de savoir si cette borne est atteinte, c’est-à-dire s’il existe un 
point C0 de coordonnées finies tel que  
 

00 ),enc( EK =C  
 

Si tel est le cas, nous qualifierons C0 de meilleur centre de l’ensemble K et la valeur E0 sera 
appelée défaut de circularité de l’ensemble K et notée def(K) : 
 

( )0,enc)def( CKK =  
 

Remarque – L’existence d’un meilleur centre n’implique pas son unicité ! Cette dernière ne 
pourra être prouvée que plus loin, sur base des propriétés des meilleurs centres (section 7). 

 
 

 4. Existence d’un meilleur centre 
 
 4.1 – Valeur d’encadrement pour un centre situé à l’infini 
 
 Considérons pour commencer un centre C∞(e) situé à l’infini sur un axe quelconque de 
vecteur unitaire e. Si z est une coordonnée décrivant cet axe, soit z1 la plus petite valeur de 
cette coordonnée atteinte dans K et soit z2 la plus grande. Il est clair que 
 

( )( ) 12,enc zzK −=∞ eC  
 

c’est-à-dire la valeur d’encadrement de K par des droites perpendiculaires à l’axe des z. La 
plus petite valeur possible d’un tel encadrement, lorsque l’on fait varier la direction de l’axe e 
s’identifie au défaut de rectitude de l’ensemble K : 
 

( ) ( )KK rect
1

def)(,encmin =∞
=

eC
e

 

 
(Il s’agit bien d’un minimum parce que la fonction valeur d’encadrement en rectitude est 
continue sur l’ensemble de variation de e, c’est-à-dire la boule unité, qui est compacte.)  
 
 Ceci posé, nous sommes en mesure d’établir le théorème d’existence d’un meilleur 
centre. 
 
 
 4.2 – Théorème d’existence d’un meilleur centre 
 
 Supposons qu’il existe un centre C1 non situé à l’infini tel que  
 

( ) )(defK,enc rect1 K<C  
 

Alors, il existe un meilleur centre. 
 
 Démonstration – Posons 
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),enc()(def 1rect CKK −=μ  
 

Traçons par C1 une droite quelconque et notons ξ les coordonnées prises sur cette droite avec 
C1 comme origine et  η les coordonnées perpendiculaires à cette droite, avec la même origine. 
Le sens de l’axe des η est sans importance. Soient dans ce système d’axes ( ) ( )2211 ,et    , ηξηξ  
les points réalisant 
 

  maxet           min 21 ξξξξ
KK

==  

 
Soit alors un centre C situé sur la droite en question, à une coordonnée  
 

2
2

2
22 ηξρξ +=>= l  

 
Le point de K le plus proche de C est à une distance de ce centre  
 

( ) 2
2

2
22 ηξ +−=≤ lrrm  

 
Le point de K le plus distant de C est à une distance de celui-ci égale à  
 

( ) 2
1

2
11 ηξ +−=≥ lrrM  

 
On a donc  
 

21),enc( rrK −≥C  
 

Or, 
 

( ) ( ) ( )
( ) ( )
( ) ( ) ( )22

2
2

2
2
2

2
2

2
2

2
2

2
2

2
2
2

2
222

ξ
η

ξηξ

ξηξ

ξηξξ

−−
=

−++−

−−+−
=

−−+−=−−

lll

ll

lll

r

r

 

 
et de même, 
 

( ) ( )11

2
1

11 ξ
η

ξ
−−

=−−
l

l
r

r  

 
On a donc 
 

( ) ( ) ( ) ( )22

2
2

11

2
1

2121 ξ
η

ξ
η

ξξ
−−

−
−−

+−−−=−
ll

ll
rr

rr  

 
ce qui entraîne 
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( )22

2
2

1221 ξ
η

ξξ
−+

−−≥−
lr

rr  

 
Notant à présent que 
 

2
2

2
222 ηξρη +=≤  

 
et que 
 

( ) ( ) ( )2222 22 ρξξ −≥−≥−+ lllr  
 

on obtient 
 

( ) ( )2

2
2

rect
2

2
2

1221 2
)(def

2 ρ
ρ

ρ
ρ

ξξ
−

−≥
−

−−≥−
ll

Krr  

 
et le dernier membre de cette inégalité est supérieur à 
 

( )
2

defrect
μ

−K  

 
chaque fois que 
 

( ) 22 2

2
2 μ
ρ

ρ
≤

−l
 

 
ce qui a lieu pour  
 

μ
ρ

ρ
2
2

2 +≥l  

 
On constate donc que, quelle que soit la direction choisie, pour 
 

21
MM ρ

μ
ρ +≥l  

 
où 
 

),(max 1 PC
P

d
K

M
∈

=ρ  

 
On a  
 

( ) ( )
2

def,enc rect1
η

−≥ KK C  
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En d’autres termes, pour tout centre C hors de la boule fermée B de centre C1 et de rayon 
21
MM ρ

μ
ρ + , on a  

 

( ) ( )
2

def,enc rect
μ

−≥ KK C  

 
Cette boule étant compacte, la fonction continue enc(K,C) y réalise sa borne inférieure en un 
point C*. Alors, 
 

( ) μ−=≤ KKK rect1 def),enc(*),enc( CC  
 

ce qui signifie que la valeur d’encadrement de K par rapport au centre C* est inférieure à 
toutes celles que donnent des points du complémentaire de la boule B. Dès lors, C* est bien 
un meilleur centre.  
 
  
 4.3 – Un cas de non-vérification de la condition précédente 
 
 Imaginons un système de points répartis exactement sur une ellipse assez aplatie de 
demi-axes a et b, a>b, ces axes étant supposés réalisés par des points de K (fig. 1). On a alors 
 

 
 
 
( ) bK 2defrect =  
 

On imagine a priori que le meilleur centre devrait être le centre de l’ellipse. Le défaut de 
circularité serait alors a-b. En fait, on trouve un meilleur centre à l’infini dès que  
 

bab −<2  
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soit pour 
 

ba 3>  
 

résultat assez paradoxal, mais bien conforme à nos définitions. 
 
 
  
 
4.4 – Cas des arcs de cercle 
 
 On se rend aisément compte que la condition  
 

( ) ( )1rect K,encdef C>K  
 

peut n’être jamais vérifiée dans le cas d’arcs de cercles imparfaits de faible angle au centre, 
car on peut être en présence de points presque alignés (fig. 2). 
 

 
 
5. Meilleur cercle uniforme 
 
 5.1 – Écarts 
 
 K étant toujours un ensemble fini de points représentant un cercle imparfait, donnons-
nous un cercle de centre C = (a, b) et  de rayon ρ. A chaque point Pi = (xi ,yi) de K, associons 
le nombre 
 

( ) ρρ −= CC ii re ),(  
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où 
 

( ) ( ) ( )22 byaxr iii −+−=C  
 

ei(C,ρ) sera appelé écart du point Pi par rapport au cercle de centre C et de rayon ρ. Nous 
nous intéresserons à l’écart (absolu) maximum défini par 
 

( ) ),(esup,e ρρ CC i
i

M =  

 
 5.2 – Meilleur cercle uniforme 
 
 Nous dirons que le cercle de centre C0 et de rayon ρ0 réalise la meilleure 
approximation uniforme de K si 
 

( ) ),(einf,e
,

00 2
ρρ

ρ
CC

C
M

RR
M

+∈∈
=  

 
pour autant, bien entendu, qu’il existe. 
 
 
 5.3 – Relation avec le défaut de circularité 
 
 On notera que  
 

( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=− CCC i

i
i

i
i

i
rrr inf,supsup)(sup ρρρ  

 
Utilisant la formule classique 
 

BABABA −++=
2
1)(

2
1),sup(  

 
on obtient  
 

( ) ( ) ( ) ( ) ρρ 2infsup
2
1infsup

2
1)(sup −++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=− CCCCC i

i
i

i
i

i
i

i
i

i
rrrrr  

 
soit 
 

( ) ( ) ( ) ( ) ρρ 2infsup
2
1,enc

2
1,e −++= CCCC i

i
i

i
M rrK  

 
Pour C donné, on remarque que le dernier terme est toujours non négatif et qu’il admet un 
minimum – en l’occurrence 0 – pour 
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( ) ( ) ( )CCC *infsup
2
1 ρρ =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+= i

i
i

i
rr  

 
Pour cette valeur de ρ, on a 
 

( ) ),enc(
2
1,inf*),( CCC Kee M

R
M ==

+∈
ρρ

ρ
 

Il en découle que 
 

)def(
2
1),enc(inf

2
1),(einf

22 ,
KK

R
M

RR
==

∈∈∈ +

CC
CC

ρ
ρ

 

 
 

En d’autres termes, le cercle réalisant la meilleure approximation uniforme de K a pour 
centre le meilleur centre de K et pour rayon  
 

( ) ( )⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= 000 infsup

2
1 CC i

i
i

i
rrρ  

 
De plus, 
 

)def(
2
1),(ee 000 KM == ρC  

 
Il y a donc identité entre les deux problèmes. L’intérêt de cette propriété est que l’on ramène 
le problème du calcul du défaut à un problème d’approximation, ce qui est plus classique. 
Cependant, il s’agit d’une approximation uniforme, bien plus compliquée que, par exemple, 
une approximation aux moindres carrés. 
 
 
 6. Caractérisation des meilleurs cercles 
 
 6.1 – Un rappel géométrique 
 
 Nous commencerons par un lemme évident : Deux cercles qui ont en commun trois 
points non alignés sont confondus 
 
 Ce lemme n’a rien de nouveau, car il revient à dire que le cercle circonscrit à un 
triangle est unique. 
 
 6.2 – Un premier théorème 
 
 Voici un théorème calqué sur celui que  Charles de la Vallée-Poussin a établi pour les 
approximations uniformes polynomiales [2] : 
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 Soit un cercle de centre C et de rayon ρ tel qu’il existe dans K quatre points d’azimuts 
θ1 < θ2 < θ3 < θ4 pour lesquels les écarts  ρ−= )(Cii re vérifient 
 

( )( ) cteei
i =−1sign  
 

(ce qui revient à dire qu’ils sont alternés). Alors, 
 

)def(
2
1min

4,...,1
KDei

i
=≤=

=
μ  

 
 En effet, supposons le contraire, c’est-à-dire que les quatre écarts sont, en valeur 
absolue, strictement supérieurs à D. Quitte à modifier l’origine des azimuts, on peut supposer 
que le premier a un écart relatif positif. Posons 
 

0>−= Dμε  
 

Un cercle de meilleure approximation uniforme doit passer à une distance du point 1 
inférieure ou égale à D, donc entrer dans la boule de rayon D  centrée au point 1, ou lui être 
tangent (fig. 3). 
 

 
 
 Or, tout point de cette boule est à une distance de C supérieure à  
 

ερρ +≥−+ De1  
 

De la même façon, ce cercle doit passer en un point de la boule fermée de rayon def(K) 
centrée au point 2, soit à une distance de C au plus égale à 
 

ερρ −≤+− De2  
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On raisonne de même au point 3 et au point 4, ce qui mène à la constatation que le meilleur 
cercle, passant sur un tour quatre fois de l’extérieur à l’intérieur du cercle (C,ρ), doit le couper 
en quatre points. Mais alors, ces deux cercles sont confondus en vertu du lemme ci-dessus. 
Or, ceci est impossible, car cela implique que tous les écarts sont inférieurs en valeur absolue 
à D, contrairement à l’hypothèse. 
 
 
 6.3 – Condition suffisante pour qu’un cercle soit meilleur cercle 
uniforme pour K 
 
 On déduit aisément du résultat précédent une condition suffisante pour qu’un cercle 
soit meilleure approximation uniforme : 
 
 Pour qu’un cercle (C,ρ) soit un meilleur cercle uniforme pour K, il suffit qu’en quatre 
points d’azimuts θ1< θ 2 <θ 3 <θ4 on ait  
 

( ) ( ) 1                , )(max1 ±=−−=−= λρλρ CC rre
K

i
ii  

 
En effet, on a alors  
 

)def(
2
1)(maxmin

4,...,1
KDre

K
i

i
=≥−=

=
ρC  

 
puisque (C,ρ) est a priori un cercle quelconque. Mais par le théorème précédent, 
 

Dei
i

≤
= 4,...,1
min  

 
si bien que 
 

DeD i
i

≤≤
= 4,...,1
min  

 
 
 6.4 – Variation des azimuts lors d’une perturbation du centre 
 
 Il est naturel de se demander si la condition ci-dessus est également nécessaire. Mais 
pour répondre à cette question, nous aurons besoin d’un certain nombre de résultats 
techniques. En particulier, la façon dont varient les azimuts lors d’un changement de centre 
pourrait changer leur ordre. A ce sujet, on peut établir le résultat suivant : 
 
 Soit C un centre tel que les azimuts des points de K puissent être strictement ordonnés. 
Alors il existe un rayon η>0 tel que cet ordre strict reste inchangé pour tout centre distant de 
C de moins de η.  
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Prenons conventionnellement C comme origine. Soient alors P1 et P2 deux points d’azimuts 
consécutifs. Pour qu’il y ait changement de l’ordre de ces deux azimuts, il faut que les angles 
les angles CPP 121 =α   et CPP 212 =α  vérifient 
 

( ) πθθπαα =−−=+ 1221  

 
ce qui a lieu ssi le nouveau centre se trouve sur la droite portant P1 et P2, segment P1P2 exclu 
(fig. 4). Pour cela, il faudra que le centre se déplace d’une distance au moins égale à la hauteur 
h du triangle CP1P2.  

 
 
Si S est l’aire de ce triangle, cette hauteur est donnée par 
 

12

2
l

Sh =  

 
où ℓ12 représente la distance de P1 à P2. Or, en notant 12 θθθ −=Δ  , 
 

2
cos

2
sin2sin2 2121

θθθ ΔΔ
=Δ= rrrrS  

 
Par ailleurs, on a   
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( )

( )

( )

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

Δ
−

+
Δ

=

Δ
+−=

Δ−+−+=

Δ−+=

2
sin4

11
2

sin4

2
sin4

cos122

cos2

2
21

2
212

21

2
21

2
21

1121
2
2

2
1

21
2
2

2
1

2
12

θ
θ

θ
θ

θ

rr

rrrr

rrrr

rrrrrr

rrrrl

 

 
Ces calculs sont évidemment valables pour tout couple de points consécutifs de numéros k et 
(k+1). Posons donc 
 

2
sin

sup
2
1

1

1
θΔ

−
=

+

+

kk

kk

k rr

rr
L  

 
Ce nombre mesure la vitesse de variation relative du rayon en fonction de l’azimut. On a alors 
 

2
2112 1

2
sin2 Lrr +

Δ
≤

θ
l  

 
 et, en conséquence, en utilisant les symboles M et m pour indiquer les maxima et les minima 
respectivement, 
 

( )
η

θθ

=
+

Δ

≥
+

Δ

≥
2221

1
2

cos

1
2

cos

L
r

L
rrh

M

m  

 
Cette distance est nulle si πθ =Δ M)(  ou 0=mr , mais cela sont des cas vraiment extrêmes. 
L’exemple qui suit est un cas de variation forte du rayon et de grande différence d’azimuts : 
 

2
)(,2, 1212

πθθθ =Δ=−== Mmm rrrr  

 
Il vient 

mmm

m

m

rrr

L

r

r
L

63,0
5
2

2
5

2
2

2
51

2
1

2
22

2
1

2

≈==

=+

==

η
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ce qui reste considérable. A l’inverse, pour  de très petites variations d’angle, on a 
 

θ
η

Δ
Δ

≈
+

≈
m

m
r

rL
L

r
,

1 2
 

 

soit  par exemple, pour   
10
1

=
Δ

mr
r (c’est déjà une grosse variation) et 

100
1

300
≈=Δ

πθ (ce qui 

correspond à 600 points par tour, nombre appréciable). Il vient 
 

5251
,5 mm rr

L ≈
+

≈≈ η  

 
ce qui reste très acceptable. En pratique, les variations relatives de rayon sont bien inférieures 
au dixième. 

 
 
 

 
 

 6.5 – Variation des rayons lors d’une perturbation du centre 
 
 Examinons à présent comment varient les rayons lors d’une petite perturbation du 
centre. On établit aisément le résultat suivant : 
 
 6.5.1 – Majoration - Soit ri la distance du point Pi au centre C. Pour une perturbation 
ΔC = (Δa, Δb) de ce dernier, la nouvelle distance )( CCP Δ+−=∗

iir  vérifie 
 

22 barr ii Δ+Δ=Δ≤−∗ C  

 
 En effet, on a  
 

CCCCPCCCPCP

CCCPCCP

Δ+=Δ+Δ−−≤Δ+Δ−−=−=

Δ+=Δ+−≤Δ−−=

∗

∗

iiiii

iiii

rr

et
rr

 

 
 On peut préciser la variation des rayons : 
 
 6.5.2 – Partie principale de la variation des rayons 
 
 Dans les mêmes conditions, si θi est l’azimut du point Pi , on a  
 

iiiii barr εθθ +Δ−Δ−=−∗ sincos  
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avec 
 

C centre le pour minimalrayonr
r

ba

r
by

r
ax

m
m

i

i

i
i

i

i
i

=
Δ+Δ

≤

−
=

−
=

,2

,sin,cos

22
ε

θθ

 

 
 Calculons en effet 
 

( ) ( )
( ) ( ) ( ) ( )

( ) 222

2222

222

sincos2

22

babarr

babbyaaxbyax

bbyaaxr

iiii

iiii

iii

Δ+Δ+Δ+Δ−=

Δ+Δ+Δ−−Δ−−−+−=

Δ−−+Δ−−=∗

θθ

 

 
On a donc 
 

( ) 2222 sincos2 babarrr iiiii Δ+Δ+Δ+Δ−=−∗ θθ  
 

Divisons par ( )ii rr +∗ . Il vient 
 

( )
ii

ii
ii

i
ii

rr
baba

rr

r
rr

+

Δ+Δ
+Δ+Δ

+
−=−

∗∗
∗

22
sincos2 θθ  

 
Notant que 
 

( ) ( )iiiii rrrrr −−+= ∗*2  
 

on obtient 
 

( ) ( )

( ) iii

ii
ii

ii

ii
iiii

ba
rr
baba

rr

rr
barr

εθθ

θθθθ

+Δ+Δ−=
+

Δ+Δ
+Δ+Δ

+

−
+Δ+Δ−=−

∗

∗
∗

sincos

sincossincos *

22

 

 
avec  
 

( )
ii

ii
ii

ii
i

rr
baba

rr

rr

+

Δ+Δ
+Δ+Δ

+

−
=

∗∗

∗ 22
sincos θθε  

 
Il ne reste plus qu’à prouver la majoration de ce reste. Cela résulte des inégalités suivantes : 
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0car             

sincossincos

dessus)-ci(voir      

222222

22

≥≥≥+

Δ+Δ=+Δ+Δ≤Δ+Δ

Δ+Δ≤−

∗∗

∗

imiii

iiii

ii

rrrrr

bababa

barr

θθθθ  

 
 

Notons le corollaire suivant :  
 
 Soient Δa et Δb suffisamment petits et tels qu’en un point Pi , 0sincos ≠Δ+Δ ii ba θθ . 
Alors, Δri a le signe de ( )ii ba θθ sincos Δ−Δ− . 
 
 En effet, en posant 
 

22

sincos

ba

ba ii
i

Δ+Δ

Δ+Δ
=

θθ
γ  

 
nombre qui dépend de la direction du vecteur (Δa, Δb) mais non de sa norme, on a  
 

iii bar εγ +Δ+Δ−=Δ 22  
 

avec 
 

( )
m

i r
ba 222 Δ+Δ

≤ε  

 
Il en résulte que le signe de Δri sera certainement celui de ( )ii ba θθ sincos Δ−Δ−  si 
 

2
22 mrba γ<Δ+Δ  

 
 
 

 6.6 – Partie principale de la variation d’un écart lorsque l’on modifie 
à la fois le centre et le rayon du cercle 
 
 L’écart d’un point Pi par rapport à un cercle de centre C = (a, b) et de rayon ρ est 
donné par 
 

ρ−= )(Cii re  
 

Pour une petite modification (Δa, Δb) du centre et une modification Δρ du rayon, l’écart 
devient 
 

 iiii eere δρρ +≈Δ−−= ∗∗  
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en notant  
 

ρθθδ Δ−Δ−Δ−= iii bae sincos  
 

Il est classique d’écrire une fonction du type 
 

( ) ρθθθ Δ−Δ−Δ−= sincosf ba  
 

sous la forme équivalente 
 

( ) ( ) BA −−= φθθ cosf  
 

Comme  
 

( ) φθφθφθ sinsincoscoscos +=−  
 

la correspondance des deux expressions est donnée par les relations 
 

BAbAa =Δ−=Δ−=Δ ρφφ ,sin,cos  
 

L’inversion de ces relations n’est cependant pas univoque. On a de toute manière  
 

A
b

A
a Δ

−=
Δ

−= φφ sin,cos  

 
mais la solution générale pour A est 
 

22 baA Δ+Δ±=  
 

Au choix du signe positif correspond l’angle += φφ où la fonction f(θ) atteint son maximum ; 

au choix du signe négatif, l’angle )2(mod ππφφ += +−  où la fonction atteint son 
minimum. Il s’agit évidemment de deux représentations de la même fonction : seul le point de 
vue change, c’est-à-dire que l’on choisira A positif ou négatif selon qu’on s’intéresse surtout 
au voisinage du maximum ou à celui du minimum. 
 
 On remarquera que si A et φ  sont donnés, et si l’on se donne un angle arbitraire 

] [πψ ,0∈ ,  il est possible de choisir B de telle façon que la fonction f s’annule à la fois en 
( )ψφ +  et en ( )ψφ − . Il suffit pour cela de poser ψcosAB = . Dans ce cas, la fonction f aura 
en φθ =  le signe de A. En d’autres termes, il est toujours possible de choisir les paramètres 
A et B de telle façon que la fonction f ait en φθ =  un signe donné préalablement et qu’elle 
s’annule en deux azimuts symétriques par rapport à φ , disons, ψφ ± . 
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 6.7 – Condition nécessaire d’optimalité dans le cas non dégénéré 
 
 Nous commencerons par n’envisager que le cas non dégénéré, c’est-à-dire où deux 
points différents de K ont des azimuts différents. On peut énoncer le théorème suivant : 
 
 Soit (C,ρ) un cercle de meilleure approximation uniforme. On suppose que les azimuts 
peuvent être strictement ordonnés par rapport à son centre. Alors, il existe quatre azimuts 

4321 θθθθ <<<  tels que les écarts ( ) ρθ −= ii re correspondants soient égaux à 
,,,, DDDD −−  où MeD ±=   

 
Démonstration   
 
 I – Il existe au moins un écart égal à eM et un écart égal à (-eM), par construction du 
rayon moyen ρ. 
 
 II – Supposons qu’il n’y ait que deux écarts extrémaux, soit, pour fixer les idées, 

2211 en  et  en  θθ MM eeee −==  (ce n’est pas une restriction, car on peut modifier l’origine 
des azimuts pour se ramener à ce cas). Posant alors 
 

petitet   0,),2,inf(
2
1, 21121 >−=−+−== εεθπθθθψθφ A  

 
la perturbation 
 

( ) ( ) ψφθθδ coscose AA −−=  
 

est négative en θ1 et positive en θ2 : elle diminue le maximum et augmente le minimum. Donc 
le cercle que l’on croyait optimal peut être amélioré. 
 
 III – Supposons à présent qu’il existe trois écarts extrémaux. En changeant 
éventuellement l’origine des azimuts, on peut supposer que les deux premiers écarts 
extrémaux aient le même signe. Alors, en choisissant  
 

( ) 33123
21  que signe même de  ,2,inf

2
1,

2
eAθπθθθψ

θθ
φ −+−=

+
=  

 
on définit comme ci-dessus une perturbation réduisant les écarts extrémaux positifs et 
augmentant les écarts extrémaux négatifs, c’est-à-dire que l’on améliore le cercle. 
 
 IV – Supposons qu’il y ait quatre extrema, mais qu’ils ne se succèdent pas selon le 
schéma (D,-D,D,-D). Après un changement éventuel de l’origine des azimuts, on se ramène 
toujours à un des cas suivants : 
 
 A – (D,D,-D,-D) 
 B – (D,D,D,-D) 
 
 Dans le cas A, on peut améliorer le cercle par une perturbation du type suivant : 
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( ) 34123
21  que signe même de ,2,inf

2
1,

2
eAθπθθθψ

θθ
φ −+−=

+
=  

 
Dans le cas B, on pourra poser 
 

( ) 141344  que signe même de ,2,inf
2
1, eAθπθθθψθφ −+−==  

 
 V – On constate donc que pour que le cercle ne puisse être amélioré, il faut que les 
écarts extrémaux soient tels que pour les raboter tous, il faille une perturbation passant plus de 
deux fois par zéro, ce qui n’est possible que si l’on rencontre la succession (D,-D,D,-D). 
 
 
 6.8 – Les cas de dégénérescence 
 
 Levons à présent les cas de dégénérescence, c’est-à-dire où deux extrema opposés 
correspondent au même azimut.  
 
 a) Considérons d’abord le cas où il y a deux écarts extrémaux pour le centre C, 
correspondant aux points P1 et P2 de K situés sur le même azimut. Pour fixer les idées, nous 
poserons mM rr == 21 et    CPCP . Dans ce cas, déplaçons le centre d’une petite distance ℓ, 
dans une direction e faisant un angle φ avec CP1 . On obtient ainsi un nouveau centre C*. 
Tant que ce nouveau centre se trouve (fig. 5) à gauche de la médiatrice du segment P2 P1, la 
distance r1* de ce nouveau centre à P1 reste supérieure à son homologue r2* et, par l’inégalité 
triangulaire, 
 

)(22121 mM rrrrr −+=+< ∗∗∗ PP  
 

soit 
 

mM rrrr −<− ∗∗
21  

 
On constate que la différence entre le rayon maximum et le rayon minimum a diminué. 
 

 
 
 
 b) Envisageons alors le cas où il existe à la fois un maximum et un minimum en θ12 , 
correspondant aux deux rayons extrémaux r1 = rM et r2 = rm, un deuxième maximum r3 = rM 
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en θ3  et un minimum r4 = rm  en θ4 . On peut, sans nuire à la généralité, poser 012 =θ . Nous 
poserons aussi, pour fixer les idées, 43 θθ <  (dans le cas contraire, il suffit de compter les 
angles dans le sens inverse). On a donc 
 

mM rrrrrr ==== 4231 ,  
 

Translatons le centre d’une petite distance ℓ dans une direction faisant avec l’axe des 
abscisses un angle φ, comme dans la section a ci-dessus.  
 

 
 
Comme le montre la figure 6, les nouveaux rayons sont donnés par  
 

( )
( )ϕθ

ϕθ

ϕ

ϕ

−−+=

−−+=

−+=

−+=

∗

∗

∗

∗

4
222

4

3
222

3

222
2

222
1

cos2

cos2

cos2

cos2

ll

ll

ll

ll

mm

MM

mm

MM

rrr

rrr

rrr

rrr

 

 
On a donc 
 

( )[ ]ϕϕθ coscos2 3
2

3
2

1 −−=− ∗∗ lMrrr  
 

ce qui, en utilisant la formule générale de factorisation 
 

2
sin

2
sin2coscos bababa −+

−=−  

 
se ramène à  
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⎟
⎠

⎞
⎜
⎝

⎛ −−=− ∗∗ ϕ
θθ
2

sin
2

sin4 332
3

2
1 lMrrr  

 

On remarquera que π
θ

<<
2

0 3 , ce qui implique que le sinus de cet angle est positif. Dès lors, 

r1* sera supérieur à r3* si  
 

0
2

sin 3 >⎟
⎠

⎞
⎜
⎝

⎛ −
θ

ϕ                                                               * 

 
De la même façon, on a  
 

⎟
⎠
⎞

⎜
⎝
⎛ −=− ∗∗ ϕ
θθ
2

sin
2

sin4 442
2

2
4 lmrrr  

 
ce qui implique que r4* sera supérieur à r2* si 
 

0
2

sin 4 <⎟
⎠
⎞

⎜
⎝
⎛ −

θ
ϕ                                                       ** 

 

Il suffit donc de choisir une valeur de φ comprise entre 
2

et      
2

43 θθ
, par exemple, 

 

4
43 θθ

ϕ
+

=  

 
pour que les deux inégalités * et ** soient vérifiées simultanément. Mais alors, 
 

∗∗∗∗ <<< 1342 rrrr  
 

et le défaut par rapport au nouveau centre est donné par 
 

mM rrrr −<− ∗
2

*
1  

 
c’est-à-dire que le nouveau centre est meilleur que le précédent, qui n’était donc pas optimal. 

 
 
 c) Il reste à envisager le cas où deux azimuts portent chacun un maximum et un 
minimum du rayon. Alors (fig. 7), en progressant le long de la bissectrice du petit angle entre 
les deux directions, on diminue les écarts. Le cercle n’est donc pas non plus optimal. 
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 d) On exclut enfin le cas où un rayon porte par exemple deux minima, qui n’existe que 
si deux points sont confondus. 
 
 Ainsi, nous avons démontré le théorème suivant : 
 
 Tout cercle de meilleure approximation uniforme donne lieu à quatre extrema de 
l’écart, à des azimuts différents, et alternés.  
 
 
 7. Unicité du meilleur centre 
 
 Nous supposerons toujours que les conditions sont remplies pour qu’il existe au moins 
un meilleur centre. Pour prouver son unicité, nous aurons besoin du résultat technique 
suivant : 
 
 7.1 – Lemme 
 Soient quatre points P1, P2, P3, P4 tels que les vecteurs P1P3 et P2P4 ne soient pas 
multiples l’un de l’autre. Il n’existe qu’un point C tel que 
 

CPCPCPCP −=−−=− 4231 et            
 

 En effet, en notant ( ) ( )bayx iii ,et    , == CP , les relations 
 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )⎪⎩

⎪
⎨
⎧

−+−=−+−
−+−=−+−

2
4

2
4

2
2

2
2

2
3

2
3

2
1

2
1

byaxbyax
byaxayax  

 
se réduisent à  
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( ) ( )
( ) ( )⎪⎩

⎪
⎨
⎧

−+−=−+−
−+−=−+−

2
2

2
4

2
2

2
42424

2
1

2
3

2
1

2
31313

22
22

yyxxbyyaxx
yyxxbyyaxx  

 
et ce système linéaire en a et b est régulier si 4231 et  PPPP  ne sont pas multiples l’un de 
l’autre. 
 
 Nous pouvons à présent démontrer le théorème suivant : 
 
 7.2 – Théorème d’unicité du meilleur cercle uniforme 
 
 Le meilleur cercle uniforme, s’il existe, est unique. 
 
 Supposons en effet qu’il existe deux meilleurs cercles uniformes ( ) ( )2211 ,et  , ρρ CC . 

Considérons le cercle de centre ( ) ( ).
2
1rayon  deet  

2
1

213213 ρρρ +=+= CCC . Quel que soit 

le point Pi de K, on a  
 

Dj
j

j
j

ii

ii

ii

=−−+−−≤

−−+−−≤

+
−−+−≤

+
−

+
−=−−

2211

2211

21
21

2121
33

sup
2
1sup

2
1

2
1

2
1

22
1

2
1

22

ρρ

ρρ

ρρ

ρρ
ρ

CPCP

CPCP

CPCP

CC
PCP

 

 
Ceci étant vrai pour n’importe quel point de K, on a encore 
 

Di
i

≤−− 3sup ρCP  

 
Or, le premier membre de cette relation est a priori supérieur ou égal à D, ce qui implique 

 
Di

i
=−− 3sup ρCP  

 
Le cercle ( )33,ρC est donc également un meilleur cercle. Dès lors, il existe quatre points 
extrémaux Pik, k = 1,..,4 où 
 

221133 2
1

2
1 ρρρ −−+−−≤−−= CPCPCP ikikikD  

 
Comme les cercles 1 et 2 sont des meilleurs cercles, les deux termes du second membre sont 
inférieurs ou égaux à def(K)/2. Or, ceci n’est possible que si 
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DD ikik =−−=−− 2211 et           ρρ CPCP  

 
On constate donc que les points extrémaux du cercle 3 le sont aussi pour les cercles 1 et 2. 
Cela implique  
 

⎩
⎨
⎧

−=−−=−
−=−−=−

24222321

14121311
et          
et          

CPCPCPCP
CPCPCPCP

iiii

iiii  

 
Par le lemme ci-dessus, ces relations entraînent C1 = C2 et 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+−== 1121 infsup

2
1 CPCP i

i
i

i
ρρ  

 
Les deux meilleurs cercles sont donc confondus. 
 
 Remarque : Cette démonstration est inspirée de celle qui permet de montrer l’unicité 
de la meilleure approximation dans un espace de Banach à norme stricte [2,3]. Ici, cette 
dernière condition est remplacée par l’existence des quatre points extrémaux alternés.  
 
 
 8. Une méthode directe d’obtention du meilleur centre 
 
 Le théorème de la section 6.2 conduit à la méthode de recherche suivante : pour quatre 
points 4321 ,,, iiii PPPP de K, d’azimuts croissants 4321 ,,, iiii θθθθ , définissons le centre 
Ci1,i2,i3,i4 tel que 
 

4,3,2,144,3,2,124,3,2,134,3,2,11 et          iiiiiiiiiiiiiiiiiiii CPCPCPCP −=−−=−  
 

Ce cercle est unique, en vertu du lemme de la section 7.1. Alors, il suffit de poser 
 

4,3,2,124,3,2,11 2
1

2
1

iiiiiiiiii CPCP −+−=ρ  

 
pour se trouver dans les conditions du théorème de la section 6.2, et en posant 
 

4,3,2,124,3,2,114,3,2,1 iiiiiiiiiiiiii CPCP −−−=μ  

 
on a  
 

)(def4,3,2,1 Kiiii ≤μ  
 

Or, il existe un quadruplet ( )∗∗∗∗
4321 ,,, iiii  tel que 
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( )Kiiii def*4*,3*,2*,1 =μ  
 

Donc, 
 

4,3,2,1
4,3,2,1

sup)def( iiii
iiii

K μ=  

 
Il suffit donc de balayer tous les quadruplets ( )4,3,2,1 iiii  et de trouver celui qui donne la plus 
grande valeur de 4,3,2,1 iiiiμ . Il s’agit d’une méthode directe, car elle donne la solution en un 
nombre fini d’opérations. Cependant, ce nombre est O(n4) où n est le nombre de points de K, 
ce qui signifie que cette méthode est fort lente si le nombre de points est élevé.  
 
 
 9. Exercice 
 
 Etant donné trois points numérotés 1, 2 et 3, déterminer le centre du cercle passant 
par ces points. 
 
 Suggestion -  Soient a et b les coordonnées de ce centre, et soit R le rayon du cercle. 
Chacun des points 1, 2 et 3 vérifie l’équation 
 

( ) ( ) 2222222 22 babyaxyxbyaxR iiiiii ++−−+=−+−=  
 
qui s’écrit encore 
 

22222 Rbayxbyax iiii −+++=+  
 

Soustrayons l’équation du point 1 de celle du point 2, puis de celle du point 3. On obtient les 
deux équations linéaires 
 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )⎪⎩

⎪
⎨
⎧

+−+=−+−
+−+=−+−

2
1

2
1

2
3

2
31313

2
1

2
1

2
2

2
21212

yxyxbyyaxx
yxyxbyyaxx  

 
qui est régulier pour autant que les points 1, 2 et 3 ne soient pas alignés.  
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