


2<sup>nd</sup> International EuroConference on  
Computer and IT Applications in the Maritime Industries

# COMPIT'03

Hamburg, 14-17 May 2003

Volker Bertram (Ed.)



High-level Scientific  
Conferences



An event supported by the European Commission,  
Human Potential Programme, Contract HPCF-CT-2002-00291

We are grateful for the support of  
Blohm&Voss GmbH, DFG, Germanischer Lloyd and TUHH Technologie GmbH

# Least Cost Optimisation of a Medium Capacity Gas Carrier

Philippe Rigo, ANAST, University of Liege (NSFR), Liege/Belgium, [ph.rigo@ulg.ac.be](mailto:ph.rigo@ulg.ac.be)  
Catalin Toderan, ANAST, University of Liege, Liege/Belgium, [catalin.toderan@ulg.ac.be](mailto:catalin.toderan@ulg.ac.be)

## Abstract

*To be attractive for shipyards, scantling optimisation has to be performed at the preliminary design stage. It is indeed the most relevant period to assess the construction cost, to compare fabrication sequences and, to find the best frame/stiffener spacings and most suitable scantlings to minimize the production costs. The LBR5 package performs such early design least cost optimisation.*

*The software contains 3 modules. The "Cost Module" to assess the construction cost which is the objective function (least construction cost). The "Constraint Module" performs rational analyses of the considered structure, and the "Opti Module" contains the mathematical optimiser code.*

*This paper presents the optimisation of a medium capacity LNG ship designed by ALSTOM France (Chantiers de l'Atlantique). In addition to scantling optimisation, sensitivity analysis on frame/stiffener spacings are presented. This industrial optimisation example shows that 5 to 9% of the construction cost of the hull manufacturing can be saved by performing scantling optimisation at the preliminary design stage.*

## 1. Introduction

LBR5 is a rationally based optimisation module that, in the preliminary stage, allows for:

- a 3D analysis of the general behaviour of the structure (usually one cargo hold);
- to explicitly take into account all the relevant limit states of the structure (service limit states and ultimate limit states) thanks to a rational analysis of the structure based on the general solid-mechanics theory;
- an optimisation of the sizing/scantling (profile sizes, dimensions and spacing) of the structure's constituent elements;
- to include the unitary construction costs and the production sequences in the optimisation process (through a production-oriented cost objective function).

Design variables are the dimensions of the longitudinal and transversal members, plate thickness and spacing between members.

Extensive information on the proposed model is available in the literature: *Rigo (2001a and b), Rigo and Fleury (2001), Karr et al. (2002)*.

## 2. LBR5, a tool for least cost scantling optimisation

LBR5 is built around three basic modules, respectively, OPTI, CONSTRAINT and COST (Figure 1). The OPTI module contains the mathematical optimisation algorithm to solve non-linear constrained optimisation problems, *Fleury (1989), Rigo and Fleury (2001)*.

The CONSTRAINT module includes (1) technological constraints (or side constraints) that provide the upper and lower bounds of the design variables; (2) geometrical constraints that impose relationships between design variables in order to guarantee a functional, feasible and reliable structure. They are generally based on "good practice" rules to avoid local strength failures (web or flange buckling, stiffener tripping, etc.), or to guarantee welding quality and easy access to the welds; (3) structural constraints that represent limit states in order to avoid yielding, buckling, cracks, etc. and to limit deflection, stress, etc.

In the COST module the objective function is the construction cost that includes labour costs and material cost (*Rigo 2001b*).

Fig.1 shows the basic configuration of the LBR5 software with the 3 fundamental modules (COST, CONSTRAINT and OPTI). It describes the general organisation chart of a structure optimisation process and the LBR5 software chart.

With regard to structural constraints, the user must first choose the types of constraints (yielding, buckling, deflection, etc.) then, for each type of constraint, select the method, the code or the rules to use and finally the points/areas/panels where these constraints will be applied.

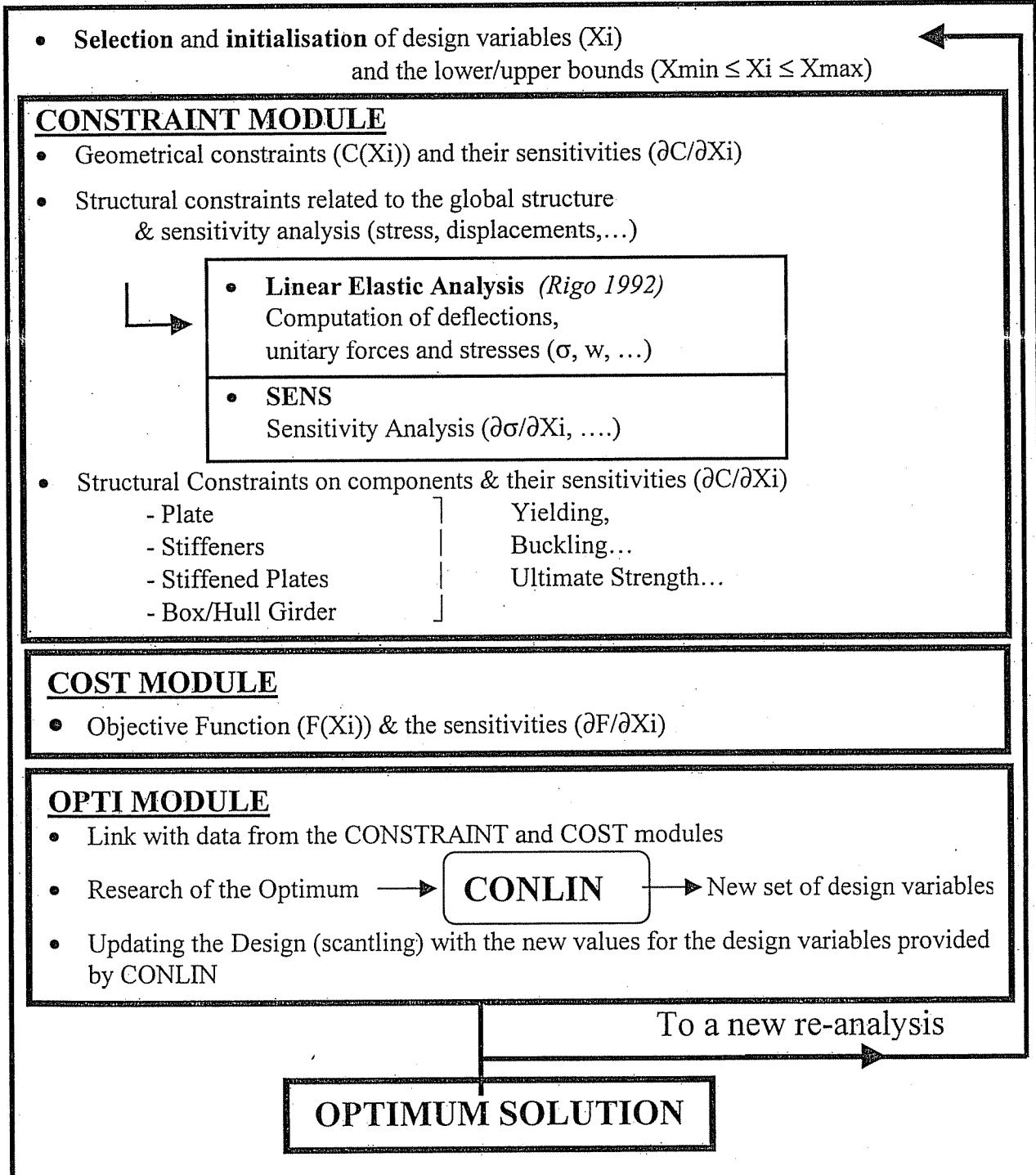



Fig.1: Chart of the LBR5 model with CONSTRAINT, COST and OPTI modules

LBR5 is also an efficient tool to assess and compare different alternatives. For instance Figure 2 gives the cost and the weight as functions of the web-frame spacing. Other major capability of the method is to quantitatively assess a change of the production technology on the construction cost. For instance, effect of an improved welding procedure (lower unitary welding cost) can be assessed by comparing the least cost optimum scantling obtained with and without the improvement.

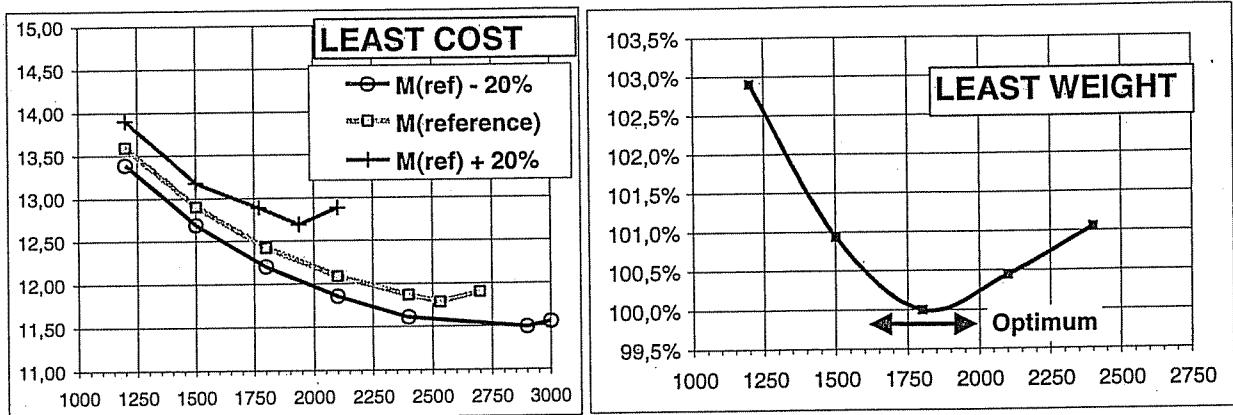
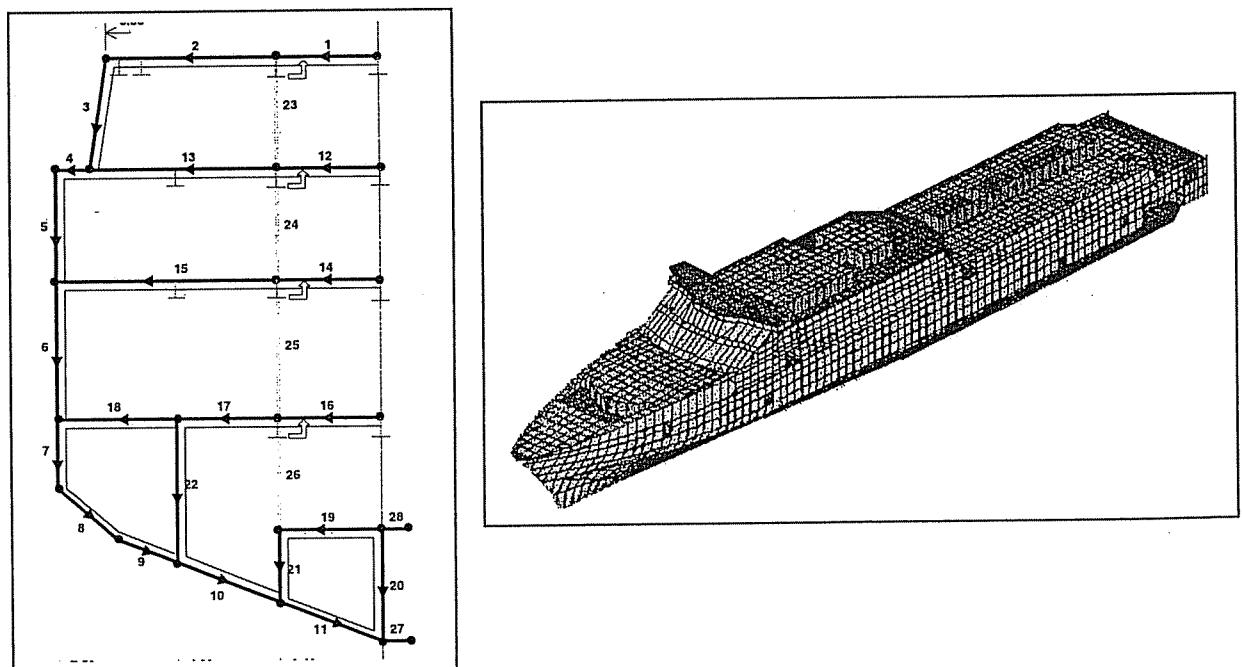
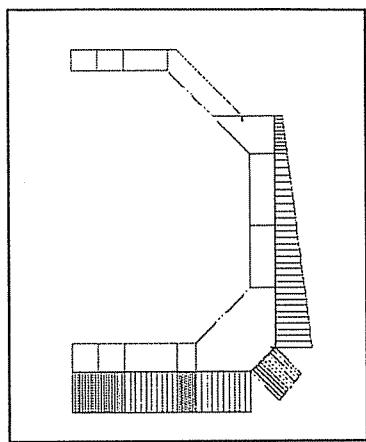
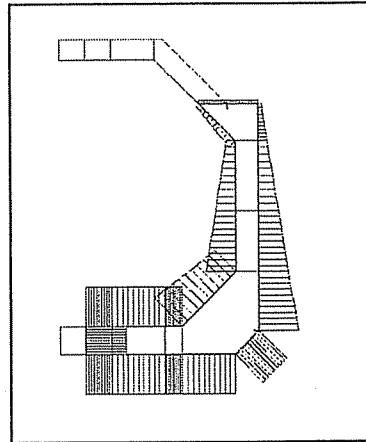


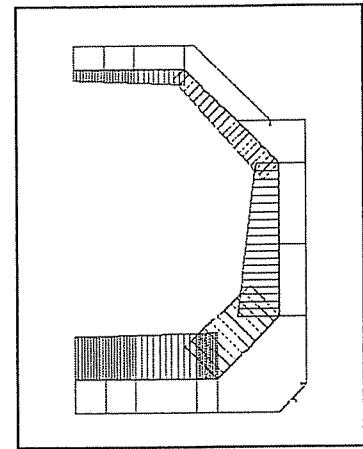

Fig.2: Sensitivity analysis: Cost and weight as a function of the web-frame spacing

Figure 3 (left) shows the simple and fast mesh modelling methodology used by the LBR5 software to optimise a fast ferry (right), which may latter be modelled using standard finite elements (for advanced analysis).



Fig.3: LBR5 Mesh model of a fast ferry (Principia Marine)

Principia Marine (France) and University of Liège have furthermore engaged in cooperation to jointly develop their software and integrate them as part of an early design suite (*Goubault et al. 2003*).


Figure 4 illustrates the use of AVPRO and LBR5 in early design. Although the level of precision of AVPRO is not as fine as those software, the ability of this software to handle all the tasks in one single environment provides this tool with a unique capability for early design. AVPRO is completed with LBR5 with regard to structural design. Further into the design phase the 3DPRO methodology



Sea Loads (BV's rules)



Internal pressure in BALLAST  
(BV's rules)



Dynamic Internal Pressure  
in GAS Tank (BV's rules)

Fig.7: Unitary Load Cases

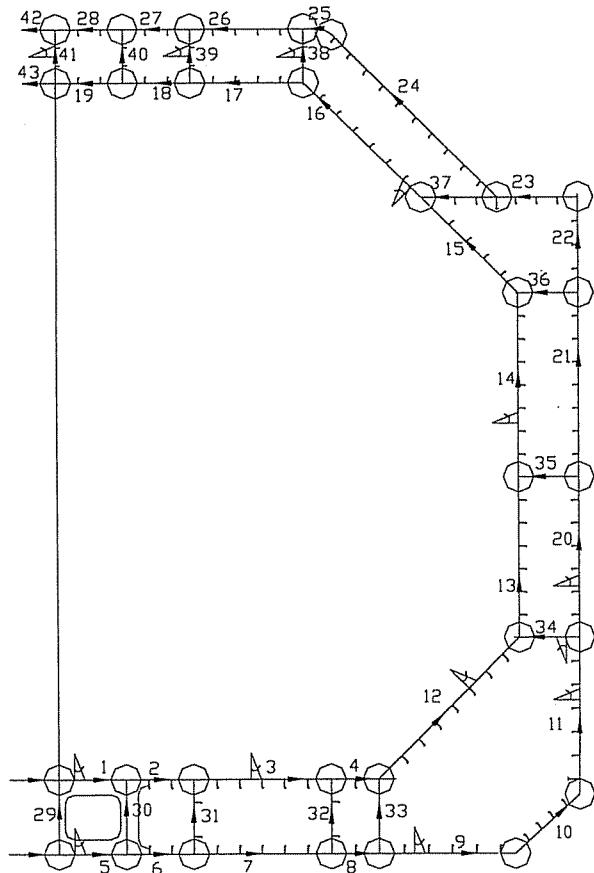



Fig.8: LBR5's Mesh Model  
of a Medium Capacity Gas Carrier

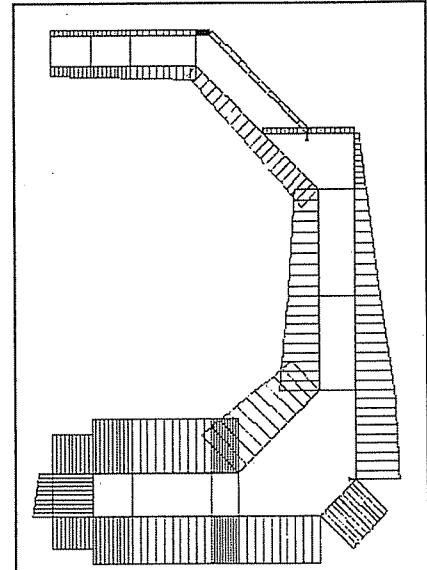
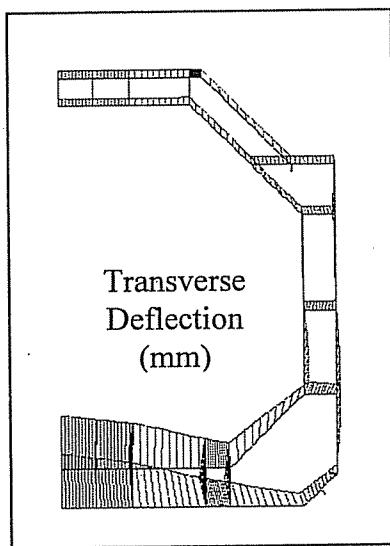
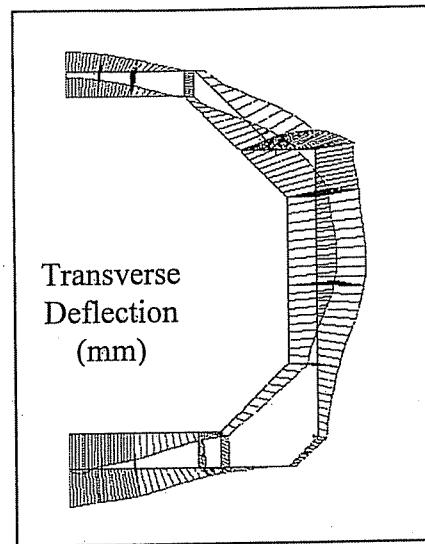
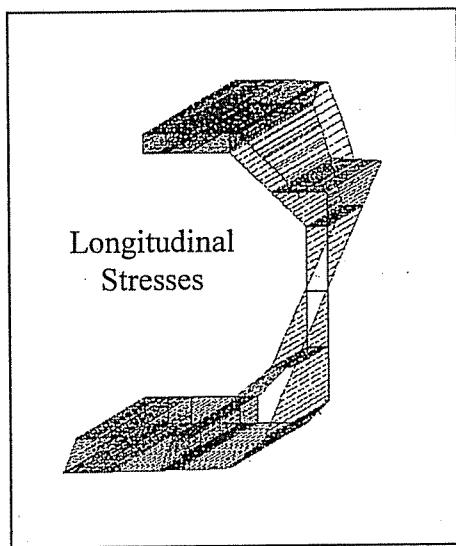
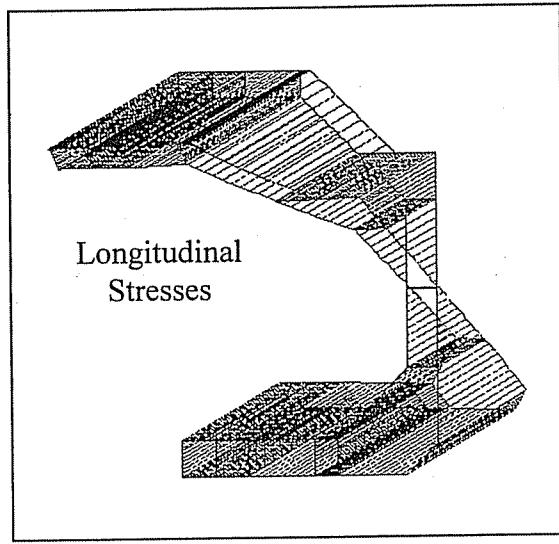





Fig.9: LBR5's Load Case 1:  
Maximum lateral pressure  
provided by MARS (BV)




Max. Bending of the double bottom  
Load Case 2




Max. Bending of the side tank  
Load Case 3

Fig.10a: LBR5's Load Cases 2 and 3:  
Maximum bending moments of the web-frames.



Hogging  
Load Case 4



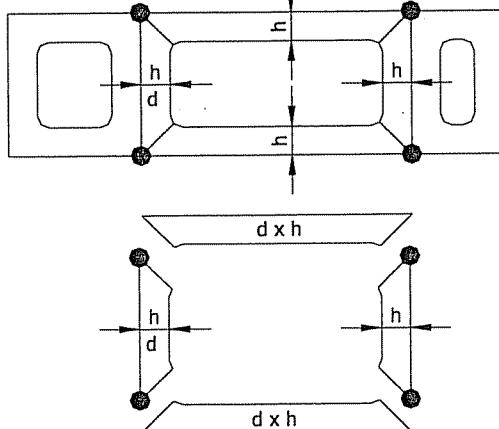
Sagging  
Load Case 5

Fig.10b: LBR5's Load Cases 4 and 5:  
Encountering Sea with Max. Hogging and Sagging Hull Girder Bending Moment

The mesh model of the medium capacity gas carrier (LNG) includes:

- 41 stiffened panels with 9 design variables each (some are not considered as variables);
- 4 additional panels to simulate the symmetry axis (boundary conditions);
- 278 design variables (on average 5 to 9 design variables per panel);

- 106 equality constraints between design variables are used, e.g., to impose uniform frame spacing for the deck, bottom and the side ballast tanks.
- 203 geometrical constraints (about 5 to 6 x 41 panels). For instance, longitudinal web heights are limited by such constraints to control the web slenderness.
- 1900 structural constraints (380 per load case):
  - $\sigma_c$  frame (web/plate junction – web/flange junction and flange),
  - $\sigma_c$  stiffener (web/plate – web/flange and flange) and  $\sigma_c$  plate, which verified that  $\sigma_c \leq s_1 \cdot \sigma_0$  (with  $s_1$  a partial safety factor and  $\sigma_0$  the yield stress);
  - local plate buckling:  $\delta_{MIN} \leq \delta$  (with  $\delta_{MIN}$  the minimum plate thickness to avoid buckling and yielding);
  - ultimate strength of stiffened panel:  $\sigma / \sigma_{ULT} \leq s_2$  with  $s_2$  a partial safety factor.


In addition side constraints are imposed on the design variables ( $X_{I_{MAX}}$ ,  $X_{I_{MIN}}$ ). For instance, the upper limit for the ( $\delta$ ) plate thickness is fixed at 25 mm. Other selected limits (side constraints) are:

|            |        |                        |        |         |
|------------|--------|------------------------|--------|---------|
| 2.00 m     | $\leq$ | $\Delta_{Frames}$      | $\leq$ | 4.00 m  |
| 0.50 m     | $\leq$ | $\Delta_{Stiffeners}$  | $\leq$ | 1.00 m  |
| 0.10 m     | $\leq$ | $h_{web \ stiffeners}$ | $\leq$ | 0.50 m  |
| 8.0 mm     | $\leq$ | Web-frames thickness   | $\leq$ | 25.0 mm |
| ..... etc. |        |                        |        |         |

Actual tanks composed of stiffened panels sharing an unique transverse web-frame ( $H, d$ ), (i.e. double bottom, double deck, side tanks)



Approximated modelling approach used by LBR-5



Tank modelled with 4 stiffened panels having independent frames ( $h, d$ ).

Fig.11: LBR5's Principle to Model a Double Sided Stiffened Tank

Figure 11 points out a major difficulty to use LBR5 for double hull ships. Being a principle of the method (Rigo 1989) each web-frame is attached to a unique panel and cannot be shared by all the constitutive panels of a double bottom (Figure 11). Thanks to ALSTOM support, a new methodology is under development to face this problem.

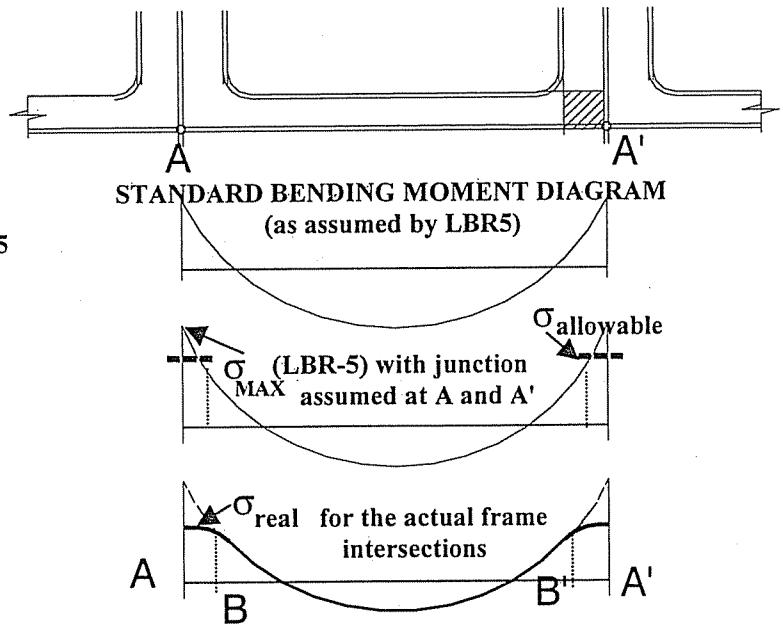



Fig.12:  
LBR5's stress distribution  
at the junction between framed panels.

Figure 12 explains another LBR5 assumption, that is, the junction between frames coincides with the panel's node (A or A') and not to B (or B'). This means that around the frame' junction, the stresses are overestimated. To fix this problem, two approaches may be used; (a) to consider in the constraints the stress at point B (B') instead of A (A'), (b) to consider points A and A' but to increase the allowable stress by a ratio  $(\sigma_A/\sigma_B)$  or  $(\sigma_{A'}/\sigma_{B'})$ .

### 3.1. How to Minimise the Construction Costs of the LNG Ship.

Tracks to reduce the construction cost of the medium capacity LNG ship are:

- To increase the web-frame spacing:
  - $(N_w - 2)$  web-frames instead of  $N_w$  web-frames → Cost saving: 4.85 %
  - $(N_w - 3)$  web-frames instead of  $N_w$  web-frames → Cost saving: 6.40 %
- To increase the stiffener spacing ( $\Delta_L$ ):
  - $1.09 \Delta_L$  instead of  $\Delta_L$  → Cost saving: 1.61 %
  - $1.15 \Delta_L$  instead of  $\Delta_L$  → Cost saving: 2.40 %
  - $1.28 \Delta_L$  instead of  $\Delta_L$  → Cost saving: 2.97 %

NB: *straightening cost are not considered.*

Note:  $N_w$  and  $\Delta_L$  refer to the initial design (before optimisation).  $N_w$  is the number of web-frames,  $\Delta_w$  the frame spacing and  $\Delta_L$  the average longitudinal stiffener spacing.

### 3.2. Steps of the LBR5 Optimisation Process

Aim of the LBR5 optimisation analysis is to provide a *least construction cost* and *feasible scantlings* of the 4 tanks. This optimisation is performed within a series of constraints. There are technological (minimum thickness, corrosion, etc.), geometrical (rule based) and structural constraints (rational based → direct calculation).

In principle, LBR5 directly provides the global optimum. In that case, it is not possible to assess the cost saving of each individual parameter like frame spacing, stiffener spacing, plate thickness, duct-keel layout, etc.

To assess these individual cost savings, the present optimisation was split in several sub-optimisations. So, starting from the Alstom's initial design, step by step, parameters are released and the layout modified (see Tables 1 to 3). Initially, the upper limit of each design variable is fixed at the Alstom's initial scantling value. Then, the upper limits of a group of design variables are released (typically starting with the frame spacing and stiffener spacing).

Main sub-optimisations are presented in Table 1. They are:

- Least cost optimisation (starting from the initial scantlings provided by ALSTOM, with fixed frame and stiffener spacings),
- Web-frame spacing ( $\Delta_w$ ) is released :  $N_w \rightarrow (N_w - 2)$  frames,
- When feasible, the stiffener spacing is released:  $1.15 \Delta_L$  and  $1.28 \Delta_L$  instead of  $\Delta_L$ ,
- General structural layout is modified,
- Spacing of secondary frames is modified (typically 2 or 3 secondary frames between web-frames are considered, that is, respectively,  $\Delta_C = \Delta_w/3$  and  $\Delta_w/4$ ),

Table 2 assesses the cost saving associated with each sub-optimisation and with the global optimisation (cumulated cost saving). It shows clearly that the way to reduce construction cost of the concerned LNG ship is to increase the web-frame spacing ( $N_w-3$ ) and to standardize the stiffener spacing at  $1.15 \Delta_L$  (in average). Such changes induce a cost saving of about 8.50% (material and labour costs).

Table 1: Steps of the Optimisation Process (with sub-optimisations)

|                                                                             |                | SEARCH FOR THE LEAST COST DESIGN (with continuous design variables) |  |  | STEPS OF THE OPTIMIZATION PROCESS                                                                                                             |  |
|-----------------------------------------------------------------------------|----------------|---------------------------------------------------------------------|--|--|-----------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                             |                | SPACINGS                                                            |  |  |                                                                                                                                               |  |
| 1- ALSTOM                                                                   | Optimum Type   | Number of Web-frames ( $N_w$ )                                      |  |  | Initial "ALSTOM" layout used as reference point (before optimisation)                                                                         |  |
|                                                                             |                | Secondary Frame Spacing ( $\Delta_w/3$ )                            |  |  | With discrete design variables.                                                                                                               |  |
| 2- MET8 E00                                                                 | MARS BV        | $\Delta_w/3$                                                        |  |  | After optimisation of the ASTOM initial design with $\Delta_w$ , $\Delta_c$ and $\Delta_L$ unchanged. The design variables become continuous. |  |
|                                                                             |                | $\Delta_w/3$                                                        |  |  |                                                                                                                                               |  |
| 3- MET8 E90                                                                 | Least Cost (*) | $\Delta_w/3$                                                        |  |  | The stiffener spacings are released (1.15 the initial value)                                                                                  |  |
|                                                                             |                | 1.15 $\Delta_L$ (*)                                                 |  |  |                                                                                                                                               |  |
| 4- MET8 B90                                                                 | Least Cost     | $\Delta_w/3$                                                        |  |  | The web-frame spacing is released (upper limit corresponds to 9 frames).                                                                      |  |
|                                                                             |                | 1.15 $\Delta_L$ (*)                                                 |  |  |                                                                                                                                               |  |
| 5- MET8 F90                                                                 | Least Cost     | $\Delta_w/4$ (*)                                                    |  |  | As the web-frame spacing becomes larger, one additional secondary frame spacing is added ( $\Delta_c = \Delta_w/4$ instead of $\Delta_w/3$ )  |  |
|                                                                             |                | 1.15 $\Delta_L$ (*)                                                 |  |  |                                                                                                                                               |  |
| 6- MET8 F                                                                   | Least Cost     | $\Delta_w/4$                                                        |  |  | The stiffener spacing's upper limit is increased to 1.25 the initial value                                                                    |  |
| (*) Shows the modified parameter (or variable) between two successive steps |                |                                                                     |  |  |                                                                                                                                               |  |

Table 2: Cost Saving at Each Step of the Optimisation Process

| SEARCH FOR THE LEAST COST DESIGN (with continuous design variables)                                            |              |                                            |                                          |                           |                                     |                                    |                  |                                    |
|----------------------------------------------------------------------------------------------------------------|--------------|--------------------------------------------|------------------------------------------|---------------------------|-------------------------------------|------------------------------------|------------------|------------------------------------|
| CONFIGURATIONS                                                                                                 | Optimum Type | SPACINGS                                   |                                          |                           | Duct keel bulkhead. Plate Thickness | LEAST COST COST SAVING (%) (see 1) | WEIGHT (%)       |                                    |
|                                                                                                                |              | Number of Web-frames ( $N_w$ )             | Secondary Frame Spacing ( $\Delta_w/3$ ) | Stiffeners ( $\Delta_L$ ) |                                     |                                    |                  |                                    |
| 1- ALSTOM                                                                                                      | MARS BV      | Shown change(s) between 2 successive steps |                                          |                           | 100%                                | Between 2 successive steps         | Cumulated saving | Initial Design (used as reference) |
|                                                                                                                |              | $N_w$                                      | $\Delta_w/3$                             | $\Delta_L$ (Alstom)       |                                     | 0.00%                              | 0.00%            |                                    |
| 2- MET8 E00                                                                                                    | Least Cost   | $N_w$                                      | $\Delta_w/3$                             | $\Delta_L$ (Alstom)       | 105%                                | -1.39%                             | -1.39%           | 98.34%                             |
|                                                                                                                |              | $N_w$                                      | $\Delta_w/3$                             | 1.15 $\Delta_L$           |                                     |                                    |                  |                                    |
| 3- MET8 E90                                                                                                    | Least Cost   | $N_w$                                      | $\Delta_w/3$                             | 1.15 $\Delta_L$           | 105%                                | -2.46%                             | -3.85%           | 101.61%                            |
|                                                                                                                |              | $N_w - 3$                                  | $\Delta_w/3$                             | 1.15 $\Delta_L$           |                                     |                                    |                  |                                    |
| 4- MET8 B90                                                                                                    | Least Cost   | $N_w - 3$                                  | $\Delta_w/3$                             | 1.15 $\Delta_L$           | 130%                                | -6.40%                             | -10.25%          | 104.73%                            |
|                                                                                                                |              | $N_w - 3$                                  | $\Delta_w/4$                             | 1.15 $\Delta_L$           |                                     |                                    |                  |                                    |
| 5- MET8 F90                                                                                                    | Least Cost   | $N_w - 3$                                  | $\Delta_w/4$                             | 1.15 $\Delta_L$           | 100%                                | 1.67%                              | -8.58%           | 103.42%                            |
|                                                                                                                |              | $N_w - 3$                                  | $\Delta_w/4$                             | 1.28 $\Delta_L$           |                                     |                                    |                  |                                    |
| 6- MET8 F                                                                                                      | Least Cost   | $N_w - 3$                                  | $\Delta_w/4$                             | 1.28 $\Delta_L$           | 100%                                | -0.53%                             | -9.11%           | 105.29%                            |
| (*) Stiffener spacing too large ==> cost savings of 0.5% but increased straightening work ==> not efficient !! |              |                                            |                                          |                           |                                     |                                    |                  |                                    |
| (1) Variation induced by the changes occurred between two configurations.                                      |              |                                            |                                          |                           |                                     |                                    |                  |                                    |

Unfortunately, the global optimum (MET8-F90) is characterised by an increase of the weight of 3.4%. To avoid this negative effect, ALSTOM proposed some layout improvement to keep the hull weight almost unchanged. One alternative to avoid an increase of hull weight is to select configuration MET-12b presented in Table 3. MET-12 is characterized by a new structural layout and ( $N_w - 2$ ) web-frames (instead of  $N_w$ , see Table 3). Cost saving still reaches 6.9 % with, in addition, a small weight reduction (99.68% on the initial weight).

Table 3: Additional optimum solutions including weight constraint

| SEARCH FOR THE LEAST COST DESIGN (with constraint on the weight)                                    |                 |                                                   |                                    |                              |                                                      |                            |        |               |
|-----------------------------------------------------------------------------------------------------|-----------------|---------------------------------------------------|------------------------------------|------------------------------|------------------------------------------------------|----------------------------|--------|---------------|
| CONFIGU-<br>RATIONS                                                                                 | Optimum<br>Type | SPACINGS                                          |                                    |                              | Duct keel<br>bulkhead.<br>Plate<br>Thickness<br>(mm) | LEAST COST                 |        | WEIGHT<br>(%) |
|                                                                                                     |                 | Number<br>of Web-<br>frames                       | Second.<br>Frame<br>( $\Delta_c$ ) | Stiffeners<br>( $\Delta_L$ ) |                                                      | COST SAVING (%)<br>(see 1) |        |               |
| ALSTOM                                                                                              | MARS<br>BV      | <i>Shown change(s) between 2 successive steps</i> | $N_w$                              | $\Delta w/3$                 | $\Delta_L$<br>(Alstom)                               | 100%                       | 0.00%  | 0.00%         |
|                                                                                                     | MET8 E-78       | Least Cost                                        | $N_w$                              | $\Delta w/3$                 | $\Delta_L$<br>(Alstom)                               | 105%                       | -1.39% | -1.39%        |
|                                                                                                     | MET8 C-78       | Least Cost                                        | $N_w - 2$                          | $\Delta w/3$                 | $\Delta_L$<br>(Alstom)                               | 122%                       | -4.85% | -6.24%        |
| MET 12 (*)<br>Continuous                                                                            | Least Cost      | $N_w - 2$                                         | $\Delta w/3$<br>(*)                | $\Delta_L$<br>(Alstom)       | 88% (*)                                              | -0.68%                     | -6.92% | 99.68%        |
| MET 12.b (*)<br>Discrete                                                                            | Least Cost      | $N_w - 2$                                         | $\Delta w/3$<br>(*)                | $\Delta_L$<br>(Alstom)       | 88% (*)                                              | 0.45%                      | -6.47% | 100.88%       |
| (*) Layout is modified<br>(1) Variation induced by the changes occurred between two configurations. |                 |                                                   |                                    |                              |                                                      |                            |        |               |

Figures 14 and 15 compare, respectively, the COST and WEIGHT of the different configurations. Sub-optimisations and optimum solutions are marked.

Based on the LBR5's proposals, ALSTOM modified their initial design and structure layout to define a revised solution that was used for the final design stage.

Expected savings predicted by LBR5 are confirmed through ALSTOM's additional workload assessment.

Figures 16-18 show typical results provided by LBR5 at the end of the optimisation procedure. These results correspond to the 3D rational analysis of a cargo hold.

#### 4. Conclusions

This paper presents an industrial example of scantling optimisation performed using the LBR5 software. The target is to ease and improve the preliminary design stage allowing least cost optimisation. As the general structural layout is defined during the earliest phases, it is easy to understand why a least cost optimisation tool is attractive, especially one designed for use at the preliminary stage.

Optimum analysis of a medium capacity LNG ship is presented as application of the LBR5 least cost optimisation model. Alternatives like modified web-frame spacing, larger stiffener spacing, and improved layout have been assessed. Starting from the original shipyard's structural layout, LBR5's analysis has provided an effective cost saving of 8.5% for the hull tank construction. Main sensitive parameters are frame spacing and stiffener spacing. Using the LBR5 package, optimum scantlings for different configurations were easily compared based on their cost and weight, taking into consideration the shipyard standards (stiffener profiles, shop efficiency and availability, etc.).

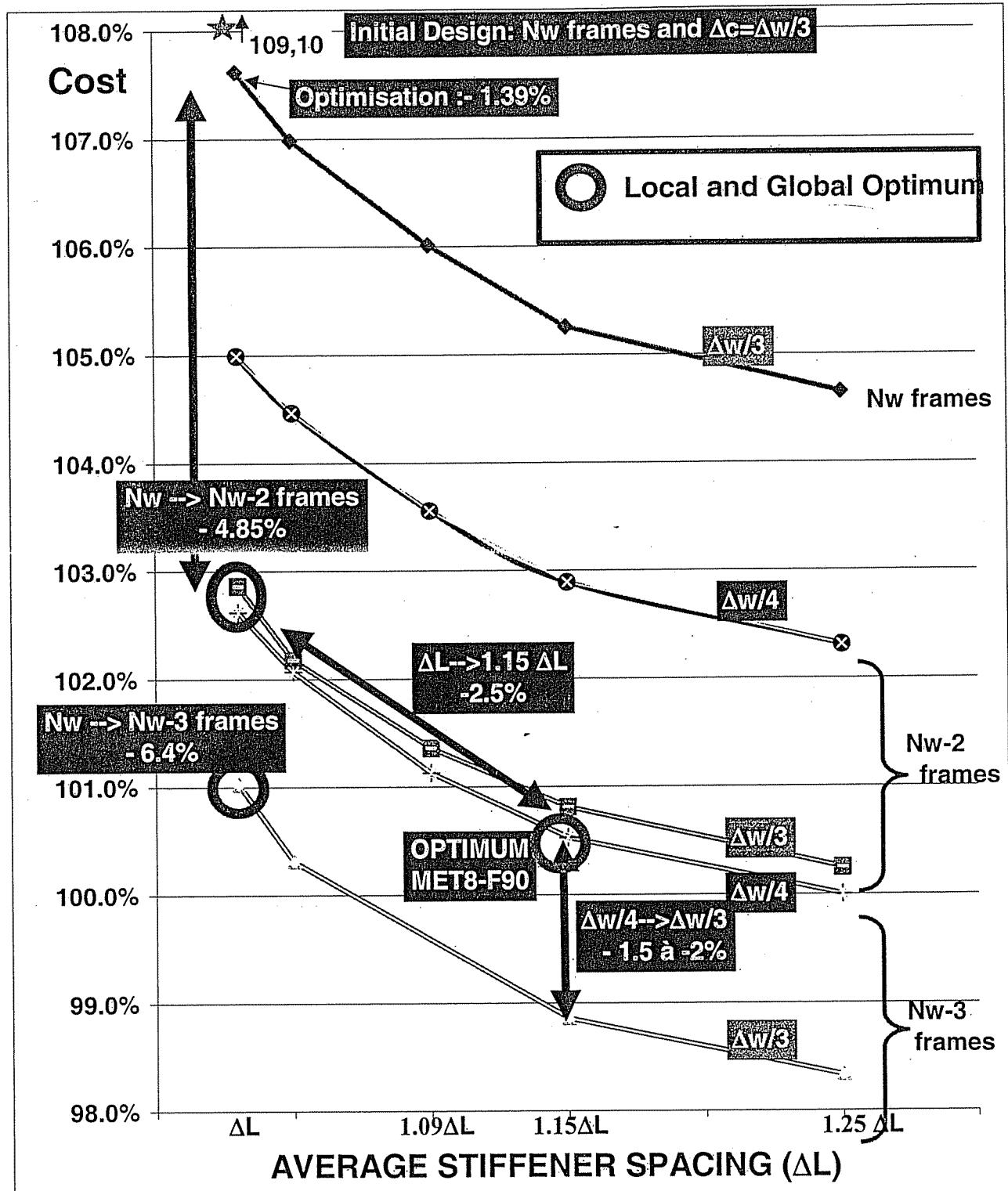



Fig.14: Sensitivity analysis of the stiffener spacing on the construction cost of a medium capacity LNG carrier (one hull tank)

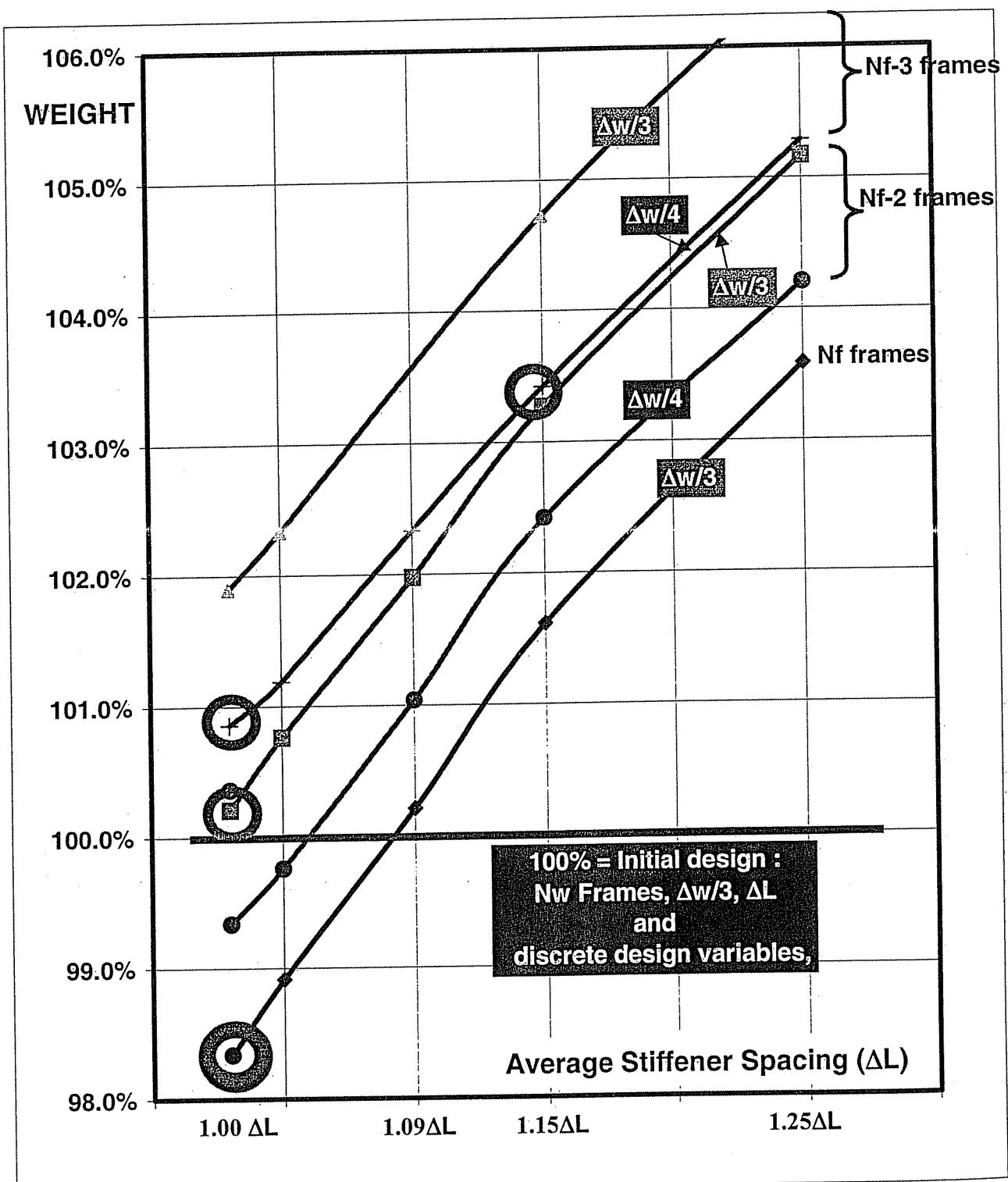



Fig.15: Sensitivity analysis of the stiffener spacing on the hull weight  
of a medium capacity LNG carrier (one hull tank)

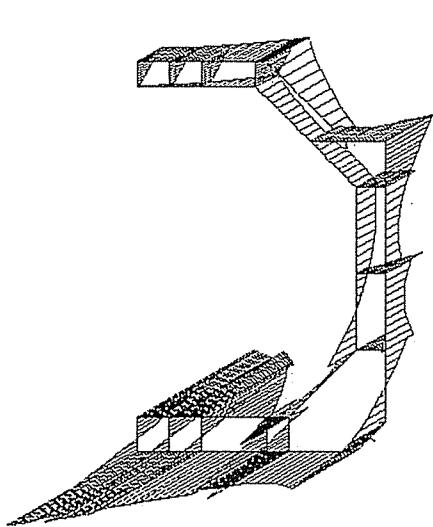



Fig.16:  
Longitudinal Stresses ( $\sigma_x$  in plating):  
*Local bending of the double bottom  
combined with a global hogging  
bending moment*

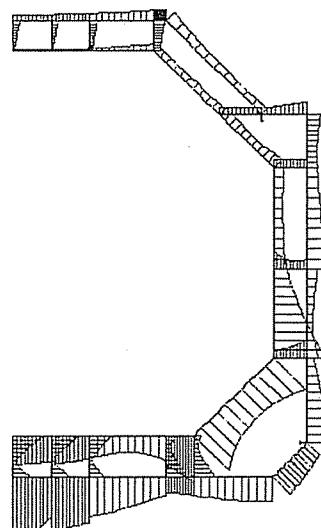



Fig.17:  
Von Mises Stresses  
(*Combined stresses in plating*)

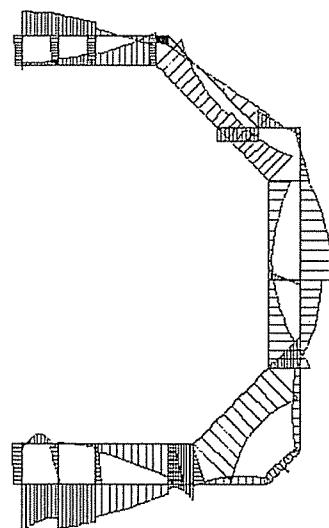



Fig.18:  
Transverse Stresses ( $\sigma_y$ );  
*(Bending of web-frames)*

## 5. Acknowledgments

The authors thank ALSTOM, Chantiers de l'Atlantique (St. Nazaire, France) and particularly the Steel Hull Department for their support to achieve this research and their assistance and authorisation to publish the paper. The DGTRÉ Ministry of the Walloon Region of Belgium is also acknowledged for their support (Convention n°215062, First – Spin off).

## References

FLEURY C. (1989), "CONLIN, *An Efficient Dual Optimizer Based on Convex Approximation Concepts*, Structural Optimization, vol. 1, pp81-89.

GOUBAULT Ph.; BESNARD N.; RIGO Ph. (2003), *AVPRO-LBR.5, An Initial Design Software Suite with Scantling Optimization Capabilities*, IMDC' 03, Athens, Greece.

KARR D.; NA S.S.; BEIER K.P.; RIGO Ph. (2002), *A Framework for Simulation Bases Design of Ship Structures*, Journal of Ship Production, SNAME, vol.18, n°1, pp.33-46.

RIGO Ph. (1992), *Stiffened Sheathings of Orthotropic Cylindrical Shells*, Journal of Structural Engineering, ASCE, vol.118, n°4, pp926-943.

RIGO Ph. (2001a), *A Module-Oriented Tool for Optimum Design of Stiffened Structures*, *Marine Structures*, Elsevier Science Ltd., vol. 14/6, pp611-629.

RIGO Ph. (2001b), *Least-Cost Structural Optimization Oriented Preliminary Design*, Journal of Ship Production, SNAME, USA, vol.17/4, pp.202-215.

RIGO Ph.; FLEURY C. (2001), *Scantling Optimization Based on Convex Linearizations and a Dual Approach*, *Marine Structures*, Elsevier Science Ltd., vol. 14/6, pp631-649.