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Optimal power flow computations with constraints
limiting the number of control actions

Florin Capitanescu, William Rosehart,Senior Member, IEEE, and Louis Wehenkel,Member, IEEE

Abstract— This paper focuses on optimal power flow (OPF)
computations in which no more than a pre-specified number of
controls are allowed to move. The benchmark formulation of this
OPF problem constitutes a mixed integer nonlinear programming
(MINLP) problem. To avoid the prohibitive computational ti me
required by classical MINLP approaches to provide a (poten-
tially sub-optimal) solution, we propose instead two alternative
approaches. The first one consists in reformulating the MINLP
problem as a mathematical program with equilibrium constraints
(MPEC). The second approach includes in the classical OPF
problem a nonlinear constraint which approximates the integral
constraint limiting the number of control variables movement.
Both approaches are solved by an interior point algorithm
(IPA), slightly adapted to the particular characteristics of each
approach. We provide numerical results with the proposed
approaches on two test systems and for two practical problems:
minimum cost to remove thermal congestion, and minimum cost
of load curtailment to restore a feasible equilibrium point.

Index Terms— mathematical programming with equilibrium
constraints, nonlinear programming, optimal power flow

I. I NTRODUCTION

SINCE most real-time OPF applications run in open loop,
the system operator (SO) looks for a practical number of

control actions to take in a given time period in order to re-
move violated operating limits and/or to improve a predefined
operation objective [1]–[5]. A very important consideration
for the SO is thus the trade-off between the objective function
and the number of control actions used in the optimization.
There is no straightforward way to formulate these major
concerns in a conventional OPF. Indeed, most conventional
OPF computations use the whole set of control means to solve
the problem and very often (almost) all of them have moved
at the optimal solution. The difficulty of limiting the number
of controls moved is due to the fact that: (i) almost every
control variable participates in a non separable way to both
improving the objective and satisfying the constraints, and (ii)
control actions are not easy to rank and the effectiveness of
an action is not necessarily related to its magnitude [3].

The OPF problem with limited number of controls allowed
to move, which we call hereafter OPFLC, can be formulated
as a MINLP problem. To avoid the prohibitive computational
time of classical MINLP approaches (e.g., generalized Benders
decomposition, branch and bound, etc.) and since the aim
is to quickly obtain a reasonable solution, faster heuristic
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techniques should be utilized. The problem is likely to be very
complex, in particular because for a particular limit on the
number of allowed control movements there may exist several
combinations of controls ensuring feasibility and satisfying
first order optimality conditions.

The simplest and widely used approach to the OPFLC
consists in specifying beforehand the controls participating in
optimization [1]–[4]. The main drawback of this approach is
that it requires very good knowledge about the power system
(e.g., based on SO experience) especially in the context of
ever changing system states (e.g., generation, load, topology,
etc.). In addition, it may happen that an inappropriate choice
of controls yields an infeasible OPF problem and hence to the
divergence of computations. This requires repeatedly altering
the initial set of controls allowed to move and re-running the
OPF until convergence. An alternative technique consists of
first solving the conventional OPF, then selecting from the
OPF output a desired number of controls (e.g., based on
some sensitivity information), and performing again the OPF
computation with these controls only. This procedure needs
also to be repeated until convergence. Note also that the higher
the number of control variables moved at the conventional
OPF optimum, the more delicate the choice of a significantly
smaller subset of control variables.

Only a reduced number of approaches devoted to limiting
the number of control actions in an OPF have been proposed in
the literature (e.g., [6], [7]). These particular approaches rely
on sensitivities of the objective and constraints satisfaction
to control movements [6], and on approximating the integral
constraint of maximal number of controls allowed to move by
one nonlinear constraint, respectively [7].

Given the aim of the OPFLC problem, it may be suitable
to formulate its MINLP approach as a MPEC problem [8].
Although the latter approach has been seen for a long time
as a very though problem, recent advances in the field of
nonlinear programming (NLP) make possible to solve MPEC
problems with classical NLP solvers, due to the level of
robustness and maturity reached by the latter (e.g., sequential
quadratic programming (SQP), interior point method (IPM),
active set identification, etc.) [9]–[16]. The main advantage of
the MPEC approach, formulated in turn as a NLP problem, is
that its time solution is generally polynomial, while the worst
case computational cost of MINLP strategies is exponential.
This indicates that MPEC problems may scale better than
equivalent MINLP formulations on large problems. Obviously,
the drawback of the MPEC formulation is that the problem is
highly non-convex, due to the large set of discrete equilibria
(stemming from strict complementarity of solutions) and hence
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only local solutions can be guaranteed.
Some problems in the area of electric power systems have

been formulated as MPEC, most of them being related to
gaming within electricity markets [17]–[20], while the appli-
cation of MPEC in the context of OPF has received much
less attention so far [21], [22]. These latter focus mainly on
solving a particular OPF problem (e.g., determination of sys-
tem loadability limit) by handling the generator status switch
between two possible states: either under voltage control or
under field current limitation. The resulting MPEC problem
is solved either directly [21] (e.g. by the LOQO commercial
solver [11]), or by an iterative algorithm relying on the
gradient projection method and aimed to identify binding
constraints at the loadability limit [22]. Finally, in [23]a
solution strategy is proposed that has some similarities with
some MPEC approaches [16]. Its main feature is the handling
of the perturbed complementarity constraints of the first order
optimality conditions (obtained as in the IPA) by means of
nonlinear complementarity functions [23].

In this paper two approaches to this problem are presented.
The first one consists in reformulating the MINLP problem
as a MPEC, which is solved by a modified IPA. The second
approach includes in the OPF problem a nonlinear constraint
approximating the integral constraint which limits the number
of control actions allowed (this constraint has been previously
used in the context of a fuzzy formulation of the OPF problem
of generation cost minimization [7]). This problem has been
solved by a successive linear programming (SLP) algorithm
and hence this constraint has been used in a linearized form
within SLP iterations. Some sophisticated heuristics havebeen
pointed out to handle the effect of constraint linearization. In
this work we use the same constraint but in the more general
context of NLP nonlinear OPF model, solved by a modified
IPA. Another contribution of the paper is the improvement of
the integral constraint handling.

The paper is organized as follows. Section II briefly de-
scribes the classical OPF problem. Section III introduces
the OPF problem with limited number of control actions.
Two approaches to this problem are presented in Section IV.
Section V provides some numerical results while Section VI
concludes. The Appendix provides a brief description of the
four main classes of approaches used to transform the MPEC
into a NLP.

II. CLASSICAL OPTIMAL POWER FLOW PROBLEM

The classical OPF problem can be written as follows:

min
x,u

f(x,u) (1)

s.t. g(x,u) = 0 (2)

h(x,u) ≤ 0 (3)

u ≤ u ≤ u (4)

wherex is the vector of state variables (i.e., real and imaginary
part of voltage at all buses),u is the vector of control
variables (e.g., generators active power, generators voltage
(when controllable), Load Tap Changer (LTC) transformer
ratios, shunt element reactances, load curtailment controls,

controls moved
number of

objective

nNcNmin

Fig. 1. Objective function versus number of controls allowed to move

phase shifters angle, etc.) andu (resp.u) is its corresponding
vector of lower (resp. upper) bounds,f(·) is the objective
function,g(·) andh(·) are vectors of functions which model
equality and inequality constraints. Equality constraints (2)
are essentially the AC bus power equations, inequality con-
straints (3) refer to operational limits (e.g., branch currents
and voltage magnitudes) while inequality constraints (4) refer
to physical limits of equipments (e.g., bounds on: generators
active/reactive powers, LTCs transformers ratio, shunts reac-
tance, phase shifters angle, etc.).

III. O PTIMAL POWER FLOW WITH LIMITED NUMBER OF

CONTROLS ALLOWED TO MOVE

A. Intuitive view of the problem

In Figure 1, a plot of the objective function value versus
numbers of controls allowed to move, in a general case
is shown. In this figuren is the total number of controls
of the OPF problem. Clearly, two numbers of controls are
particularly important when assessing the trade-off between
the objective value and the number of control actions used in
the OPF, namely (i) the minimal number of controls allowed
to move such that to ensure OPFLC problem feasibility, which
we denote byNmin, and the minimal number of controls be-
yond which the objective can not be improved, i.e. the number
of controls which has effectively moved in the classical OPF
approach (1-4), which we denote byNc. Thus, the number
of controlsN for which the objective value varies satisfies:
0 ≤ Nmin ≤ N ≤ Nc ≤ n.

B. Problem statement

Let us assume that an inital base case is available in terms of
required OPF data1 (e.g., system topology, generator powers,
loads powers, etc.), and letu0 = [u0

1, . . . , u
0
i , . . . , u

0
n]T be the

vector of base case values of control variables. A stronger
assumption is that the base case stems from a real-time
operating point, or an off-line converged power flow solution.

1it is not mandatory that the system has a power flow solution
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The OPFLC problem can be compactly stated as follows:

min
x,u,s

f(x,u) (5)

s.t. g(x,u) = 0 (6)

h(x,u) ≤ 0 (7)

si(ui − u0
i ) ≤ ui − u0

i ≤ si(ui − u0
i ) i = 1, . . . , n (8)

n
∑

i=1

si ≤ N (9)

si ∈ {0, 1} i = 1, . . . , n (10)

whereu = [u1, . . . , ui, . . . , un]T is the vector of control vari-
ables,u = [u1, . . . , ui, . . . , un]T , u = [u1, . . . , ui, . . . , un]T ,
s = [s1, . . . , si, . . . , sn]T is the vector of control variables
status, a status equal to 1 (resp. 0) means that the control
variable can (resp. can not) be moved, andN is the specified
maximum number of controls movements allowed.

Constraints (10) ensure that the status of any control variable
is either 0 or 1. Constraints (8) impose bounds on control
variables movement with respect to the base case and are
adapted from (4). Observe that if the status of a control
variable is equal to 1 (resp. 0) the latter is allowed to vary
between its bounds, (8) and (4) being equivalent (resp. is
frozen to its base case valueu0

i ). Finally, constraint (9)
imposes an upper limit on the number of controls that can be
moved and can be seen as policy constraint in power system
operation.

The solution of the OPFLC problem is very useful under
the following conditions: (i) the system does not have an
equilibrium point (i.e., constraints (6) are not met), (ii)at the
given operating point some operational limits are violated(i.e.,
constraints (7) are not satisfied), or (iii) the system operation
state is feasible (i.e., constraints (6-7) are met) but non optimal,
letting thus room to improve the objective function and thus
to move to a more convenient operation state.

Observe that in the formulation (5-10), for simplicity,
controls which may move in discrete steps (e.g., LTC tap
changes, shunt compensation steps) have been modeled in
the same way as continuous controls (e.g., generators active
power, etc.). This means that moving several discrete stepsis
seen as a single control action. However, the model could be
straightforwardly extended so as to take into account a discrete
step movement as a single control action.

The OPFLC problem (5-10) constitutes, in its general
form, a MINLP. However, solving the OPFLC problem as
a MINLP is computationally expensive, e.g., an enumerative
solution approach to this MINLP requires the solution of
∑N

i=1 Ci
n = n!

i!(n−i)! classical OPF problems corresponding
to all combinations of status variables values satisfying the
constraint (9). For instance, even for a small size problem with
n = 10 andN = 5 any MINLP approach has to choose among
637 integer combinations of status variables. To avoid such
extensive computations the traditional approach to the OPFLC
consists in solving the problem for beforehand specified values
of control variables statuss, and most often by usingsi = 1
(i = 1, . . . , n) [1]–[4].

C. OPFLC: minimization of the number of controls allowed
to move

An interesting particular case of the OPFLC problem is the
minimization of the number of controls allowed to move [1],
[2]. In this case the objective function (5) takes on the form:

f(x,u) =

n
∑

i=1

si (11)

andNmin = min
∑n

i=1 si is the optimal value which ensures
OPFLC problem feasibility.

Note that, for this particular objective, the constraint (9) is
removed from the formulation.

The determination ofNmin provides very valuable informa-
tion, since it helps choosingN in OPFLC formulation so as
to ensure problem feasibility, e.g., by choosingN ≥ Nmin.

IV. F IRST APPROACH: SOLVING OPFLCAS MPEC

A. Problem statement

The original OPFLC problem (5-10) can be transformed into
an equivalent MPEC problem, which we label OPFLC-MPEC:

min
x,u,s

f(x,u) (12)

s.t. g(x,u) = 0 (13)

h(x,u) ≤ 0 (14)

u ≤ u ≤ u (15)

(1− si)(ui − u0
i )

2 = 0 i = 1, . . . , n (16)

si(1 − si) = 0 i = 1, . . . , n (17)
n

∑

i=1

si ≤ N (18)

where constraint (17) replaces (10) by forcing controls status
si’s to take only values 0 or 1. Observe also that constraints
(8) and (10) of OPFLC formulation have been replaced by
equivalent constraints (15, 16, 17).

Note that the OPFLC-MPEC problem is highly non-convex,
due to the large set of discrete equilibria (stemming from strict
complementarity of solutions); hence, only local solutions
can be guaranteed. The feasible region of the problem is
the reunion of individual feasibility regions associated to all
possible values of status variablessi ∈ {0, 1}, ∀i = 1, . . . , n

satisfying (18), and for which there exists continuous solution
(x(s),u(s)) satisfying (13-15). Thus, the feasible region of
OPFLC-MPEC problem may be composed of many disjoint
regions.

B. Solution strategy: relaxation approach

We transform the OPFLC-MPEC problem (12-18) into a
NLP problem by an approach based on the relaxation2 of
complementarity constraints (16) and (17) [13]. We next solve
the NLP problem by a modified IPA.

2The four main classes of approaches used to transform the MPEC into a
NLP are briefly presented in the Appendix
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The OPFLC-MPEC relaxation approach takes on the form:

min
x,u,s

f(x,u) (19)

s.t. g(x,u) = 0 (20)

h(x,u) ≤ 0 (21)

u ≤ u ≤ u (22)

(1− si)(ui − u0
i )

2 ≤ θ i = 1, . . . , n (23)
n

∑

i=1

si ≤ N (24)

0 ≤ si ≤ 1 i = 1, . . . , n (25)

where complementarity constraints (17) have been relaxed
as constraints (25) and complementarity constraints (16) are
relaxed by a parameterθ > 0, so as to guarantee a strictly
feasible interior for the inequality constraints. In this approach
the relaxation parameterθ must be driven to 0 in the limit.

The barrier problem corresponding to (19-25) can be
straightforwardly obtained as in IPM [24]–[27]:

min
x,u,s,z

f(x,u)− µ

m
∑

i=1

ln z1i

− µ

n
∑

i=1

(ln z2i + ln z3i + ln z4i) (26)

− µ ln z5 − µ

n
∑

i=1

(ln z6i + ln z7i)

s.t. g(x,u) = 0 (27)

− h(x,u)− z1 = 0 (28)

u− u− z2 = 0 (29)

u− u− z3 = 0 (30)

(1− si)(ui − u0
i )

2 + z4i = θ i = 1, . . . , n (31)

N −
n

∑

i=1

si − z5 = 0 (32)

si − z6i = 0 i = 1, . . . , n (33)

1− si − z7i = 0 i = 1, . . . , n (34)

whereµ is the barrier parameter,m is the dimension of vector
h, andz = [ z1 z2 z3 z4 z5 z6 z7 ]T groups the slack variables.

We solve the barrier problem (26-34) for a decreasing
sequence of parameters(µ, θ)→ 0.

The perturbed Karush-Kuhn-Tucker (KKT) first order op-
timality conditions of the barrier problem (26-34) can be
obtained likewise as in the IPM [24]–[27], while theexact
conditions are obtained in the limit forµ = 0 andθ = 0.

C. Algorithm of OPFLC-MPEC approach

The outline of the algorithm used to solve the OPFLC-
MPEC problem is as follows:

1) Set k ← 0. Initialize variables as in IPA [24]–[27].
Choose relaxed and normal convergence tolerancesεr >

0 and 0 < ε < εr, respectively. Chooseµk > 0 and
θk > 0.

2) Perform an IPA iteration for the solution of the barrier
problem (26-34) for the current value ofµk andθk.

Setk ← k + 1.
Let µk

IPA be the estimate of the barrier parameter for
the next iteration within the IPA.

3) Check approximate convergence. If either primal feasi-
bility or dual feasibility [24]–[27] of the barrier problem
(26-34) is larger thanεr, go to step 2.

4) Check convergence. A (locally) optimal solution is
found and the algorithm terminates when the follow-
ing conditions are satisfied: primal feasibility and dual
feasibility are smaller thanε, complementarity gap,
objective function variation from an iteration to the next,
the barrier parameter, and the relaxation parameter fall
below some pre-defined tolerances [24]–[27].

5) Update the barrier parameter and the relaxation param-
eter:

µk ← max{µk
IPA, βµk−1, µmin} (35)

θk ← max{θk−1 µk

µk−1
, θmin} (36)

where0 < β < 1, andµmin andθmin are chosen equal
to their respective convergence tolerance. Go to step 2.

The features of this algorithm are:

• we use the multiple centrality corrections (MCC) IPA
[24], [27] for the solution of barrier problems of step 2;

• each barrier problem is solved with the accuracyεr;
• slower decrease of the barrier parameter as compared to

the MCC IPA;
• the relaxation parameterθ is updated in the same propor-

tion as the barrier parameterµ; both being driven to 0 in
the limit.

V. SECOND APPROACH: INTEGRAL CONSTRAINT

APPROXIMATION

A. Problem statement

An alternative formulation of the original OPFLC problem
(5-10) is to approximate the integral constraint (9) by smooth
nonlinear function (41), as in [7], which leads to the problem:

min
x,u

f(x,u) (37)

s.t. g(x,u) = 0 (38)

h(x,u) ≤ 0 (39)

u ≤ u ≤ u (40)
n

∑

i=1

(ui − u0
i )

2

αi + (ui − u0
i )

2
≤ N (41)

whereαi > 0 is a small positive number. Observe that the
above approach differs from the classical OPF formulation
(1-4) only by constraint (41). The latter approximates the
true integral constraint (9), preventing thus the optimization
problem from being a MINLP problem. Thus the statussi

of control variableui is approximated bysi ≃
(ui−u0

i
)2

αi+(ui−u0

i
)2

.
Obviously, the smallerαi the better the approximation of the
true integral constraint; hence, in the limit (αi → 0), the
status of variableui either si → 0 or si → 1. Henceforth,
this approach is called OPFLC-ICA, ICA standing for integral
constraint approximation.
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TABLE I

TEST SYSTEMS SUMMARY

system n g d b l t o s

Nordic32 60 23 22 81 57 31 4 12
IEEE118 118 54 91 186 175 11 9 14

Note that constraint (41) has been used in the context of
a fuzzy formulation of the OPF problem of generation cost
minimization [7]. The latter problem has been solved by a
SLP algorithm and hence this constraint has been used in
a linearized form within SLP iterations. Some sophisticated
heuristics have been proposed to handle the effect of this con-
straint linearization. Moreover, to prevent numerical problems,
αi’s have been kept constant during SLP iterations and equal
to αi = 0.01(ui − ui).

In this work we use the constraint (41) in the context of
full NLP OPF formulation and driveαi’s to zero at the same
pace with the barrier parameterµ. The main difficulty of an
IPA to solve (37-41) is that the feasible region shifts whenαi

decreases, which can lead to algorithm stalling, especially for
small values ofαi’s.

B. Algorithm to solve OPFLC-ICA problem

The algorithm to solve the OPFLC-ICA problem has the
same steps as that for the solution of OPFLC-MPEC problem
(see Section IV-C), except of:

• αi’s took the role ofθ;
• αi’s are initialized as:α0

i = 0.05(ui − ui);
• αi’s are updated at setp 5 as:

αk
i ← αk−1

i

µk

µk−1
(42)

• to prevent feasible region shifing a lower bound may be
imposed forαi’s, e.g.,αi = 0.0001(ui − ui).

VI. N UMERICAL RESULTS

A. Test systems characteristics

In this section we present some numerical results obtained
with the proposed approaches on two test systems: a 60-bus
system, which is a modified variant of the Nordic32 system
[28], and the IEEE118 system [29].

A summary of their characteristics is given in Table I,
where:n, g, d, b, l, t, o, s, andc denote the number of: buses,
generators, loads, branches, lines, transformers, transformers
with controllable ratio, and shunt elements, respectively.

All tests have been performed on a PC 1.7-GHz Pentium
IV with 512-Mb RAM.

B. Removing thermal congestions at minimal load curtailment
cost

We focus on the OPF problem of minimum load curtailment
cost to remove thermal congestions. We consider continuous
load curtailment only (compensated by generators partici-
pating in frequency regulation) as control variable. Equality
constraints are the AC bus active/reactive power flow equations

TABLE II

COMPARISON OF PROPOSED APPROACHES ONNORDIC32 SYSTEM

MPEC ICA
N nef obj iter time nef obj iter time

2 2 316.60 76 1.06
3 3 303.94 82 1.62 2 316.60 58 0.83
4 3 307.71 59 0.87
5 5 289.97 89 1.70 5 281.36 93 1.41
6 6 278.33 58 0.96 5 284.62 56 0.78
7 6 273.40 54 0.93 6 278.32 81 1.16
8 6 272.44 54 0.93 8 270.96 166 2.50
9 6 272.44 54 0.93 8 270.96 56 0.80
10 8 270.96 54 0.93 8 270.96 55 0.78

and imposed voltages of generators. Inequality constraints are
bounds on generator active/reactive powers, limits on branch
currents and maximum allowed percentage of load curtailment
at a bus, which we assume as 10% of the total bus load. Load
curtailment is performed under constant power factor.

We solve this problem for the Nordic32 system only.
We consider that following a line outage two branches are
overloaded of 14% and 16%, respectively. We also assume
that these overloads have to be removed very quickly which
prevents calling cheaper generation rescheduling but onlyto
act on faster and more expensive load curtailment.

When using the classical OPF approach, 8 loads (i.e.,
Nc = 8) share the effort of overloads removal, the MCC
IPA converging in 10 iterations while the CPU times of
optimization process being of 0.12 seconds.

Table II provides the results (number of controls effec-
tively moved nef , objective value, number of iterations to
convergence and CPU times of the optimization process, given
in seconds) obtained with both OPFLC approaches (MPEC
and ICA) for various values of maximal number of controls
allowed to moveN . In this case the minimal number of
controls allowed to move so as to ensure problem feasibility
is Nmin = 2.

The settings of IPA to solve the MPEC and ICA approaches
are given in Sections IV-C and V-B, respectively.

The settings used for the MPEC approach (see MPEC
algorithm of Section IV-C) are:µ0 = 1, θ0 = 1, µmin = 10−6,
θmin = 10−4, ε = 10−4, εr = 10−1, and β = 0.8,
respectively.

By looking closely to the results of this Table one can notice
that:

1) the number of iterations to convergence is in average
about 6 (resp. 8) times higher for MPEC (resp. ICA)
approach with respect to the classical OPF;

2) the CPU times is in average about 10 times higher
for both MPEC and ICA approaches compared to the
classical OPF;

3) the ICA approach is more robust than the MPEC one,
since the latter fails to converge for two values ofN .
These convergence problems can however be overcome
by slightly shifting the IPA settings (e.g., different
scheme of decreasing the barrier parameter, different
initial conditions, etc.) or applying another IPA such as:
predictor-corrector or pure primal-dual. Also according
to our experience the ICA approach is more robust
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than MPEC with respect to reasonable changes of IPA
settings;

4) sometimes the number of controls effectively moved
is slightly lower than the maximum number allowed,
nef < N . This happens in 2 cases (out of 7) for ICA
approach;

5) sometimes in order to find solutions where the number
of controls effectively moved is equal to the number
of controls of classical OPF (nef = Nc) one needs
to imposeN slightly higher thanNc. This holds true
especially for MPEC approach;

6) sometimes when incrementingN it is possible that the
OPFLC converges to the same solution (e.g., increment-
ing N from 8 to 9 (resp. 2 to 3) for MPEC (resp. ICA)
approach);

7) it is sometimes possible that an increment ofN leads
to a worse objective (e.g., incrementingN from 5 to 6
for ICA approach).

The items 4 to 7 mentioned above lead to suboptimal
behaviour of MPEC and ICA approaches. Despite these light
drawbacks, the ICA approach provides satisfactory results.

As regards the ICA approach, we have observed that,
when αi gets very small it sometimes happens that a very
small movement of a control variable makes its statussi

tending to 1 provided thatαi approaches 0 (much) faster
than (ui − u0

i )
2. In this case the number of controls which

have moved a reasonable amount is slightly lower thanN ,
leading thus to sub-optimal solution. This situation has been
also encountered in [7] and is the price to pay for using this
constraint. A possibility to partially avoid such situation is to
keep on decreasingαi only for those variablesui for which
a significant movement (ui − u0

i ) is observed and keepαi

constant for a variable as soon as the condition “ui − u0
i gets

small while (ui−u0

i
)2

αi+(ui−u0

i
)2

gets large” is detected.

C. Restoring a system equilibrium point at minimum load
curtailment cost

We focus on the OPF problem of minimum load curtailment
cost to restore a system equilibrium point. We consider again
continuous load curtailment only as control variable. Equality
constraints are the AC bus active/reactive power flow equations
and imposed voltage of generators. Inequality constraintsare
bounds on generator active power, limits on branch currents
and maximum allowed percentage of load curtailment at
a bus, which we assume as 10% of the total bus load.
Load curtailment is performed under constant power factor.
Generators reactive power limits have not been considered so
as to increase the degree of nonlinearity of the problem, or in
other words to make sure that the optimum always corresponds
to a saddle node bifurcation.

We solve this problem for IEEE118 system only. For the
sake of testing the approaches under stringent conditions
we have built a base case where the system load has been
increased with 2% above the system loadability limit. This
load increase has been performed proportionally to the initial
consumption of each individual load. Clearly, for this new load

TABLE III

COMPARISON OF PROPOSED APPROACHES ONIEEE118SYSTEM

MPEC ICA
N nef obj iter time nef obj iter time

8 8 721.0 72 1.84
9
10
11 11 452.6 69 1.82
12 11 469.9 75 1.94
13 12 372.3 66 1.72
14 12 456.9 117 5.06 14 322.2 90 2.30
15 14 384.2 262 11.03 14 321.4 102 2.75
16 14 338.4 231 15.32 14 320.5 72 2.00
17 16 215.4 231 13.64 15 314.4 61 1.56
18 15 314.5 55 2.64 17 298.5 64 1.62
19 15 314.5 60 2.87 17 298.0 59 1.55
20 17 300.7 72 3.29 19 294.4 63 1.61
21 17 297.8 55 2.50 19 294.4 64 1.72

level the system does not have an equilibrium point (i.e., any
power flow computation will diverge).

When using the classical OPF approach 19 loads share the
effort of restoring a system equilibrium point (i.e.,Nc = 19),
the MCC IPA converging in 26 iterations while the CPU times
of optimization process being of 0.62 seconds.

Table III provides the results obtained with both OPFLC
approaches (MPEC and ICA), using the same format as
Table II. In this case the minimal number of controls allowed
to move so as to ensure problem feasibility isNmin = 8.

The settings of IPA to solve the MPEC and ICA approaches
are the same as in the previous example (see Sections IV-C
and V-B, respectively).

Note first that all remarks made for the previous example
hold for this example as well.

We have noticed that for this very nonlinear problem the
MPEC approach behaves poorly, diverging for any value of
N in the interval[8 13]. Divergence in these cases typically
happens in the form of dual variables tending to infinity when
narrowing the bounds of the complementarity constraints’
interval. Despite various heuristic strategies used (see item 3
of previous Section) only in a very small number of such
cases convergence has been finally achieved. We believe that
this pathological behaviour is attributable to the high degree
of nonlinearity of the problem rather than to the increase
in problem size. Note also that the IPA algorithm used to
solve the MPEC approach does not contain special techniques
to deal with stringent MPEC problems, e.g., regularization
techniques, merit functions, etc. [13], [15]. It is therefore
expected that the use of ad hoc (commercial or academic)
MPEC solvers (e.g., LOQO, IPOPT, etc.) would significanlty
improve the robustness of MPEC approach.

On the other hand, the ICA approach behaves again satis-
factorily, only two divergent cases have been observed, which
have been fixed by IPA parameters shifting. Again, we have
observed that ICA is quite robust with respect to reasonable
variation of IPA parameter settings. Finally, despite the higher
degree of problem nonlinearity and problem size, the number
of iterations to convergence with ICA approach is in average
very close to that of the previous example, and only 2-3 times
larger than classical OPF approach.
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VII. C ONCLUSION

This paper has presented a formulation of the OPF problem
with a pre-specified number of controls allowed to move.
This tool is essential for the SO, especially in real-time
environments, providing the desired number of controls so as
to achieve a specified operation goal. Besides, this approach
yields a trade-off between the objective value and the number
of control actions used.

We have proposed and compared two alternative approaches
to the solution of the OPFLC problem, MPEC and ICA.
We have found that, when solved by an IPA without special
features to deal with degeneracy cases, the MPEC approach
often experiences numerical problems, especially for highly
nonlinear OPF problems. Clearly, to decide whether this ap-
proach is viable to solve OPFLC problems it will be necessary
to improve the robustness of the NLP solver used so as to
handle such degenerate problems more effectively. On the
other hand, the ICA approach is found to provide satisfactory
results and we believe that it may be successfully applied to
other OPF problems.

Future work concerns the extension of these techniques
to other (real-time) OPF problems such as: the removal of
(voltage and thermal) congestions or reactive power dispatch.
Another extension of the present work is the corrective
security-constrained OPF [30] with limited number of controls
that can be rescheduled in post-contingency states.
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APPENDIX

A. MPEC problem statement

Mathematical Programs with Equilibrium Constraints
(MPEC) can be generally stated as follows:

min
y

f(y) (43)

s.t. g(y) = 0 (44)

h(y) ≤ 0 (45)

c1i(y)c2i(y) = 0 i = 1, . . . , p (46)

c1i(y) ≥ 0, c2i(y) ≥ 0 i = 1, . . . , p (47)

where (46) are complementarity constraints, which express
that at least one of functionsc1i(y) or c2i(y) must be 0.
Complementarity is calledstrict if only one functions is 0
andnon-strict if both are 0.

Recently, due to the high robustness and maturity reached
by NLP solvers, there have been a large interest to reformulate
MPEC problems as NLPs, and solve them with classical NLP
solvers (e.g., SQP, IPM, active set identification, etc.) [9]–[15].

B. Main MPEC solution approaches

Four classes of approaches can be distinguished for the so-
lution of the MPEC problem using NLP solvers, as explained
hereafter.

1) Equivalent NLP reformulation approach: The simplest
reformulation of the MPEC problem consists in expressing
complementarity constraints by inequality constraints [9]–
[11]:

min
y

f(y) (48)

s.t.g(y) = 0 (49)

h(y) ≤ 0 (50)

c1i(y) ≥ 0, c2i(y) ≥ 0 i = 1, . . . , p (51)

c1i(y)c2i(y) ≤ 0 i = 1, . . . , p (52)

Alternatively, thep constraints (52) can be aggregated to a
single one [9]:

p
∑

i=1

c1i(y)c2i(y) ≤ 0,

or be expressed as equality constraints [11].
The main difficulty in solving the NLP (48-52) is related

to the failure of standard constraint qualifications (CQs),
especially the weaker Mangasarian-Fromovitz constraint quali-
fication3, and often the stronger linear independence constraint
qualification4 [9], [11]. If satisfaction of CQs fail then the set
of Lagrange multipliers at the optimum is unbounded which
can cause problems for traditional NLP solvers. Indeed, NLP
algorithms require the satisfaction of CQs in order to ensure
convergence.

Regularization techniques and other safeguards to deal with
degeneracy are required for NLP solvers so as to cope with
the difficulties posed by NLP formulation (48-52) [11], [14].
The (active-set) SQP algorithms have been found particularly
suitable for solving the NLP (48-52).

In the context of IPM, to cope with these difficulties, two
main classes of approaches have been proposed, based on the
principle of constraint relaxation or penalty functions.

2) Relaxation approach: The relaxation approach [11]–[13]
consists in relaxing (52) as:

c1i(y)c2i(y) ≤ θi i = 1, . . . , p (53)

where the relaxation parameterθi > 0 is driven to0 at the
optimum together with the barrier parameterµ [11]–[13]. The
IPM solver used should carefully manage the two conflicting
goals: that of decreasingµ, and consequently allowing ap-
proaching the feasible region boundary and that of restricting
the interior of the feasible region by relaxingθi’s.

In adition, bounds on complementarity functions can be also
relaxed, with a parameterδi > 0 [12]:

c1i(y) ≥ −δi, c2i(y) ≥ −δi i = 1, . . . , p

3i.e., there does not exist a single feasible point satisfying strict feasibility
(when all inequality constraints are strict)

4i.e., the gradients of the active inequality constraints and the gradients of
the equality constraints are linearly independent at the optimum
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Relaxing both (51) and (52) ensures a strict feasible domain.
In the limit eitherθi or δi must be driven to 0. The drawback
of this approach concerns the heuristic strategy to decide
which parameter must be driven to 0 for each complementarity
constraint.

3) Penalization approach: This approach consists in ap-
pending complementarity constraints (46) to the objectiveas
penalty functions [14]:

min
y

f(y) + ρ

p
∑

i=1

c1i(y)c2i(y)

where ρ > 0 is a penalty parameter. The critical point in
penalty approaches is the finding of a good initial value of
ρ > 0 as well as a robust heuristic technique to (possibly)
update during IPM iterations.

Note that a hybrid approach of both complementarity
constraints relaxation and penalty functions has been also
proposed [15]. Thus, (52) are relaxed as (53) and appended to
the objective:

min
y

f(y) + ρ′
p

∑

i=1

θi

θi’s becoming decision variables.
4) Smoothing approach: Finally, the class of smoothing

approaches [16] replaces complementarity constraints (46) by
the smoothed min-function:

φµ(c1i(y), c2i(y)) =
√

(c1i(y) − c2i(y))2 + 4µ2

− c1i(y) − c2i(y) = 0, i = 1, . . . , p

which has the property:

φµ(c1i(y), c2i(y)) = 0↔

c1i(y) ≥ 0, c2i(y) ≥ 0, c1i(y)c2i(y) = µ2

and

φ0(c1i(y), c2i(y)) = −2 min(c1i(y), c2i(y)).

This smoothed problem is solved for decreasing positive
values of parameterµ→ 0 by a non-interior point algorithm.
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