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Abstract - This paper proposes a method to compute
the Available Transfer Capability (ATC) of a power
system under both thermal and voltage security con-
straints. The objective is to determine, in some opti-
mal manner, the ATC of several simultaneous trans-
actions, such that any postulated contingency does not
cause voltage instability nor thermal overloads. Ther-
mal constraints are derived for every branch likely to
be overloaded in post-contingency states. Voltage se-
curity constraints are derived from voltage unstable
post-contingency scenario, obtained by Quasi Steady-
State simulation, a fast time-domain method. The pa-
per also addresses the discrimination problem, i.e. the
fact that the computed ATC might favor some trades
to the detriment of others. Variants will be discussed
to deal with such situations. The method is illustrated
on an 80-bus test system.

Keywords: Available transfer capability, voltage secu-
rity, thermal overload, dynamic security analysis.

1 INTRODUCTION

Electricity market deregulation now prevails in many
countries. In a deregulated environment a crucial informa-
tion is the determination of the ATCs relative to all fore-
seen trade paths [1]. The ATC values may be posted on
a Website so that each market player can use them in or-
der to make reservation. Each ATC represents the maxi-
mal increment of power which can be transmitted from a
source to a sink without violating any security constraint.
The latter may involve static (circuit loading, voltage pro-
file, etc.), voltage stability and angle stability constraints.
This paper deals with thermal overload and voltage stabil-
ity constraints.

Most methods for computing ATC proposed up to now
focus on thermal constraints [2, 3, 4, 5]. They are based
on the very fast DC load flow model. Although valid in
many practical cases, the DC approximation may be less
satisfactory when voltage and thermal aspects are strongly
coupled, in which case the full AC load flow model would
be more appropriate. However, much less has been done
for voltage stability constraints. Ref. [6] used the contin-
uation power flow method. To deal with dynamic aspects
while retaining the computational efficiency of load flow
type methods, Refs. [7, 8] used Quasi Steady-State (QSS)
simulation, a fast time-domain method.

A drawback of these approaches is that ATCs are com-
puted separately for each transaction. Clearly, when sev-

eral transactions take place simultaneously modifying the
volume of one trade will affect to some extent the ATC of
all the other trades. This interdependence makes it neces-
sary to consider several transactions simultaneously in the
ATC computation.

A first approach to this new problem was presented
in [5]. It consists in maximizing, in the L1 sense, the
sum of all possible transactions under linearized operating
constraints corresponding to circuit loading, bus voltage
magnitude and generator reactive power. More recently,
Ref. [9] proposed to maximize the product of transactions
over a security region bounded by linearized operating
constraints based on load flow equations.

In this paper we propose a method to compute simul-
taneous ATCs under both thermal and voltage security
constraints. The latter involve contingencies. The ATC
value is the result of an optimization problem in which we
maximize the use of the network by the various involved
traders. Thermal constraints are derived for every branch
likely to be overloaded in post-contingency states. Volt-
age security constraints are derived from voltage unstable
post-contingency scenarios analyzed by QSS simulation.

2 STATEMENT OF THE PROBLEM

2.1 Transaction definition

A transaction is a bilateral exchange of power between
a selling and a buying entity. In the sequel, the selling
(resp. buying) entity is called source (resp. sink) and may
comprise several generators (resp. loads). The k-th trans-
action (k = 1, . . . , t) is defined by its volume Tk, which
is the active power received by the sink, as well as by the
bus participations in the source and the sink. The latter are
defined by the two m-dimensional vectors:

αk = [αk1 . . . αki . . . αkm]T βk = [βk1 . . . βki . . . βkm]T

where m is the total number of buses and αki (resp. βki)
is the participation factor of the generator (resp. load) at
bus i in the k-th transaction. Obviously, αki = 0 (resp.
βki = 0) in the absence of a participating generator (resp.
load) at bus i, and αki > 0 (resp. βki > 0) otherwise. Fur-
thermore, the participation factors are chosen such that:

m∑

i=1

αki = 1 + δk

m∑

i=1

βki = 1

where δk accounts for the transmission losses associated
with the k-th transaction.



Thus, for the k-th transaction, the active power P +
i in-

jected into (i = 1, . . . , m) and the active power P −
i drawn

from the i-th bus relate to the above variables through:

P+
ki = αkiTk P−

ki = βkiTk P+
ki , P−

ki ≥ 0

and hence the volume of the k-th transaction is given by:

Tk =
m∑

i=1

P−
ki =

∑m
i=1 P+

ki

1 + δk
with 0 ≤ Tk ≤ T max

k

where T max
k is the minimum among the generation re-

serve and the maximal load consumption, for the corre-
sponding participating generators and loads.

Denoting by ∆ the variations from base case values,
we have:

∆P+
ki = αki∆Tk ∆P−

ki = βki∆Tk

and the net power variation at bus i is, for all transactions:

∆Pi =
t∑

k=1

∆P+
ki − ∆P−

ki =
t∑

k=1

(αki − βki)∆Tk (1)

This equation defines a mapping between the space of
power injections and the one of transactions.

2.2 Secure transaction region and simultaneous ATC

Let us consider the t-dimensional space of transac-
tions. Each point of this space corresponds to a particular
value of the pre-contingency transactions.

We define the secure transaction region S as the set of
points of the transaction space such that no contingency of
a specified list causes thermal overload nor voltage insta-
bility. ATCs are associated with points lying on the bound-
ary B of this secure region S.

The concept of simultaneous ATC is best illustrated on
the following bi-dimensional example. Let us consider the
space of two transactions T1 and T2 as depicted in Fig. 1.
Lower and upper bounds restrict the transaction space to
the interior of rectangle OGEF. Moreover, let us assume
for simplicity that the secure transaction region S is fur-
ther bounded by the line AB.
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Figure 1: secure region and ATCs in a 2D-transaction space

If each transaction is considered separately, the ATC
for T1 (resp. T2) corresponds to point A (resp. B). Now, if
both transactions were accepted at these maximal values
the system would operate at point D, outside the secure
region. It is thus necessary to compute ATCs by maximiz-
ing a function of T1 and T2 while taking into account the

boundary B, which expresses the influence between the
two transactions.

The first function to come to mind for the simultaneous
ATC computation is the sum of transactions [5], namely:

max
T1,T2∈S

(T1 + T2)

This objective is directly related to the maximum use of
the network. However, in our simple example, the solu-
tion of this optimization problem is point A, where trans-
action T2 is zero ! In other words, maximizing the above
L1 norm tends to allocate network capacity to the trans-
action with the least effect on security. This may be con-
sidered discriminatory, especially when both transactions
have almost equal effects, which corresponds in Fig. 1 to a
boundary B almost parallel to the equi-(T1 + T2) lines. In
this case, a mere change in slope from -44 to -46 degrees,
for instance, causes the optimum to jump from A to B !

Admittedly, this effect is less pronounced when the
boundary is piece-wise linear (and convex) or when the
box constraints are more limiting (point F lying in be-
tween O and A): T2 is then nonzero at the optimum.

An alternative, however, is to maximize the product of
transactions [9], namely:

max
T1,T2∈S

T1T2

The optimum corresponds to point C, where an hyperbola
T1T2 = k2 is tangent to the boundary B. The ATC val-
ues correspond to the projections of point C on the axes
(points A1 and B1). As can be seen, this objective is less
discriminatory and, more importantly, allocates capacity
to the transactions in proportion with their respective im-
pact on security.

3 APPROXIMATION OF SECURITY BOUNDARY

3.1 Thermal overload constraints

When thermal overloads are of concern, the secure re-
gion S is the set of operating points such that no branch
current is above its limit after a contingency, i.e.

I
(r)
j ≤ Imax

j j = 1, . . . , b r = 1, . . . , c (2)

where b is the number of branches, c the number of speci-
fied contingencies, I (r)

j the current in the j-th branch after
the r-th contingency and I max

j the corresponding thresh-
old value.

It is well known that (pre- or post-contingency) branch
currents vary rather linearly with bus power injections.
The inequality (2) can thus be linearized into:

I
(r)
j, o +

m∑

i=1

∂I
(r)
j

∂Pi
∆Pi ≤ Imax

j (3)

where I
(r)
j, o is the post-contingency branch current for the

base case value of the injections. The partial derivatives



are the sensitivities of the post-contingency branch cur-
rents to the pre-contingency injections. The latter can be
determined using the DC load flow approximation [4] or
from a well-known sensitivity formula involving the Jaco-
bian of the steady-state equations (standard AC load flow
or long-term equilibrium equations). Note that thermal
overload constraints apply to the pre-contingency config-
uration as well but we assume for simplicity that post-
contingency operating conditions are more severe.

Taking (1) into account, the inequality (3) can be
rewritten in terms of transactions as:

I
(r)
j, o +

t∑

k=1

m∑

i=1

∂I
(r)
j

∂Pi
(αki − βki)∆Tk ≤ Imax

j (4)

This formula yields the sensitivity of current I
(r)
j to

transaction Tk:

∂I
(r)
j

∂Tk
=

m∑

i=1

∂I
(r)
j

∂Pi
(αki − βki) (5)

All such sensitivities can be computed in the base case.
The thermal security region S is thus bounded by lin-

ear constraints of type (4), and its boundary B is piece-
wise linear, each part corresponding to one of the con-
straints (4) active.

3.2 Voltage security constraints

When voltage instability is of concern, the security
region S becomes the set of pre-contingency operating
points such that the system responds in a stable way to
any specified contingency.

We use QSS simulation to determine the system re-
sponse to contingencies. This well-documented time-
domain method [10] is fast while taking into account
dynamic effects such as controls acting in the post-
contingency configuration. Moreover, when coupled with
small-disturbance analysis, this method can provide a lin-
ear approximation of the secure region boundary, as re-
called hereafter.

The most common voltage instability mechanism is
the loss of a long-term equilibrium [10] and hence we
can approximate the secure region S as the set of pre-
contingency operating points for which the system has a
post-disturbance equilibrium. For a single contingency,
a two-dimensional view of the power injection space is
given in Fig. 2, where Po corresponds to the base case
and Pu to an unstable scenario.

Thus, if the contingency is applied to the system op-
erating at point Pu, instability results. The unstable sys-
tem trajectory will “touch” the boundary B at a so-called
critical point Pc, identified through the change in sign of
reactive generation to reactive load sensitivities [10].

Denoting the long-term equilibrium equations by:

g(x,P) = g(x,Po + ∆P) = 0 (6)
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Figure 2: linear approximation of the voltage secure region

where x is the state vector, the normal vector n to the
boundary B is given by [10]:

n = gT
P w (7)

where gP is the Jacobian of g with respect to P and w is
the left eigenvector relative to the zero eigenvalue of the
Jacobian gx on the bifurcation surface B.

From both Pc and n, a linear approximation of the
boundary surface B can be built, in the form of the tangent
hyperplane H (see Fig. 2) whose equation is:

nT(P − Pc) = 0 (8)

Let ∆P be a vector of injection variations. In order
Po + ∆P to remain on the stable side of H, ∆P must
satisfy:

nT (Po + ∆P − Pc) ≤ 0

or equivalently:
m∑

i=1

ni∆Pi ≤ nT (Pc − Po)

Using (1), this inequality can be written in terms of
transaction variations as:

t∑

k=1

ñk∆Tk ≤ C (9)

where ñk =
m∑

i=1

ni(αki−βki) and C = nT (Pc−Po)

The voltage secure region is thus approximated by a
set of linear inequalities, each corresponding to a contin-
gency. For the r-th one (r = 1, . . . , u) we have:

t∑

k=1

ñ
(r)
k ∆Tk ≤ C(r) (10)

The piece-wise linear approximation of B is thus ob-
tained by first setting the system to an operating point Pu

where it responds to some contingencies in an unstable
way, then extracting information from the corresponding
unstable evolutions. Note that Pu does not appear explic-
itly in the so derived linear approximation (9); it is merely
used to bring the system to instability. It does not appear
either in the thermal overload constraints.

In practice, Pu is chosen so that all participating trans-
actions are increased beyond the expected ATC values (so
that this point falls outside the voltage secure region) and
equitably (to avoid distortions). Such a choice admittedly
requires some knowledge of the system under concern.



Incidentally, note that in congestion management, the
problem of choosing Pu does not exist: this point is
simply the operating point resulting from the various re-
quested transactions. If it lies within the secure region,
all the transactions can be accepted; otherwise, they must
be curtailed in an optimal manner to bring Pu inside the
secure region [11].

4 ATC COMPUTATION

4.1 Contingency filtering

In real-life applications, it is essential to quickly filter
out harmless contingencies and limit the above analysis to
the (potentially or effectively) dangerous ones.

As regards voltage instability, one can use a proce-
dure similar to the one described in [8] within the context
of single-transaction ATC calculations. The idea is that
a contingency found stable at point Pu is harmless since
this point is located outside the secure region defined by
the most constraining contingencies. Furthermore, to save
computing time, the various contingencies can be simu-
lated at point Pu with a simple AC load flow and only
those leading to divergence or causing voltage drops larger
than some threshold are labelled potentially harmful. This
threshold must be chosen small enough (conservative) to
avoid missing dangerous contingencies but large enough
to avoid too many false alarms. The potentially harmful
contingencies are then analyzed in greater detail by QSS
simulation, which filters out the false alarms. The remain-
ing, harmful contingencies are kept for incorporation into
the ATC calculation.

Note that in systems where long-term voltage stability
is strongly influenced by post-contingency dynamic con-
trols, a mere AC load flow might not be appropriate. QSS
simulation must then be used to check all contingencies at
point Pu [8]. Even in this case, the computation is much
faster than with full time-domain simulation.

As regards thermal overloads, each post-contingency
operating point provided by the AC load flow calculation
(at the first filtering step) or by a stable QSS simulation (at
the second step) is checked with respect to branch over-
loads. The corresponding contingencies are also kept for
inclusion in the ATC calculation presented hereafter.

4.2 Linear ATC calculation

Under the linear approximations explained in the pre-
vious section, the ATC for the t simultaneous transactions
can be obtained as the solution of the following optimiza-
tion problem:

max L1 =
t∑

k=1

∆Tk (11)

or maxLπ =
t∏

k=1

∆Tk (12)

subject to :
t∑

k=1

ñ
(r)
k ∆Tk ≤ C(r) r = 1, . . . , u (13)

t∑

k=1

∂I
(r)
j

∂Tk
∆Tk ≤ Imax

j − I
(r)
j, o r = 1, . . . , �

j = 1, . . . , b(r)
(14)

0 ≤ ∆Tk ≤ T max
k (15)

where u is the number of voltage harmful contingencies
identified in the filtering step, � is the corresponding num-
ber of thermal harmful contingencies and b(r) is the num-
ber of branches overloaded by the r-th contingency.

The L1 objective (11) leads to a simple linear pro-
gramming problem. The product objective (12), whose
motivation has been explained in Section 2.2, leads to a
geometric programming problem, for which we success-
fully used a successive quadratic programming solver.

One cannot exclude the case where a contingency
would create both voltage and thermal problems. Now,
if the point Pu has been taken outside the voltage secure
region, the contingency is labelled voltage harmful in the
filtering phase but, as the system does not reach an oper-
ating point where branch overloads can be checked, the
latter problem is hidden. Two procedures can be thought
of to face such situations:
- at the solution of the above optimization problem, check
all voltage harmful contingencies for possible branch
overloads. If some are detected, add the corresponding
constraints (14) to the original set and perform a new op-
timization
- solve the voltage optimization problem (11 or 12, 13, 15)
first. When all contingencies are stabilized, check thermal
overloads, add the corresponding constraints (14) and per-
form a new optimization.

4.3 Heuristic handling of nonlinearities

The real boundary B is nonlinear and not necessarily
smooth as assumed above. This is especially true for the
voltage secure region. The constraints (13, 14) are only
linear approximations of this complex boundary. In par-
ticular, the linearized optimization problem may yield a
solution ∆T ∗

k located (hopefully slightly) outside the se-
cure region, or conservatively inside.

To improve the ATC computation while keeping it
simple, the following heuristic procedure is used. First,
we consider that the relative values of the various ñ

(r)
k co-

efficients in (13) (i.e. the slope of the tangent hyperplane
H) are correct, but the location of the critical point Pc may
be affected by some error. H is thus moved parallel to it-
self, expanding or contracting the linear approximation of
the secure region. Thus, we replace (13) by:

f

t∑

k=1

ñ
(r)
k ∆Tk ≤ C(r) (16)

and adjust f iteratively to obtain the best objective func-
tion together with secure transactions ∆T ∗

k . The bisection
method is used to this purpose; it consists of building a
smaller and smaller interval [fr fa], such that the solution
∆T ∗

k of the linearized optimization problem (11 or 12, 14,
15, 16) is secure for f = fa and insecure for f = fr.



This is checked through nonlinear QSS simulations of the
u harmful contingencies. At each step, the interval is di-
vided into two equal parts; if the midpoint leads to a se-
cure (resp. insecure) optimum, it is taken as the new up-
per (resp. lower) bound. The procedure is repeated un-
til fa − fr becomes smaller than a tolerance ε and f is
set to fa. The search starts with fr = 0, fa = 1 (resp.
fr = 1, fa = 2) if the very first linearized optimization
yields a secure (resp. insecure) set of transactions.

Ideally the technique should be applied to each con-
straint (13); however, to keep the procedure simple, and
because not all constraints are active at the optimum, a
single value f is used to correct all of them.

Besides, the normal vector n involved in the ñ
(r)
k coef-

ficients can be updated each time the simulation of a harm-
ful contingency is found unstable.

Although linearization works better for currents, it is
possible to somewhat improve the values of the sensitiv-
ities in (14). Once the post-contingency current I

(r)
j has

been obtained by AC load flow or QSS simulation, all sen-
sitivities ∂I

(r)
j /∂Tk (k = 1, . . . , t) are multiplied by:

I
(r)
j − I

(r)
j, o

∑t
k=1

∂I
(r)
j

∂Tk
∆T ∗

k − I
(r)
j, o

(17)

where the numerator is the real change in branch current
between the optimum and the base case, and the denomi-
nator is the corresponding linear prediction. A single up-
date of the sensitivities is usually enough.
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Figure 3: the (slightly modified) “Nordic 32” system

5 ILLUSTRATIVE EXAMPLE

We consider the 80-bus system shown in Figure 3, a
variant of the “Nordic 32” system used e.g. by CIGRE
Task Force 32.02.08 on Long-Term Dynamics (1995). A
rather heavy power transfer takes place from the “North”
to the “South” areas (see figure).

The QSS long-term simulation reproduces the dynam-
ics of load tap changers and overexcitation limiters [7].
Generators respond to a disturbance according to gover-
nor control. The Southern generators having infinite speed
droops, any power imbalance is covered by Northern gen-
erators, which may add to the North-South power flow.

We present examples of transmission capacity alloca-
tion to 10 simultaneous transactions. The source(s) and
sink(s) as well as the upper bound of each transaction are
given in Table 1.

Table 1: description of the involved transactions

trans- source(s) sink(s) Tmax
k

action (MW)
T1 g21 4062 60
T2 g22 4046 123
T3 g4,g5 4051 99
T4 g9,g10 1041,1045 115
T5 g1,g2,g3 1011,1012,1013,1014 30
T6 g8 2031 20
T7 g19,g20 4047 17
T8 g12 4043 30
T9 g16 2032 40
T10 g18 4042 70

A list of 49 contingencies is specified, which consist
of single line or generator trippings.

Pu is taken as corresponding to a total transaction in-
crease of 450 MW (with respect to the base case), equally
shared by all transactions. The initial set of contingen-
cies is simulated at this operating point. Ten contingen-
cies lead to voltage instability (which confirms that Pu is
outside the secure region) but no thermal overload is re-
vealed. The linear constraints (13) are derived for each of
the 10 contingencies.

Case A. The L1 objective is maximized over the se-
cure region. Thus the optimization problem (11, 13, 15)
is solved, yielding an objective value of 239 MW. At this
point, the system is stable with respect to all contingen-
cies. Hence a larger ATC value is sought, using the tech-
nique of Section 4.3. The final value of the correction fac-
tor f is 0.4, and the objective increases to 279 MW.

The results are presented in the second column of Ta-
ble 2. At the solution, most transactions are allowed to go
up to their upper bound, except T3 and T4 (left at zero)
and T2 (for which no box constraint (15) is active).

Case B. The Lπ objective (12) is now maximized over
the secure region. Obviously, the harmful contingencies
are the same and the system is voltage stability limited as
in Case A.

The solution of the optimization procedure is shown in
the third column of Table 2. As can be seen, this objective
leads to allocate a nonzero power to all trades.



Table 2: simultaneous ATC results
transaction case A case B case C case D

T1 60 18 0 6
T2 12 17 0 5
T3 0 16 0 5
T4 0 17 0 5
T5 30 30 30 30
T6 20 20 20 20
T7 17 17 17 17
T8 30 30 24 7
T9 40 40 40 40
T10 70 70 70 24∑
k

Tk 279 275 201 159

The solutions obtained with the two objectives differ
by the first four transactions. In fact, the ñ

(r)
k sensitivi-

ties of the latter are only slightly different (whatever the
contingency) but the small differences are “amplified” by
the L1 objective, which favours the T1 trade to the detri-
ment of T2, T3 and T4. The Lπ objective, on the other
hand, yields a more fair capacity allocation while keeping
the total power transfer at almost the same value (only 4
MW less than with the L1 objective). The allocation is in
proportion with the impact on security.

Case C. In this case, and in the next one, the thermal
limits of the 400-kV lines have been artificially decreased
by 7 % to create thermal congestions.

Again, the L1 objective is considered first. In this case,
the system is thermal limited: the ATC is constrained by
the loss of line 4011-4021 which causes the line 4031-
4032 to be overloaded. This overload is partly due to a
voltage drop at bus 4032 caused by the field current lim-
itation of generator g11. In such a case, which could not
be handled under the DC load flow approximation, the cor-
rection (17) proves useful. The solution of the optimiza-
tion problem is shown in the fourth column of Table 2.
The first four transactions are refused because the current
in line 4031-4032 is most sensitive to these transactions.
Transactions with the lowest sensitivities are accepted at
their maximum.

Case D. The solution corresponding to the Lπ objec-
tive is shown in the last column of Table 2. With respect
to the previous case, transmission capacity is now allo-
cated to the first four transactions, although to a little ex-
tent. Conversely, T9, the only trade which can produce
a counterflow in line 4031-4032, is accepted at its max-
imum. The same holds true for other trades which have
less impact on that branch current.

A comparison of Cases C and D shows that signifi-
cantly more (42 MW) network capacity is allocated with
the L1 objective. This is due to the fact that the cur-
rent in branch 4031-4032 is almost equally sensitive to
T1, T2, T3, T4 and T8.

6 CONCLUSION

This paper has presented a method for computing
the ATC of a power system under simultaneous transac-
tions. The ATC is the solution of an optimization prob-
lem in which network usage is maximized under linear

constraints which prevent any of the specified contingen-
cies from causing thermal overload or voltage instability.
Among the features of the proposed approach let us quote:
• a unified treatment of thermal and voltage security;
• the simultaneous handling of multiple contingencies;
• a heuristic technique to compensate for the linear ap-
proximation of the secure region. Further improvements
of this technique are presently under investigation.

Two objective functions have been considered. While
the L1 objective maximizes the use of the transmission
capacity, the Lπ one yields a more fair allocation to the
various transactions.

The method can be easily extended to:
• transmission capacity allocation through an implicit auc-
tion mechanism, by taking as objective function the sum
of transactions, each weighted by its bid price;
• coordinated congestion management, in the case where
all requested transactions cannot be accepted without en-
dangering security.
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