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Abstract

This paper deals with the solution of an optimal power flow (OPF) problem by the interior
point method (IPM). The latter is the most fashionable approach of this nonlinear program-
ming problem due to its speed of convergence and ease handling of inequality constraints.
Two interior point algorithms are presented and compared, namely the pure primal-dual and
the predictor-corrector respectively. Several implementation aspects of these IPM algorithms
are equally discussed. The OPF is formulated in rectangular coordinates which confers some
significant advantages because generally its objective and constraints are quadratic func-
tions. Among the large variety of OPF objectives, emphasis is put on two classical ones: the
minimization of generation cost and the minimization of active power losses. The solution
obtained by both algorithms prove to be robust for the above OPF sub-problems as well
as for a full OPF applied to the former objective, which is unanimously recognized as the
hardest problem to solve. Finally, numerical results on three test systems ranging from 60
to 300 buses are provided.

Keywords: nonlinear programming, interior point method, optimal power flow
AMS classification: ???

1 Introduction

The Optimal Power Flow (OPF) problem was first introduced by Carpentier in the early 60’s [1].
Since then it has become progressively an indispensable tool in power systems planning, opera-
tional planning and real-time operation, and that whatever the electricity market environment:
liberalized or not [2].
The OPF is stated in a general form as a nonlinear, non-convex, large-scale, static optimization
problem with both continuous and discrete variables. It acts on available control variables in
order to optimize some objective while satisfying network power flow equations, physical and
operational constraints.
First approaches of the complex OPF problem can be classified in: gradient methods [3], sequen-
tial quadratic programming [4, 5] and sequential linear programming [6]. The inconvenients of
these techniques involve the slow convergence especially in the neighborhood of the optimum for
the first two, and a rather limited field of application such as the optimization of the decoupled
active control variables for the third one.
The paper by Sun [7] constitutes a breakthrough at that time in two respects. Firstly it pro-
poses to solve directly the Karush-Kuhn Tucker (KKT) optimality conditions by the very efficient
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Newton method. Secondly it recommends sparsity techniques to considerably speed up the com-
putations. The weakness of this approach lies on the difficulty to identify inequality constraints
that are active at the optimum.
Although emerged in the middle 50’s [8] but largely developed by Fiacco and McCormick [9] the
Interior Point Method (IPM) was not very popular up to the outstanding paper by Karmarkar
[10]. The latter proved that IPM outperforms to a very large extent the classical simplex method
especially for large linear-programming problems. The application of IPM also to nonlinear
programming was the next logical step. IPM has thus various application in power systems,
e.g. minimization of generation cost [20, 43], minimization of active power losses [21, 20],
minimization of load shedding [22], maximization of loadability limit [23, 28], minimization of
congestion cost [41], maximization of social benefit [35, 34].
Meanwhile the IPM reached maturity. The primal-dual predictor-corrector interior point al-
gorithm proposed by Merhotra [11] became the benchmark of IPM. However, more recently,
a variant of this algorithm namely the multiple centrality correction technique, initially pro-
posed for linear programming [14], proved to be as good as the reference also for nonlinear
programming applications [26].
The salient features of the IPM concern its fast convergence and its adequate handling of in-
equality constraints by logarithm barrier functions. As any method there are also drawbacks:
the heuristic of decreasing the barrier parameter and the fact that slack variables and their cor-
responding dual variables must remain positive at every iteration which may drastically shorten
the Newton step length. To overcome these IPM flaws, non-interior point approaches of OPF
emerged such as: the unlimited point algorithm [29], the complementarity method [27], the
Jacobain Smoothing [28], etc. Although not perfectly rigurous mathematically some of them
prove convergence properties comparables with best interior-point algorithms.
The solution of an OPF encompasses three steps. The OPF is first solved by treating all
variables as continuous. Then some heuristic are used to set up the values of discrete variables
[18, 17, 19]. If the obvious technique of rounding-off of the latter to their nearest discrete
value has generally little effect on objective and constraints for on-load tap changer transformer
(OLTC) ratio, it requires some caution for shunt susceptance and phase shifter angle due to
their larger range of variation. Finally after setting the discrete variables a OPF is run again
to re-optimize continuous variables and ensure that all constraints are enforced following to
the set-up of discrete variables. Alternatively, to deal with all kind of variables simultaneously,
stochastic optimization techniques may be used such as evolutionary programming (e.g. genetic
algorithms [37, 36]), simulating annealing [38, 39], tabu search [40], etc.
As far as the IPM is of concern, two approaches were proposed to handle discrete variables:
either they are appended to the objective through penalty functions [30] or by using ordinal
theory [31].
Note also that the difficulty of solving an OPF increases as one wishes to take into account
constraints stemming from credible contingencies analysis, as in security constrained OPF [15,
16, 33, 34].
In this paper we solve various OPF problems while comparing two interior point (IP) based
algorithms, namely the infeasible 1 pure primal-dual algorithm and the infeasible primal-dual
predictor-corrector algorithm, called for the sake of brevity in the remaining of the paper PDIPA
and PCIPA respectively.
The paper is organized as follows. Section 2 introduces the OPF problem. Section 3 offers a
detailed overview of both PDIPA and PCIPA. Section 4 provides some numerical results while
some conclusions are drawn in Section 5.

1Infeasible reffers to the fact that a strictly feasible initial point is not mandatory



2 Statement of the Optimal Power Flow problem

2.1 Generalities

In this Section we formulate the OPF problem with voltages expressed in rectangular coordi-
nates, choice which will be explained later on.
Let us recall that the OPF is a nonlinear programming problem which aims at optimizing some
objective by acting on given control variables while satisfying some equality and inequality
constraints. All these concepts are successively described in the sequel.
Let N be the set of buses, G the set of generators, C the set of consumers (loads), B the set of
branches, L the set of lines, T the set of transformers, O the set of transformers with OLTC, P
the set of phase shifters and S the set of shunt elements. Let also nn, ng, nc, nb, nl, nt, no, np
and ns be the size of these sets.
In rectangular coordinates the complex voltage V i is expressed as:

V i = ei + jfi ∀i ∈ N (2.1)

where ei and fi are its real and imaginary part respectively, while the active and reactive bus
power injections take on the form:

Pi = −V 2
i

∑

j∈Ni

(Gsi + Gij) +
∑

j∈Ni

[(eiej + fifj)Gij + (fiej − eifj)Bij] (2.2)

Qi = +V 2
i

∑

j∈Ni

(Bsi + Bij) −
∑

j∈Ni

[(eiej + fifj)Bij + (eifj − fiej)Gij ] (2.3)

where Gsi and Bsi are the shunt conductance and susceptance at bus i, Gij and Bij are the
conductance and susceptance of the branch linking buses i and j, V 2

i = e2
i + f2

i is the module
of voltage at bus i and Ni is the set of buses connected by branches to the bus i.

2.2 Objective function

Many OPF objectives can be thought of, let us quote among the most usual ones: minimization
of generation cost, minimization of active power losses, minimization of reactive power losses,
minimization of cost to remove a congestion, minimization of load shedding amount, maximiza-
tion of loadability limit, maximization of social benefit, etc.
In this paper we deal with two classical objectives, namely minimum generation cost (2.4) and
minimum active power losses (2.5).

min
∑

i∈G

c0i + c1iPgi + c2iP
2
gi +

∑

i∈C

ciφiPci (2.4)

min
∑

i∈N

∑

j∈N

G2
ij

[

(ei − ej)
2 + (fi − fj)

2
]

(2.5)

where c0i, c1i, c2i, are cost coefficients describing the cost curve (usually assumed to do not
include terms higher than quadratic) of the i-th generator and Pgi is its active output, while for
the load i, ci represents a compensation price (requested in case of curtailment), φi its maximum
allowable percentage of load shedding and Pci its active consumption. Note that the last term in
(2.4) has the role to help the OPF to converge in a situation when without curtailing load some
constraints can not be enforced and hence there is no optimal solution. These compensation
prices are set to very large values such that, unless necessary, no load is curtailed φi → 0, ∀i ∈ C
and therefore the optimal generation dispatch is not disturbed. Incidentally the presence of this
term makes sense in some liberalised electricity markets.



2.3 Control variables

At this point of the presentation we only enumerate most common power system controls:
generators active output, generators reactive output or voltage, OLTCs transformer ratio, phase
shifters angle, shunts element susceptance, loads active and reactive power, TCSC reactance,
SVC susceptance, etc., while a deeper insight will be provided in Section 2.6.

2.4 Equality constraints

Equality constraints mainly involve nodal active and reactive power balance equations:

Pgi − (1 − φi)Pci − Pi = 0 i ∈ N (2.6)

Qgi − (1 − φi)Qci − Qi = 0 i ∈ N (2.7)

where Pgi and Qgi are the active and reactive power of the i-th generator Pci and Qci are the
active and reactive consumption of the i-th load, and Pi, Qi are the power injections at the i-th
bus. Additional equality constraints concern: maintaining a generator voltage at an imposed
value (if requested):

e2
i + f2

i − (V imp
i )2 = 0 i ∈ G (2.8)

maintaining the ratio of a pure phase shifter to an imposed value:

a2
1i + a2

2i − (aimp
i )2 = 0 i ∈ P (2.9)

where ai = a1i + ja2i i ∈ P is the phase shifter ratio in rectangular coordinates, and finally
keeping a power transfer through an interface F (e.g. between neighbor countries) to a scheduled
value:

∑

i∈Fj

Ti − T imp
j = 0 j ∈ Fj (2.10)

where Fj is the set of such interfaces.

2.5 Inequality constraints

An OPF encompasses two types of inequality constraints: operational (aimed to ensure a secure
operation of the system) and physical limits of equipments. The former involve limits on branches
current and voltages magnitude:

(

G2
ij + B2

ij

) [

(ei − ej)
2 + (fi − fj)

2
]

≤ (Imax
ij )2 i, j ∈ N (2.11)

(V min
i )2 ≤ e2

i + f2
i ≤ (V max

i )2 i ∈ N (2.12)

We have chosen to express constraints on (longitudinal) branch current rather than on active
power flowing through the branch because overcurrent protections and conductor heating have
to do with Ampères and not MegaWatts. Note, however, that active power flow constraints can
be easily incorporated if needed.
Finally, physical bounds of some power system devices can be expressed as:

Pmin
gi ≤ Pgi ≤ Pmax

gi i ∈ G (2.13)

Qmin
gi ≤ Qgi ≤ Qmax

gi i ∈ G (2.14)

rmin
i ≤ ri ≤ rmax

i i ∈ O (2.15)

φmin
i ≤ φi ≤ φmax

i i ∈ C (2.16)

bmin
i ≤ bi ≤ bmax

i i ∈ S (2.17)

tan(ϕmin
i ) ≤

a2i

a1i
≤ tan(ϕmax

i ) i ∈ P (2.18)



where for the i-th generator Pmin
gi , Pmax

gi (resp. Qmin
gi , Qmax

gi ) are its active (resp. reactive)

output limits, for the i-th OLTC transformer rmin
i and rmax

i are bounds on its ratio, for the i-th
load φmin

i and φmax
i are limits on its allowed curtailment percentage, for the i-th shunt bmin

i and
bmax
i are bounds on its susceptance, and finally for the i-th phase shifter ϕmin

i and ϕmax
i are

the minimal and maximal value of its angle. Functional inequality (2.18) is valid as long as the
ϕ ∈ (−π/2, π/2), which is hopefully the case of real-life phase shifters.
For the sake of clarity we have restricted ourselves to the most widespread control variables
and their relative constraints only. Thus FACTS devices such as: SVC, TCSC, UPFC, etc.
are ignored albeit our OPF can take into account most of them. For instance SVC and TCSC
susceptance can be handled by a constraint of type (2.17).
We implemented the OPF expressing voltages in rectangular coordinates due to the fact that in
many OPF applications (e.g. objectives (2.4) and (2.5), minimization of reactive power losses,
etc.) the objective and constraints are quadratic functions which exhibit three advantages:

1. Hessian matrix of a quadratic function is constant (e.g. second derivatives of load flow
equations, branch current and voltage bounds constraints, etc.)

2. the Taylor series development of a quadratic function terminates at second order terms
without truncation error

3. higher order terms are straightforwardly evaluated.

On the other hand, a (small) disadvantage is the handling bus voltage magnitudes constraints
(2.8,2.12) and phase shifter angle constraints (2.9,2.18) as functional constraints instead of simple
bounds as when using polar coordinates.
Very good results have been reported with a rectangular OPF for several optimization problems
[25, 32].

2.6 Full OPF and decoupled sub-problems

The benchmark approach when solving an OPF problem is to make use of all means of control
available and take into account all the constraints of the problem, what is known as “full” OPF,
e.g. the optimization of (2.4) or (2.5), subject to (2.6-2.18). An inconvenient of this approach
is its dimensionality while not all controls can considerably improve the objective.
Alternatively, based on the physically (generally) weak coupling in the transmission grid between
active powers and voltage magnitudes and between reactive powers and voltage angles, in litera-
ture a distinction is often made between two types of OPF sub-problems: optimization of active
power flows and that of reactive power flows [18, 16]. According to the problem they primarily
affect, control variables can in turn be divided into: active power variables (e.g. generator active
output, load curtailment, phase shifter angle, etc.) and reactive power variables (e.g. gener-
ator reactive power or voltage, OLTC transfomer ratio, shunt susceptance, etc.). Optimizing
(2.4), subject to (2.6,2.11,2.13,2.16,2.18) constitutes an example of active power optimization
sub-problem, while optimizing (2.5), subject to (2.6,2.12,2.14,2.15,2.17) is an example of reactive
power optimization sub-problem.



3 Primal-Dual Interior Point Method

3.1 Obtaining the optimality conditions

The OPF formulation (2.4 or 2.5 and 2.6-2.18) can be compactly written as a general nonlinear
programming problem:

min f(x) (3.19)

subject to : g(x) = 0 (3.20)

hℓ ≤ h(x) ≤ hu (3.21)

xℓ ≤ x ≤ xu (3.22)

where dimension of unknowns vector x, and functions g(x) and h(x) are n, m and p respectively.
Vectors and matrix are in bold through the whole paper.
In order to simplify the presentation we encompass the simple bound constraints (3.22) into the
functional inequality constraints (3.21).
IPM encompasses four steps. First, one transforms the inequality constraints into equality
constraints by adding slack variables to inequality constraints. Second, non-negativity conditions
are implicitly handled by appending them to the objective function as logarithmic barrier terms.
Third, one transforms the equality constrained optimization problem into an unconstrained
optimization one. Fourth, one solves the perturbed KKT first order optimality conditions by the
Newton method. It is noteworthy to remark that IPM combines three concepts: logarithmic
barrier function to handle inequality constraints [8], Langrage theory of optimization subject to
equality constraints [9] and Newton method.
Following what we said above one transforms the inequality constraints into equality constraints
by adding slack variables to inequality constraints.

min f(x) (3.23)

subject to : g(x) = 0 (3.24)

h(x) − hℓ − sℓ = 0 (3.25)

−h(x) + hu − su = 0 (3.26)

sℓ, su ≥ 0 (3.27)

Now non-negativity conditions (3.27) are added to the objective function as logarithmic barrier
terms, resulting the following equality constrained optimization problem:

min f(x) − µ(ln sℓ + ln su) (3.28)

subject to : g(x) = 0 (3.29)

h(x) − hℓ − sℓ = 0 (3.30)

−h(x) + hu − su = 0 (3.31)

where µ is a positive scalar called barrier parameter which is gradually decreased to zero as
iteration progresses. At the heart of IPM is the Fiacco & McCormick theorem [9], which proves
that as µ tends to zero, the solution x(µ) approaches x⋆, the solution of the problem.
The Lagrangian of the above equality constrained optimization problem is:

Lµ = f(x) − µ(ln sℓ + ln su) − λ
Tg(x) − π

T
ℓ (h(x) − hℓ − sℓ) − π

T
u (−h(x) + hu − su) (3.32)

where the vectors of Lagrange multipliers λ, πℓ and πu are called dual variables.



The perturbed Karush-Kuhn-Tucker (KKT) first order necessary optimality conditions of the
problem are:

∇sℓ
Lµ = −µS−1

ℓ e + πℓ = 0 (3.33)

∇suLµ = −µS−1
u e + πu = 0 (3.34)

∇πℓ
Lµ = −h(x) + hℓ + sℓ = 0 (3.35)

∇πuLµ = h(x) − hu + su = 0 (3.36)

∇λLµ = −g(x) = 0 (3.37)

∇xLµ = ∇f(x) −∇g(x)λT −∇h(x)(πℓ
T − πu

T ) = 0 (3.38)

where e = [1, .., 1]T , Sℓ = diag(sℓ1, ..., sℓp) and Su = diag(su1, ..., sup).

3.2 Solving for Newton direction

The perturbed KKT optimality conditions ae solved by Newton method. As the goal is not to
solve completely this nonlinear system for a given value of µ, one makes a single iteration solving
it approximately and then diminishing the value of µ. The linear symmetric system to solve is:


















µS−2
ℓ 0 I 0 0 0

0 µS−2
u 0 I 0 0

I 0 0 0 0 −∇h(x)
0 I 0 0 0 ∇h(x)
0 0 0 0 0 −∇g(x)

0 0 −∇h(x)T ∇h(x)T −∇g(x)T ∇2
xLµ





































∆sℓ

∆su

∆πℓ

∆πu

∆λ

∆x



















= −



















∇sℓ
Lµ

∇suLµ

∇πℓ
Lµ

∇πuLµ

∇λLµ

∇xLµ



















(3.39)

where
∇2

xLµ = ∇2
xf(x) −∇2

xg(x)λT −∇2
xh(x)(πℓ

T − πu
T ) (3.40)

In order to reduce the dimensionality of the problem and consequently to speed up computations,
alternatively one can solve first the reduced system (3.41) for ∆x and ∆λ:

[

0 −∇g(x)

−∇g(x)T
Hd

]

[

∆λ

∆x

]

= −

[

∇λLµ

ζ

]

(3.41)

where
Hd = ∇2

xLµ + µ∇xh(x)T (S−2
ℓ + S−2

u )∇xh(x) (3.42)

and
ζ = ∇xLµ + ∇xh(x)T [µ(S−2

u ∇πuLµ − S−2
ℓ ∇πℓ

Lµ) + ∇sℓ
Lµ −∇suLµ] (3.43)

and then compute:

∆sℓ = +∇h(x)∆x −∇πℓ
Lµ ∆πℓ = −µS−2

ℓ ∆sℓ −∇sℓ
Lµ (3.44)

∆su = −∇h(x)∆x −∇πuLµ ∆πu = −µS−2
u ∆su −∇suLµ (3.45)

3.3 Updating of variables

At the k-th iteration primal and dual variables are updated as follows:

sk+1
ℓ = sk

ℓ + αk
p∆sk

ℓ π
k+1
ℓ = π

k
ℓ + αk

d∆π
k
ℓ (3.46)

sk+1
u = sk

u + αk
p∆sk

u π
k+1
u = π

k
u + αk

d∆π
k
u (3.47)

xk+1 = xk + αk
p∆xk

λ
k+1 = λ

k + αk
d∆λ

k (3.48)



where αp ∈ (0, 1] and αd ∈ (0, 1] are the primal and dual step length. The maximum step length
that can be taken in the Newton direction is established such that the positiveness of slack
variables and their corresponding dual variables is preserved, that is:

αk
p = min

{

1, γ min
∆sk

i
<0

−sk
i

∆sk
i

}

αk
d = min

{

1, γ min
∆πk

i
<0

−πk
i

∆πk
i

}

(3.49)

where γ ∈ (0, 1) is a safety factor aiming to ensure strict positiveness of slack variables and their
corresponding dual variables and sk

i (resp. πk
i ) stands for either sk

ℓi or sk
ui. (resp. πk

ℓi or πk
ui).

Since the aim is to take the highest step possible in the Newton direction the trend is to chose
a high value for this parameter, a usual value being γ = 0.99995.
The coupling of primal and dual variables into the dual feasibility conditions in the system (3.33)
requires the use of a common step length:

αk
p = αk

d = min
{

αk
p, α

k
d

}

(3.50)

Note, however, that situations of very poor centered iteration may occur (when some comple-
mentarity products are too small while other are too large) and consequently either primal or
dual step length is (very) close to zero while the other may have a significant value. In such case
and it would be a waste of time to do not update primal and dual variables separately. Moreover
this could help the algorithm to recover faster from such spiny situation. In our implementation
we take a common step length as long as αk

p, α
k
d ≥ αmin (tipically αmin = 0.1), and separate

step lengths otherwise.
Note finally that the literature reports very good results with both common [20, 25] and separate
step length [21, 23] for nonlinear programming, while for the linear programming the use of
separate step lenghts has proven slightly more efficient than a common step.
As a general remark, in IP algorithms all parameter choice require some tuning for a given
network, objective and constraints.

3.4 Reducing the barrier parameter

The complementarity gap is defined as the residual of complementarity constraints:

ρk = sT
ℓ πℓ + sT

u πu (3.51)

An heuristic inspired from LP and convex QP is to reduce the barrier parameter proportionally
to the complementarity gap [12]:

µk+1 = σk ρk

2(m + p)
(3.52)

where σ ∈ [0, 1] is a centering parameter expressing the expected, but not necessarily realized,
reduction of complementarity gap. This parameter is a compromise between feasibility and
optimality. The extreme value σ = 0 (resp. σ = 1) corresponds to putting emphasis on
satisfying optimality (resp. feasibility) only. A typical initial value is σ = 0.2, while during
the iterative process best IPM performances are reported when σ ∈ [0.1, 0.2] [12, 24]. Since
generally feasibility may be reached in a few iterations it makes sense to focus in the subsequent
iterations more and more on attaining optimality of the feasible point, that is to gradually reduce
σ towards 0.1 [24].
The choice of µ0 is critical for the algorithm performance. There is no universal panacea for this
choice, it depends on the specific problem one deals with. Its choice should avoid that constraints
become active at too early during the iterative process which can worse the convergence or even



jam. Admittedly the PDIPA is more sensitive to this choice than the PCIPA one. Broadly
speaking µ0 may be chosen in the interval [0.01, 1000], more comments about this initialization
will be provided in Section 4.

3.5 Convergence criteria

The convergence is reached and the iterative process terminates as soon as primal feasibility
(3.53), scaled dual feasibility (3.54), scaled complementarity gap (3.55) and a scaled objective
function variation from an iteration to the next (3.55) fall below some tolerances:

max {max {hℓ − h(x)} , {h(x) − hu} , ||g(x)||∞} ≤ ǫ1 (3.53)

||∇f(x) −∇g(x)λT −∇h(x)(πℓ
T − πu

T )||∞
1 + ||x||2 + ||λ||2 + ||πℓ||2 + ||πu||2

≤ ǫ1 (3.54)

ρ

1 + ||x||2
≤ ǫ1 (3.55)

|f(xk) − f(xk−1)|

1 + |f(xk)|
≤ ǫ2 (3.56)

In addition one may also require the barrier parameter to be smaller than a specified tolerance
µ ≤ ǫµ. Typical tolerances are ǫ1 = 10−4, ǫ2 = 10−6 and ǫµ = 10−6. A point which satisfies
inequalities (3.53 - 3.55) is called a KKT point of accuracy ǫ1.

3.6 Choice of an initial point

A great advantage of the IP based algorithms is that a strictly feasible initial point is not
required, only the non-negativity conditions sℓ, su,πℓ,πu > 0 must be satisfied at each iteration.
Besides convergence performance of IP algorithms can be improved if some euristics are used as
explained in the sequel.
We recommend to initialize x0 as the solution of a load flow computation. If this solution is not
available beforehand, we first set bounded control variables (see eq. 3.22) at the middle point of
their interval of variation, while the voltages vector is next obtained by running a standard load
flow program. Conversely, chosing a flat start for voltages vector may deterioarate algorithms
convergence performance.
Slack variables are initialized as suggested in [24, 25]:

s0
ℓ = min

{

max
{

δh∆,h(x0) − hℓ

}

, (1 − δ)h∆
}

(3.57)

s0
u = min

{

max
{

δh∆,hu − h(x0)
}

, (1 − δ)h∆
}

(3.58)

where h∆ = hu − hℓ and chosing δ ∈ [0.1, 0.3] offers almost equally good results.
The corresponding dual variables are computed as:

π
0
ℓ = µ0(S0

ℓ )
−1e π

0
u = µ0(S0

u)−1e (3.59)

Finally, Lagrange multipliers relative to equality constraints (2.6-2.9) are set λ = 0.

3.7 PDIPA summary

PDIPA can be outlined as follows:



1. Initialize primal and dual variables of the problem (see Section 3.6), paying attention as
the non-negativity conditions (3.27) be satisfied. Choose the value of safety, centering and
barrier parameters.

2. Compute Newton direction by solving the system of equations (3.39).

3. Determine the step size length (3.50) and update the solution (3.46).

4. Compute the barrier parameter µ by (3.52).

5. If convergence criteria (3.53-3.56) are met, then optimal solution is found, otherwise go
back to 2.

3.8 Predictor-corrector algorithm

We now describe the PCIPA which belongs to the family of higher-order IP methods [11, 13, 14].
The latter are motivated by the observation that the computational burden to factorize the ex-
tended Hessian matrix is generally much more expensive than the solution of the already factor-
ized system. The aim of these methods is to yield an improved search direction by incorporating
higher-order information into (3.33), and that with little additional computational effort.
Now instead of updating iteratively the unknown vector, say y as in the Newton method,
we merely introduce the new point yk+1 = yk + ∆y directly into the Newton system (3.39),
obtaining:
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where
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is the Hessian matrix and Πℓ = diag(πℓ1, ..., πℓp), Πu = diag(πu1, ..., πup).
What differs with respect to the Newton system (3.39) are the ∆ terms from the right-hand side
and the diagonal terms of the first two lines relative to the complementarity constraints. The
latter modification results from the subsequent transformations (allowed because s0, s0 +∆s > 0
by definition):

−µ(s0 + ∆s)−1 + π0 + ∆π = 0 ⇔ (s0 + ∆s)(π0 + ∆π) = µ ⇔

π0∆s + s0∆π = µ − s0π0 − ∆s∆π ⇔ s−1
0 π0∆s + ∆π = µs−1

0 − π0 − s−1
0 ∆s∆π

where s (resp. π) stands for any of sk
ℓi or sk

ui. (resp. πk
ℓi or πk

ui).
Observe that this system cannot be solved directly because the higher-order terms in (3.60) are
not known in advance.
Merhotra proposes a two steps procedure involving a predictor and a corrector steps, which we
describe in the sequel [11].



3.9 The predictor step

The predictor step objective is two-fold: to approximate higher-order terms in (3.60) and to
dynamically estimate the barrier parameter µ.
To this purpose one solves the system (3.60) for the affine-scaling direction, obtained by ne-
glecting in its right-hand side the higher-order terms and µ, that is:
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Next, the step length which would be taken along the affine scaling direction if the latter was
used is determined as for the PDIPA (3.50).
The affine complementarity gap ρ̃ is then estimated:

ρ̃k = (sk
ℓ + α̃p∆s̃ℓ)

T (πk
ℓ + α̃d∆π̃ℓ) + (sk

u + α̃p∆s̃u)T (πk
u + α̃d∆π̃u) (3.63)

Finally, an estimate µ̃k for µk+1 is obtained from:

µ̃k = min
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, 0.2




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ρ̃k

2(m + p)
(3.64)

The aim of this adaptive scheme is based on the principle: the larger the decrease in comple-
mentarity gap from affine direction, ρ̃k ≪ ρk, the larger the decrease of affine barrier parameter
µ̃k, and vice-versa.

3.10 The corrector step

The actual Newton step is computed from:
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It is valuable to remark that the predictor-corrector procedure involves at every iteration the
solution of two linear systems of equations with different right-hand sides while relying on the
same matrix factorization (done on the predictor step). The extra computational burden with
respect to the PDIPA is only one solution of the corrector system of equations with the matrix
already factorized and the additional test to compute µ̃k. Generally, this increase of elapsed
time per iteration is largely offset by a reduction of the overall computing time, thanks to a
diminution of iterations count, as it will be shown in Section 4.
Note finally that, as suggested in Ref [25], higher-order terms h(α̃∆x̃) and g(α̃∆x̃) are com-
puted only if these functions are quadratic, otherwise the usual gain in computational time
comparatively to PDIPA could disappear.



3.11 Sparsity techniques

We end this Section about IPM with a critical implementation issue. The major computational
effort in IPM is the solution of the large, sparse linear system (3.39 as for PDIPA, or (3.39) as
for PCIPA). It is therefore crucial to use efficient methods for their solution. It is required the
use of a good solver of such system on the one hand, and an adequate order of equations and
unknowns of the system, on the other hand.
As regards the solver we rely on the sparse object-oriented library SPOOLES [42]. The latter, to
best of our knowledge, is not widely used but exhibits excellent performance of its linear algebra
kernel (see also Netlib web-site: www.netlib.org).
Second, as the factorization of augmented Hessian matrix is by far the most computational
burden task of an IPM iteration, the order of equations and unknowns should be done such
that to minimize the number of fill-ins during the factorization and consequently to speed up
matrix factorization. To this end three types of data structures have been proposed in the
literature [7, 32, 30]. Inspired by the former we place the control variables in the following order
[Pg, Qg, φ, b, r, a1, a2] at the top of the vector x. The latter is then filled for each bus i with
state variables fi, ei and λPi

, λQi
, the Lagrange multipliers corresponding to active and reactive

power balance (see eq. 2.6). [fi, ei, λPi
, λQi

i ∈ N ] constitutes a nodal block of 4x4, similar to
the nodal admittance matrix.

4 Numerical results

In this section we present some numerical results of three OPF applications while comparing
both PDIP and PCIP algorithms performance. The OPF has been coded in C++ and runs
under Cygwin environment. It has been tested on three test systems, namely a 60bus system
which is a modified variant of the Nordic32 system, and the standard IEEE118 and IEEE300
systems. A summary of these test systems is given in Table 1. All tests have been carried out
on a Pentium IV PC of 1.7-GHz and 512-Mb RAM. All simulations have been performed with
the following parameters: γ = 0.99995, σ0 = 0.2, δ = 0.2, while tolerances used when checking
convergence are ǫ1 = 10−4, ǫ2 = 10−6 and ǫµ = 10−6 (see Section 3.5). Note finally that in all
cases that follow we start from a converged load flow solution (see Section 3.6).

Table 1: Summary of test systems
system nn ng nc nb nl nt no np ns

Nordic32 60 23 22 81 57 31 4 0 12
IEEE118 118 54 91 186 175 11 9 0 14
IEEE300 300 69 198 411 282 129 50 1 14

4.1 Minimization of generation cost

We now focus on minimizing the overall cost of all generators active output (2.4). The control
variables are the active power of generators and the phase shifter angle (for the IEEE300 system
only). The equality constraints are the bus active and reactive power flow equations (2.6),
imposed voltage of generators (2.8) and imposed ratio of phase shifter (2.9). The inequality
constraints include limits on: generators active power (2.13), branch currents (2.11) and phase
shifter angle (2.18).
For IEEE118 and IEEE300 systems we have considered a quadratic cost curve for all generators
participating at optimization, while for Nordic32 system we have chosen a linear cost curve
(c2i = 0, ∀i ∈ P in 2.4).



Table 2 displays the number of iterations to convergence and the CPU time 2 in seconds of
the two algorithms under study as well as the number and the type of binding constraints at
optimum and the size of the OPF (see 3.19-3.22).

Table 2: Iterations, CPU time, active constraints and OPF size
iterations CPU time active constraints OPF size

system PDIPA PCIPA PDIPA PCIPA Pg I total n m p
Nordic32 14 8 0.34 0.25 14 5 19 141 142 170
IEEE118 10 9 0.51 0.51 3 0 3 254 289 323
IEEE300 12 6 1.26 0.70 4 4 8 657 669 769

Both algorithms behave extremley well in all cases, as it is known that this is the mildest among
OPF sub-problems. In order to assess the robustness of algorithms to tackle this problem we
intentionally worsen the conditions of the tests. For instance, in the Nordic32 system we have
chosen the generators cost curve such that at optimum more than a half of them reach their
minimal or maximal active power output whereas 5 branch currents are at their maximum
value, which explains at some extent the slightly higher number of iterations needed. Also for
the IEEE300 system, at the initial point to be optimized 6 branches are overloaded but both
algorithms cope with this congestion.
As expected, due to the account of higher-order terms which improve centrality and therefore
convergence, the PCIPA algorithm outperforms the PDIPA one in terms of computational time
while converging to the same optimum.
For the IEEE300 system the presence of the phase shifter among the control variables not only
improves the value of the objective function but is also beneficial for the algorithms performance.
Thus, if we remove the phase shifter angle from the control variables list, the PDIPA needs one
extra iteration to converge while the PCIPA three.
As regards the initial value of the barrier parameter we set µ0 = 0.1 if generators cost curves
are quadratic, and µ0 = 1 if generators cost curves are linear. The idea behind this choice is
that, for a given value of µ0, more linear is the objective function, faster constraints may become
active, fact that worsens the convergence. In other words, to ensure a rather smooth approach
of generators active output limits when generators cost curves are linear, we penalize further
these constraints during the optimization process, than if generators cost curves are quadratic.
Moreover, in systems containing phase shifters we set µ0 = 100 in order to avoid sharp phase
shifter angle variations at early iterations.
Last but not least, dual variables at optimum yield very precious information. They are nothing
but the sensitivity of the objective to a small constraint shift. For instance, the dual variable
(Lagrange multiplier) associated with each power flow equation represents the variation of the
overall generation cost for an increment of load at that bus. They are called nodal prices and
are used as a method of pricing in some deregulated electricity markets [2]. As regards the dual
variables corresponding to inequality constraints, they are all zero, unless the constraint is active
(according to the complementarity conditions).

4.2 Minimization of active power losses

We now concentrate on another OPF sub-problem, the minimization of active power losses,
counted as the sum of active losses over all branches of the system (2.5). The control variables
are slack generator active power, generators reactive power, OLTC transformers ratio and shunt
susceptance. The equality constraints are the bus active and reactive power balance (2.6). The

2CPU time concerns the optimization process only except of processing data and display of results



inequality constraints concern bounds on: slack generator active power, generators reactive
power (2.14), voltage magnitudes (2.12), OLTC transformer ratio (2.15) and shunt susceptance
(2.17).
As regards bounds on voltages, we imposed that the latter stay between 0.95 pu and 1.05 pu in
all busses.
Table 3 presents the results obtained with the two algorithms, the binding constraints at the
optimum and the size of the OPF (see 3.19-3.22).

Table 3: Iterations, CPU time, active constraints and OPF size
iterations CPU time active constraints OPF size

system PDIPA PCIPA PDIPA PCIPA V Qg r b total n m p
Nordic32 11 8 0.31 0.26 21 0 0 4 25 161 120 102
IEEE118 13 10 0.59 0.54 15 12 0 4 31 313 236 196
IEEE300 16 14 1.59 1.46 60 23 1 4 88 733 600 434

Once again both algorithms perform well also for this problem which, owing to the nonlinear
behavior of reactive power, is unanimously recognized as being among the toughest OPF sub-
problem to optimize.
As bus voltages are free to vary between bounds, in order to reduce active losses both algo-
rithms tend to increase voltages to their upper bound which explains the quite high number
of active voltage constraints. Conversely, generators hitting their minimal reactive power limit,
the tap changers and shunt compensation attaining their limits prevent some voltages to be
further increased. The first situation is the case of IEEE118 and IEEE300 systems, where many
generators have a (very) narrow reactive capability.
The Nordic32 was the easiest system to optimize because at the initial point all voltages belong
to their allowable variation interval and most generators have rather large reactive capability. In
contrast, IEEE300 was the hardest system to optimize due to the (very) tight reactive capability
of many generators as well as the very broad voltage profile at the initial point, voltages being
in the range of 0.92-1.08 pu while the admissible bounds are 0.95-1.05 pu.
Initial value of losses in the systems is 164.76 MW for the Nordic32, 132.86 MW for IEEE118
and 408.55 MW for IEEE300 respectively. After optimization the reduction of losses is of 7.90%
for the Nordic32, 12.31% for IEEE118 and 5.37% for IEEE300 respectively.
For this problem we set the initial value of the barrier parameter to µ0 = 0.01. A value of
µ0 = 0.1 provides also quite similar results.

4.3 Optimization by a full OPF

We now aim at minimizing, by means of a full OPF, the generation cost (2.4) by playing on
all control variables described in Section 4.1 and 4.2. We moreover added the load curtailment
percentage (φi, ∀i ∈ C) as control variable allowing a shedding up to 10 %. This optimization
is subject to equality constraints (2.6 and 2.9) and inequality constraints (2.11-2.18).
Let us remark that in this case the active losses are implicitly taken into account by the re-
active control variables (OLTC ratio, shunt susceptance, etc.) and assigned to the cheapest
generator(s).
No load is curtailed in any case due to their prohibitive cost we have chosen. Clearly, if load
shedding compensation prices are diminished some of them will be curtailed.
Table 4 presents the number of iterations to convergence, the CPU time for the two algorithms,
the number and type of binding constraints at optimum, and the dimension of the OPF.
The higher number of active constraints than when solving the sub-problems of Section 4.1 and
4.2 separately is due to the larger number of control variable used, an important contribution



Table 4: Iterations, CPU time, active constraints and OPF size
iterations CPU time active constraints OPF size

system PDIPA PCIPA PDIPA PCIPA Pg Qg φ I V r b total n m p
Nordic32 24 14 0.92 0.65 15 1 22 5 26 0 4 73 201 142 230
IEEE118 18 11 1.28 0.90 3 8 91 3 25 0 5 135 304 289 491
IEEE300 22 16 3.17 2.78 3 26 181 4 59 3 2 278 791 669 903

having those relative to load curtailment (see column φ).
The observations made in Section 4.1 and 4.2 concerning the performance of PDIPA and PCIPA
are equally valid for the tests carried out with the full OPF.
We finally comment on the CPU time. The development of any software is a trade-off between
computational speed and the clarity of its code. Up to now we have encouraged the latter to
the detriment of the former. By a more compact programming it is thus room to reduce the
computational time with 15-20 %.

5 Conclusion

This paper has presented and compared the performances of two interior point based algorithms,
PDIPA and PCIPA. They have been able to solve successfully various OPF problems on three
test systems of reasonable size. Both algorithms can rather easily handle problems when a
significant number of active constraints is active at optimum. Admittedly, the number of binding
constraints at optimum may slightly increase the number of iterations to convergence, feature
which is more pronounced for the PDIPA. It is noteworthy to observe that the number of
iterations to convergence is (very) little sensitive to the size of the system.
Our experience with these two algorithms confirms other results from the literature, that is,
most of the time PCIPA generally outperforms PDIPA in terms of CPU time (and thereby
iterations count), both converging to the same optimum. The opposite situation sometimes
happens, especially for rather simple problems. In such a case both algorithms need almost the
same number of iterations to converge, the PDIPA being therefore a little bit faster.
We finally mention that the versatility of our OPF was also revealed when testing other three
typical objectives, namely the minimization of the cost to remove congestions, the minimization
of the cost (or amount) of load curtailment in an infeasible case or to alleviate congestions, and
the maximization of the loadability limit respectively. The conclusions drawn above equally
hold for all these tests.
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