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THEORIE DE L’ERREUR DE CIRCULARITE

1. Définitions
Soit K un ensemble fini de points P; = (x;,y;) de R’. Soit encore C = (a, b) un point

quelconque du méme plan. Nous appellerons valeur d’encadrement de K de centre C la
grandeur

enc(K,C) = sup [P -C| - inf [P-C]
Pek Pek

2. Continuité de la valeur d’encadrement

Il est assez facile de montrer que la valeur d’encadrement dépend continiment du
point C. En effet,

a) On a pour tout point P de K

[P-c*|=|(P-C)+(C-C*)]<[P-C]+[c-C¥|< S Q-cl+|e-c
€

et cette derniére borne est indépendante de P. Par conséquent,

sup [P -C*| < sup|[P-C|+[|C-C*
PekK PeK

En intervertissant les roles de C et de C*, on obtient

sup [P-C| < sup [P-C*|+|C-C*
PeK PeK

Il résulte de ces deux inégalités que

sup [P - C|[-[C—C*| < sup [P -C*|< sup [P C|-|C-CH (M)
Pek PekK PekK
b) Puisque

[P-cH<P-c|+|c-c
on a, pour tout point P de K,

P=Cl>|P-c¥|-fc-c> inf Jo-C-Jc-c|
ek



et cette borne est indépendante du point P considéré. D¢s lors,

int -l jnt P -C-Jc-C
PeK PeK

En intervertissant les roles de C et C* on obtient encore

inf [|P—C*| > inf [P-C|-|C-CH¥|
PeK PeK

La combinaison de ces deux inégalités donne

inf [|P-C|-|C-C* < inf [P—C* < inf [P-C|+|C-C*|
PeK PeK PeK

soit, aprés changement de signe du tout,

— inf [P—C|-||C-C* < inf [P-C*|< - inf [P-C|+|C—-CH¥| (2)
Pek PeK Pek

¢) En additionnant les relations (1) et (2), on obtient
enc(K,C)—2||C—C*| < enc(K,C*) < enc(K,C)+2|C - C*|

Ainsi, la valeur d’encadrement de K, enc(K,C), considérée comme fonction du centre C, est
non seulement continue, mais encore /ipschitzenne, la constante de Lipschitz valant 2. On sait
que les fonctions lipschitziennes admettent presque partout des dérivées bornées.

3. Borne inférieure de la valeur d’encadrement ; notion de
meilleur centre

Comme de toute évidence,

sup [P—C||> inf [P-C]
K

PeK Pe

il est clair que la valeur d’encadrement vérifie toujours
enc(K,C)>0

La nullité de la valeur d’encadrement ne se produit que si le point C est le centre d’un cercle
passant par tous les points de K, ce qui suppose en particulier que ceux-ci forment un cercle
parfait. Dans le cadre d’une mesure des erreurs de circularité, ce cas doit évidemment étre
considéré comme exceptionnel. Dans tous les cas intéressants, on a

Ey = inf enc(K,C)>0
CeR?



La question qui se pose alors est de savoir si cette borne est atteinte, ¢’est-a-dire s’il existe un
point Cy de coordonnées finies tel que

enc(K,Cy) = E

Si tel est le cas, nous qualifierons Cy de meilleur centre de I’ensemble K et la valeur E, sera
appelée défaut de circularité de ’ensemble K et notée def(K) :

def(K) = enc(K,C)

Remarque — L’ existence d’un meilleur centre n’implique pas son unicité ! Cette derniére ne
pourra étre prouvée que plus loin, sur base des propriétés des meilleurs centres (section 7).

4. Existence d’un meilleur centre

4.1 — Valeur d’encadrement pour un centre situé a I’infini

Considérons pour commencer un centre C.(€) situé a I’infini sur un axe quelconque de
vecteur unitaire €. Si z est une coordonnée décrivant cet axe, soit z; la plus petite valeur de
cette coordonnée atteinte dans K et soit z; la plus grande. Il est clair que

enc(K,C(e))=z, — 7
c’est-a-dire la valeur d’encadrement de K par des droites perpendiculaires a 1’axe des z. La
plus petite valeur possible d’un tel encadrement, lorsque 1’on fait varier la direction de 1’axe e

s’identifie au défaut de rectitude de ’ensemble K :

ﬁin enc(K,C, (€)= def et (K)
e|=1

(Il s’agit bien d’un minimum parce que la fonction valeur d’encadrement en rectitude est
continue sur I’ensemble de variation de €, c’est-a-dire la boule unité, qui est compacte.)

Ceci posé€, nous sommes en mesure d’établir le théoréme d’existence d’un meilleur
centre.

4.2 — Théoreme d’existence d’un meilleur centre
Supposons qu’il existe un centre C non situé a l’infini tel que
enc(K,C) < def e (K)

Alors, il existe un meilleur centre.

Démonstration — Posons



p = defe (K) —enc(K,Cy)
Tragons par C; une droite quelconque et notons ¢ les coordonnées prises sur cette droite avec

C, comme origine et # les coordonnées perpendiculaires a cette droite, avec la méme origine.
Le sens de I’axe des 7 est sans importance. Soient dans ce systeme d’axes (51 ,771) et (52 ,772)

les points réalisant

& =miné et &) =max$
K K

Soit alors un centre C situé sur la droite en question, a une coordonnée

2 2
c=1L>py =13 +1m)
Le point de K le plus proche de C est a une distance de ce centre
2 2
rm <y =\(0=&)" +n3

Le point de K le plus distant de C est a une distance de celui-ci égale a

v o2H =\/(€—§1)2 +nf

On a donc
enc(K,C)2n —n
Or,
r—(0=&)=\(-&) +n7 -(t-&)
_ (=&)Y +m-(-&) _ n3
(-&2f4nd+(t-g) n-%)
et de méme,
2
(1— &)= m
n ( fl) rl_(g_fl)
On a donc
2 2
n-r=0-&)-(-&)+—1 -1

n-(-&) n-0-%&)

ce qui entraine



2

Hompy 2 &y — & — 2
1= 2626 P

Notant a présent que

m < P2 =\/§22+7722
et que
m+(l=&)=20-&)=2(-py)

on obtient

2
P2
n=r 252—51—2(5_

p2)

et le dernier membre de cette inégalité est supérieur a

2
> defyect (K) — ﬁ
defiect (K ) - g

chaque fois que
ce qui a lieu pour

On constate donc que, quelle que soit la direction choisie, pour
I 2
2 py + ;PM

ou

Py = maxd(Cy,P)
PeK
On a

enc(K,C;)> def ey (K)—g



En d’autres termes, pour tout centre C hors de la boule fermée B de centre C; et de rayon

1 -
Ppm +T— Py s0na
7,

enc(K,C)> def,o( (K)- g

Cette boule étant compacte, la fonction continue enc(K,C) y réalise sa borne inférieure en un
point C*. Alors,

enc(K,C*) <enc(K,Cy) =def o (K)— Y7

ce qui signifie que la valeur d’encadrement de K par rapport au centre C* est inférieure a
toutes celles que donnent des points du complémentaire de la boule B. Dés lors, C* est bien
un meilleur centre.

4.3 — Un cas de non-vérification de la condition précédente

Imaginons un systéme de points répartis exactement sur une ellipse assez aplatie de
demi-axes a et b, a>b, ces axes étant supposés réalisé€s par des points de K (fig. 1). On a alors

defree (K) =25

On imagine a priori que le meilleur centre devrait étre le centre de I’ellipse. Le défaut de
circularité serait alors a-b. En fait, on trouve un meilleur centre a 1’infini dés que

2b<a-b



soit pour
a>3b

résultat assez paradoxal, mais bien conforme a nos définitions.

4.4 — Cas des arcs de cercle
On se rend aisément compte que la condition

defe (K ) > enc(K,Cy )

peut n’étre jamais vérifiée dans le cas d’arcs de cercles imparfaits de faible angle au centre,
car on peut étre en présence de points presque alignés (fig. 2).

recfr tude

—

-~ |
x\d

Fig.2

5. Meilleur cercle uniforme
5.1 — Ecarts
K étant toujours un ensemble fini de points représentant un cercle imparfait, donnons-

nous un cercle de centre C = (a, b) et de rayon p. A chaque point P; = (x;,y;) de K, associons
le nombre

¢(C,p)=r;(C)-p



ou

(€)= (s - a) +(; ~b)

ei(C,p) sera appelé écart du point P; par rapport au cercle de centre C et de rayon p. Nous
nous intéresserons a I’écart (absolu) maximum défini par

e (C.p)=suple;(C, p)

1
5.2 — Meilleur cercle uniforme

Nous dirons que le cercle de centre Cy et de rayon po réalise la meilleure
approximation uniforme de K si

em(Co.pp)= inf ey (C.p)
CeR”, peR,

pour autant, bien entendu, qu’il existe.

5.3 — Relation avec le défaut de circularité

On notera que

sup|r; (C) ~ p| = sup{[su_p r(C)- p} (P —inf; (C)ﬂ

i i 1

Utilisant la formule classique
1 1
sup(4,B) =—(A+ B)+—|A- B
2 2
on obtient

supr;(C)+inf 7;(C)~2p
/ l

1

1 ) 1
sup|rl- (O p| = 5[sup v (C)— 1nf v (C)J + E
i ' i

1

soit

eM(C,p):%enc(K,C)+%

sup7;(C)+ inf r; (C)-2p
1 1

1

Pour C donné, on remarque que le dernier terme est toujours non négatif et qu’il admet un
minimum — en 1’occurrence 0 — pour

10



1

p=1[wwniC)rintn(@)] - (@
/ 1
Pour cette valeur de p, on a

ey (C,p*)= inf eM(C,p):lenc(K,C)
PER, 2

I1 en découle que

inf ey (Cop)= 1 inf enc(K,C) = ldef(K)
CeRz, PER, 2 cer? 2

En d’autres termes, le cercle réalisant la meilleure approximation uniforme de K a pour
centre le meilleur centre de K et pour rayon

=3[ swnCa) it

1

De plus,

1
eg =epy (Cp,p0) = Edef(K)

Il y a donc identité entre les deux problémes. L’ intérét de cette propriété est que 1’on ramene
le probléme du calcul du défaut a un probléme d’approximation, ce qui est plus classique.
Cependant, il s’agit d’une approximation uniforme, bien plus compliquée que, par exemple,
une approximation aux moindres carrés.

6. Caractérisation des meilleurs cercles

6.1 — Un rappel géometrique

Nous commencerons par un lemme évident : Deux cercles qui ont en commun trois
points non alignés sont confondus

Ce lemme n’a rien de nouveau, car il revient a dire que le cercle circonscrit a un
triangle est unique.

6.2 — Un premier théeoreme

Voici un théoréme calqué sur celui que Charles de la Vallée-Poussin a établi pour les
approximations uniformes polynomiales [2] :

11



Soit un cercle de centre C et de rayon p tel qu’il existe dans K quatre points d’azimuts
0, < 0, < 03 < O4pour lesquels les écarts e; =r;(C)— p vérifient

sign((— l)i e; )= cte

(ce qui revient a dire qu’ils sont alternés). Alors,

= min || <D= ldef(K)
4 2

i=l,...,

En effet, supposons le contraire, c’est-a-dire que les quatre écarts sont, en valeur
absolue, strictement supérieurs a D. Quitte a modifier ’origine des azimuts, on peut supposer
que le premier a un écart relatif positif. Posons

e=u—-D>0

Un cercle de meilleure approximation uniforme doit passer a une distance du point 1
inférieure ou égale a D, donc entrer dans la boule de rayon D centrée au point 1, ou lui étre

tangent (fig. 3).

D=def(KI

Fig.3

Or, tout point de cette boule est a une distance de C supérieure a
pte—D=zp+e¢

De la méme fagon, ce cercle doit passer en un point de la boule fermée de rayon def(K)
centrée au point 2, soit a une distance de C au plus égale a

p—|e2|+DSp—£

12



On raisonne de méme au point 3 et au point 4, ce qui meéne a la constatation que le meilleur
cercle, passant sur un tour quatre fois de I’extérieur a I’intérieur du cercle (C,p), doit le couper
en quatre points. Mais alors, ces deux cercles sont confondus en vertu du lemme ci-dessus.
Or, ceci est impossible, car cela implique que tous les écarts sont inférieurs en valeur absolue
a D, contrairement a I’hypothése.

6.3 — Condition suffisante pour qu’un cercle soit meilleur cercle
uniforme pour K

On déduit aisément du résultat précédent une condition suffisante pour qu’un cercle
soit meilleure approximation uniforme :

Pour qu’un cercle (C,p) soit un meilleur cercle uniforme pour K, il suffit qu’en quatre
points d’azimuts 6,< 0 , <60 3 <04 on ait

e; =7(C)-p=A(- l)i max|r(C) -Pl A==1
K

En effet, on a alors

min |el~| = max|r(C) — p| >D= ldef(K)
4 K 2

i=l,...,
puisque (C,p) est a priori un cercle quelconque. Mais par le théoréme précédent,

min |€i| <D
i=l,...,4

si bien que
D < min |€i| <D

i=l...,4

6.4 — Variation des azimuts lors d’une perturbation du centre

Il est naturel de se demander si la condition ci-dessus est également nécessaire. Mais
pour répondre a cette question, nous aurons besoin d’un certain nombre de résultats
techniques. En particulier, la fagon dont varient les azimuts lors d’un changement de centre
pourrait changer leur ordre. A ce sujet, on peut établir le résultat suivant :

Soit C un centre tel que les azimuts des points de K puissent étre strictement ordonnés.

Alors il existe un rayon n>0 tel que cet ordre strict reste inchangé pour tout centre distant de
C de moins de 7.

13



Prenons conventionnellement C comme origine. Soient alors P; et P, deux points d’azimuts
consécutifs. Pour qu’il y ait changement de I’ordre de ces deux azimuts, il faut que les angles
les angles o) = P,P|C et a, =PP,C vérifient

o1+ 0oy =7Z'—(02 —01)272'

ce qui a lieu ssi le nouveau centre se trouve sur la droite portant P, et P,, segment P,P, exclu
(fig. 4). Pour cela, il faudra que le centre se déplace d’une distance au moins égale a la hauteur
h du triangle CP,P».

Fig. 4

Si S est I’aire de ce triangle, cette hauteur est donnée par

_2s

h=
C12
ou ¢y, représente la distance de P; a P,. Or, en notant A@ =6, -6, ,

28 =nrysinAfd =2nnr sin%ecos%e

Par ailleurs, on a

14



E%Z = 7”12 +I"22 —2]"17"2 cosAf
= r12 +r22 — 211y + 217 (1= cos AB)

= (I"l ) )2 + 4]"17"2 Sil’l2 A—H

2
= 47’1]’2 Sil’l2 ATQ 1+1M

nr sinzA—H
172 2

Ces calculs sont évidemment valables pour tout couple de points consécutifs de numéros & et
(k+1). Posons donc

I lsup 1 =7l

2 — . A@
k Vel 41 sm7

Ce nombre mesure la vitesse de variation relative du rayon en fonction de [’azimut. On a alors
. AO |
612 <2 nn»n SIHT 1+L2

et, en conséquence, en utilisant les symboles M et m pour indiquer les maxima et les minima
respectivement,

cos A0 cos (AQ)M

Z 4NN

B> 2 5, 2 _
\/1+L2 " \/1+L2 !

Cette distance est nulle si (A8),, =7 ou r, =0, mais cela sont des cas vraiment extrémes.
L’exemple qui suit est un cas de variation forte du rayon et de grande différence d’azimuts :

P =l 11 =2Iy, 0 -0 =(A0)y =%
Il vient

1 T 1

L=——" _

2 ﬁJQEZE

T'm

V1412 =§

= rm\/% ~ 0,637,

ol

15



ce qui reste considérable. A I’inverse, pour de trés petites variations d’angle, on a

T Ar

~

= ,1+L2’ ~rmAl9

. Ar 1 , L . T 1 )
soit par exemple, pour — = — (c’est déja une grosse variation) et A =——= —(ce qui
T 300 100

correspond a 600 points par tour, nombre appréciable). Il vient

7, 7,
L=5, ~ m ~

V1425 5

ce qui reste trés acceptable. En pratique, les variations relatives de rayon sont bien inférieures
au dixiéme.

6.5 — Variation des rayons lors d’une perturbation du centre

Examinons a présent comment varient les rayons lors d’une petite perturbation du
centre. On établit aisément le résultat suivant :

6.5.1 — Majoration - Soit r; la distance du point P; au centre C. Pour une perturbation
AC = (Aa, Ab) de ce dernier, la nouvelle distance ’”i* = ||Pl~ -(C+ AC)” vérifie

<|ac]=vaa® +ab

*
l"l' —l"l'

En effet, on a

i =[Pi —C—AC| < |[P; - C|+ |AC] = 7; +[AC]

et

1 =|Pi = C| =[P ~C-AC+AC| < [P; -C - AC| +[AC| = 17" +]AC]
On peut préciser la variation des rayons :
6.5.2 — Partie principale de la variation des rayons
Dans les mémes conditions, si 0; est I’azimut du point P;, on a

*

r; —r; =—Aacost; —Absinb; + ¢;

16



avec

xX;—a . —b
cosf; =—+—, sin@; = Jit2
r; r;
Aa? + Ab? .
|<9i| <2—, ¥y = rayon minimal pour le centre C
rm

Calculons en effet

i = —a=aa) +(y; ~b-Ab)
= (x; —a)2 +(y; —b)2 ~2(x; —a)Aa—2(y; —b)Ab+Aa2 + Ab?
= rl-z ~2r,(Aacos@; + Absin 6; )+ Aa® + Ab?
On a donc
72 —rl-z = —2r;(Aacos; + Absin 6; ) + Aa? + Ab?

1

Divisons par (”i* +7; ) I1 vient

2 2
v; . Aa” +Ab
=1, =—2—"—(Aacosb +Absm¢9i)+a—
* *
i 1 i 1
Notant que
* *
27"1':7'1'4‘7"1' -V  n
on obtient
* 2 2
. o h . Aa“ + Ab
1" —r; =—(Aacos@; + Absin 6; )+ ~—L(Aacos 6, +Absm¢9-)+a—
i i i i « i i *
T T i T
= —(Aacos; + Absin6; )+ &;
avec
* 2 2
v . Aa“ +Ab
& =%(Aacos€i +Absm0i)+a*—
r; +Vl‘ r; +l"i

I1 ne reste plus qu’a prouver la majoration de ce reste. Cela résulte des inégalités suivantes :

17



<VAa? + Ab? (voir ci - dessus)

|AacosHi +Absin6’,~| < \/Aa2 +Ab? \/cos2 0; +sin? 0; = \/Aa2 +Ab?

*
I"l' —I"l'

% *
i i i m car r; >0

Notons le corollaire suivant :

Soient Aa et Ab suffisamment petits et tels qu’en un point P;, Aacos®; + Absin; # 0.
Alors, Ar; a le signe de (— Aacos8; — Absin6;).

En effet, en posant

_ Aacos6; + Absin 6;

Vi
\]Aaz +Ab2

nombre qui dépend de la direction du vecteur (Aa, Ab) mais non de sa norme, on a

Ar; == Aa® + Ab? y; + &

avee

! 2 2)

Tm

Il en résulte que le signe de Ar, sera certainement celui de (— Aacos8; — Absiné;) si

VAa? +Ab? < 7%“

6.6 — Partie principale de la variation d’un écart lorsque I’on modifie
a la fois le centre et le rayon du cercle

L’écart d’un point P; par rapport a un cercle de centre C = (a, b) et de rayon p est
donné par

¢ =r(C)-p

Pour une petite modification (Aa, Ab) du centre et une modification Ap du rayon, 1’écart
devient

% %
e =r —p—Apz€i+5€i

18



en notant

oe; =—Aacos@; —Absin0; — Ap
Il est classique d’écrire une fonction du type

f(0) = —Aacos @ — Absin 6 — Ap
sous la forme équivalente

f(0)= Acos(0 - ¢)- B
Comme
cos(@ - ¢) = cosfcos¢@ +sinfsin ¢
la correspondance des deux expressions est donnée par les relations
Aa =—-Acosg, Ab =—Asin g, Ap =B

L’inversion de ces relations n’est cependant pas univoque. On a de toute maniére

Aa ) Ab
cosgp=——, sing=——
¢ A ¢ A

mais la solution générale pour A4 est

+ Aa? + Ab?

A

Au choix du signe positif correspond ’angle ¢ = ¢ ou la fonction f(6) atteint son maximum ;

au choix du signe négatif, I’angle ¢~ =¢" +7 (mod27z) ou la fonction atteint son

minimum. 1l s’agit évidemment de deux représentations de /a méme fonction : seul le point de
vue change, c’est-a-dire que 1’on choisira 4 positif ou négatif selon qu’on s’intéresse surtout

au voisinage du maximum ou a celui du minimum.

On remarquera que si 4 et ¢ sont donnés, et si I’on se donne un angle arbitraire

V&S ]O,;z[, il est possible de choisir B de telle fagcon que la fonction f s’annule a la fois en

(¢ + l//) et en (¢ - l//). Il suffit pour cela de poser B = Acosy . Dans ce cas, la fonction f aura

en 6 =¢ le signe de A. En d’autres termes, i/ est toujours possible de choisir les paramétres

A et B de telle fagon que la fonction f ait en 6 = ¢ un signe donné préalablement et qu’elle

s ‘annule en deux azimuts symétriques par rapport a ¢, disons, p Ly .

19



4 7

6.7 — Condition nécessaire d’optimalité dans le cas non dégéenere

Nous commencerons par n’envisager que le cas non dégénéré, c’est-a-dire ou deux
points différents de K ont des azimuts différents. On peut énoncer le théoréme suivant :

Soit (C,p) un cercle de meilleure approximation uniforme. On suppose que les azimuts
peuvent étre strictement ordonnés par rapport a son centre. Alors, il existe quatre azimuts
0, <0, <0y <0, tels que les écarts e; =r(0;)— p correspondants soient égaux a

D,—D,D,—-D, ou D =tey,
Démonstration

I — Il existe au moins un écart égal a ey, et un écart égal a (-ey), par construction du
rayon moyen p.

Il — Supposons qu’il n’y ait que deux écarts extrémaux, soit, pour fixer les idées,
e| =ey enb) ete, =—ey, en @, (ce n’est pas une restriction, car on peut modifier 1’origine
des azimuts pour se ramener a ce cas). Posant alors

¢=0, w:%inf(92—91,91+27z—6’2), A=-¢, &>0 etpetit

la perturbation
5e(@)= Acos(@—p)— Acosy

est négative en 6, et positive en 6, : elle diminue le maximum et augmente le minimum. Donc
le cercle que 1’on croyait optimal peut €tre amélioré.

Il — Supposons a présent qu’il existe trois écarts extrémaux. En changeant
éventuellement ’origine des azimuts, on peut supposer que les deux premiers écarts
extrémaux aient le méme signe. Alors, en choisissant

_914—92

7=

, W= %jnf(ég -0,,0,+27—04 ), A de mémesigne que ey

on définit comme ci-dessus une perturbation réduisant les écarts extrémaux positifs et
augmentant les écarts extrémaux négatifs, c’est-a-dire que 1’on améliore le cercle.

IV — Supposons qu’il y ait quatre extrema, mais qu’ils ne se succeédent pas selon le
schéma (D,-D,D,-D). Aprés un changement éventuel de I’origine des azimuts, on se ramene

toujours a un des cas suivants :

A - (D,D,-D,-D)
B — (D,D,D,-D)

Dans le cas A, on peut améliorer le cercle par une perturbation du type suivant :

20



6, +0
¢:%, y/:%inf(¢93—02,01+27r—04), A de méme signe que e3

Dans le cas B, on pourra poser
$p=04, y-= %inf(64 — 65,6, +271—64),  Ademémesigne que ¢

V — On constate donc que pour que le cercle ne puisse étre amélioré, il faut que les
écarts extrémaux soient tels que pour les raboter tous, il faille une perturbation passant plus de
deux fois par z€ro, ce qui n’est possible que si 1’on rencontre la succession (D,-D,D,-D).

6.8 — Les cas de dégéneérescence

Levons a présent les cas de dégénérescence, c’est-a-dire ou deux extrema opposés
correspondent au méme azimut.

a) Considérons d’abord le cas ou il y a deux écarts extrémaux pour le centre C,
correspondant aux points P; et P, de K situés sur le méme azimut. Pour fixer les idées, nous

poserons ||CP1 || =ry et ||CP2 || =r,,. Dans ce cas, déplagons le centre d’une petite distance ¢,

dans une direction e faisant un angle ¢ avec CP; . On obtient ainsi un nouveau centre C*.
Tant que ce nouveau centre se trouve (fig. 5) a gauche de la médiatrice du segment P, Py, la
distance r;* de ce nouveau centre a P; reste supérieure a son homologue * et, par I’inégalité
triangulaire,

* * %
R <ry +|PPy| =1 +(ryy — 1)
soit
I"l* —1”2* <7"M — Iy

On constate que la différence entre le rayon maximum et le rayon minimum a diminué.

Frg.5

b) Envisageons alors le cas ou il existe a la fois un maximum et un minimum en 6, ,
correspondant aux deux rayons extrémaux r; = ry et r, = r,, un deuxiéme maximum r; = 7y
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en 6; et un minimum 74 =r, en 64 . On peut, sans nuire a la généralité, poser &), = 0. Nous
poserons aussi, pour fixer les idées, 83 < 8, (dans le cas contraire, il suffit de compter les
angles dans le sens inverse). On a donc

n=mn=ry, rn=ry=r,

Translatons le centre d’une petite distance ¢ dans une direction faisant avec 1’axe des
abscisses un angle ¢, comme dans la section a ci-dessus.

Fig. 6

Comme le montre la figure 6, les nouveaux rayons sont donnés par

rl*z = rA%[ +02 —2ryfcosg
r2*2 = r,% + 02 —2r,lcose

r3*2 = rAz/[ +02 - 2ryl 005(03 - (p)

2

= r,% +02 —2r,,0 cos(64 — )

On a donc

rl*z - r3*2 = 2ry,[cos(65 — @) — cos 9]

ce qui, en utilisant la formule générale de factorisation

. a+b .
cosa —cosh =—-2sin sin

2

se raméne a
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0 0
rl*z - r3*2 =—4ryl sin%sin(% - (pj

o C . .
On remarquera que 0 < 73 <, ce qui implique que le sinus de cet angle est positif. Dés lors,

) 05
sinfp——=1|>0 *

r1* sera supérieur a r3* si

De la méme fagon, on a
.04 . (6
rfz - rz*z =4r,,( s1n74$1n[74 - (pj

ce qui implique que 74* sera supérieur a 7,* si
, 0
s1n((p — 74 <0 ow

0
11 suffit donc de choisir une valeur de ¢ comprise entre 73 et 974, par exemple,

_93 +94
4

pour que les deux inégalités * et ** soient vérifiées simultanément. Mais alors,
* * 3k %
n <rp<mrn<n
et le défaut par rapport au nouveau centre est donné par
* *
n —nrn <rs-—r

c’est-a-dire que le nouveau centre est meilleur que le précédent, qui n’était donc pas optimal.

\

c) Il reste a envisager le cas ou deux azimuts portent chacun un maximum et un
minimum du rayon. Alors (fig. 7), en progressant le long de la bissectrice du petit angle entre
les deux directions, on diminue les écarts. Le cercle n’est donc pas non plus optimal.
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Fig. 7

d) On exclut enfin le cas ou un rayon porte par exemple deux minima, qui n’existe que
si deux points sont confondus.

Ainsi, nous avons démontré le théoréme suivant :

Tout cercle de meilleure approximation uniforme donne lieu a quatre extrema de
[’écart, a des azimuts différents, et alternés.

7. Unicité du meilleur centre

Nous supposerons toujours que les conditions sont remplies pour qu’il existe au moins
un meilleur centre. Pour prouver son unicité, nous aurons besoin du résultat technique
suivant :

7.1 - Lemme
Soient quatre points P, Py, P3, Py tels que les vecteurs P1P3 et P,P4 ne soient pas
multiples ['un de [’autre. 1l n’existe qu’'un point C tel que

[Pr=C|=[Ps =] et [P, ~C]=|Ps-C]

En effet, en notant P; = (x;,y;) et C =(a,b), les relations

{(aq —af +(n —a) = (x3-a)® +(v3 ~b)?

(v —a)* +(vy —b)* =(xg —a)” +(y4 - b)

se réduisent a
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{2(163 —xp)a+2(y3 —y )b =x3 —xf +y3 - i
2(xg —xp)a+2(vg —y2 )b =xF —x3 +yi - v3

et ce systéme linéaire en a et b est régulier si P;P; et PP, ne sont pas multiples I'un de
’autre.

Nous pouvons a présent démontrer le théoréme suivant :

7.2 — Théoreme d’unicité du meilleur cercle uniforme

Le meilleur cercle uniforme, s’il existe, est unique.

Supposons en effet qu’il existe deux meilleurs cercles uniformes (Cl, Yo )et (CZ, P2 )

Considérons le cercle de centre C5 = %(Cl +C, )etderayon p; = %(pl + P, ).. Quel que soit

le point P; de K, on a

el Al ._C1+Cz||_,01+/02|
H|Pl C3|| /03‘— Pl 5 ” ) |
1 1 pL+ P
< IPi =Cifl+ [P = Caf - 12 2

1 1
<5 lPi=Cil=p1[+5{Pi - C2l -2

1
<—=S

=3 upl[P; ‘Clu‘/’l‘%s‘%l’mpf ~Ca|-ps| =D
J J

Ceci étant vrai pour n’importe quel point de K, on a encore
sup‘”Pl- - C|| - ,03‘ <D
i
Or, le premier membre de cette relation est a priori supérieur ou égal a D, ce qui implique

sup|[P; ~Cf| - ps[ = D
]

Le cercle (Cs,p3)est donc également un meilleur cercle. Dés lors, il existe quatre points
extrémaux Py, £=1,...4 ou

D =[P ~Cs]- o3| < 5P ~Cil - o1+ S [P ~Cal -

Comme les cercles 1 et 2 sont des meilleurs cercles, les deux termes du second membre sont
inférieurs ou égaux a def(K)/2. Or, ceci n’est possible que si
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IPic=Cill=p[=D et [|Psc~Ca = ps| = D

On constate donc que les points extrémaux du cercle 3 le sont aussi pour les cercles 1 et 2.
Cela implique

{ [Pir =Cif =[Piz =Cif| et [Pi2 —Cy]|=[Pis = Ci
[Pi =Caf =[Pis =Ca| et [P —Caf =[Pis - Cs

Par le lemme ci-dessus, ces relations entrainent C, = C, et
1 )
1

Les deux meilleurs cercles sont donc confondus.

Remarque : Cette démonstration est inspirée de celle qui permet de montrer 1’unicité
de la meilleure approximation dans un espace de Banach a norme stricte [2,3]. Ici, cette
derniére condition est remplacée par I’existence des quatre points extrémaux alternés.

8. Une méthode directe d’obtention du meilleur centre

Le théoréme de la section 6.2 conduit a la méthode de recherche suivante : pour quatre
points P;;, P;p, Pi3, Pigde K, d’azimuts croissants 6;, 6,5, 6;3, 6,4, définissons le centre
Ciri2.iz.ia tel que

Hpil - Cil,i2,i3,i4” = ”PB - Cil,i2,i3,i4” et HPiZ - Cil,i2,i3,i4” = sz'4 - Cil,i2,i3,i4”
Ce cercle est unique, en vertu du lemme de la section 7.1. Alors, il suffit de poser
p= %Hpil - Cil,iZ,i3,i4H + %HPZ'Z - Cil,iZ,i3,i4H
pour se trouver dans les conditions du théoréme de la section 6.2, et en posant
Hil,i2,i3,i4 = mpil ~Civin,3,4 = [Piz - Cil,i2,i3,i4m

ona

Hi1,i2,3,i4 < def (K)

Or, il existe un quadruplet (11* Jin,03 ,iZ) tel que
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Hitx iox 3w g+ = def(K)
Donc,

def(K) = sup p1,2.13,i4
i1,i2,i3,i4

I1 suffit donc de balayer tous les quadruplets (il,i2,i3, i4) et de trouver celui qui donne la plus
grande valeur de 141 ;2 ;3 ;4 - 11 s’agit d’une méthode directe, car elle donne la solution en un

nombre fini d’opérations. Cependant, ce nombre est O(n*) ot # est le nombre de points de X,
ce qui signifie que cette méthode est fort lente si le nombre de points est €levé.

9. Exercice

Etant donné trois points numérotés 1, 2 et 3, déterminer le centre du cercle passant
par ces points.

Suggestion - Soient a et b les coordonnées de ce centre, et soit R le rayon du cercle.
Chacun des points 1, 2 et 3 vérifie I’équation

R? = (x; —a)z +(y; —b)z :xl-2 +y,~2 —2ax; —2by; +a® +b?
qui s’écrit encore
ax; +by; :xl-2 +yl-2 +a® +b% - R?

Soustrayons ’équation du point 1 de celle du point 2, puis de celle du point 3. On obtient les
deux équations linéaires

{<x2x1>a+<yzyl>b={ y}{y}

(x3—x)a+ (3 =y )b =3 + 33 )~ +21

qui est régulier pour autant que les points 1, 2 et 3 ne soient pas alignés.
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