
Abstract: Bottom friction modeling is an important step in 
river flows computation with 1D or 2D solvers. It is usually 
performed using empirical laws established for uniform flow 
conditions or a modern approach based on turbulence analysis. 

  Following the definition of the flow validity field of the main 
friction laws proposed in the literature, an original continuous 
formulation has been developed. It is suited to model river flows 
with a high variability of properties (water depth, discharge, 
roughness…).  

The efficiency of this new formulation, theoretically 
established and numerically adjusted, is demonstrated through 
various practical applications.  

Keywords: Shallow water, Bottom friction, Empirical laws, 
Modern laws 

I.INTRODUCTION 
Shallow Water equations are commonly used to model 

numerically river flows. Indeed, their only assumption states 
that the flow velocity component normal to the main flow 
plane is smaller than the flow velocity components in this 
plane. This is the case for the majority of river flows where 
vertical velocity component is negligible regarding the 
horizontal ones, except in the vicinity of singularities such as 
weirs for example. 

This paper focuses on bottom friction modeling in such 
mathematical models. This effect is indeed of very high 
importance for real flow computation despite it is generally 
evaluated from empirical formulations experimentally 
determined for ideal uniform flows. 

The bottom friction term should represent the whole of the 
energy losses induced by the friction of the fluid on the rough 
river bed. It is thus related to the bed characteristics (shape, 
roughness), to the fluid characteristics (viscosity) and to the 
flow features (water height, velocity).  

The concept of friction slope has been early used to 
characterize bottom friction. It is an non-dimensional number 
corresponding to the slope to give to a uniform channel to 
observe a uniform flow for a given discharge. This concept is 
at the basis of the first friction laws proposed in the second 
part of the 18th century by the researchers of the so called 
“empirical” school. Authors such as Chézy and Manning 
proposed laws based on experimental results consisting in 
measuring the friction slope for varied idealized flows in a 
laboratory flume. A second approach appeared later following 
works of Prandtl. It provided laws issued from a scientific 
reasoning on the physics of the shear layer phenomena. It is 
the “modern” school. 

Today, both approaches are used by free surface flow 
modelers, and these laws are sometimes applied to flow 

conditions far from those on the basis of which they have 
been developed. 

The aims of the developments presented in this paper were 
to define the validity fields of varied bottom friction 
formulations proposed in the literature, and to find a single 
law usable to describe the bottom friction phenomena for 
largely variable flow conditions. 

II.MAIN FRICTION LAWS 
The large range of bottom friction formulations proposed in 

the literature can be divided into two parts: the empirical and 
the modern approaches.  

The first ones have been defined from experimental results 
in idealized uniform channel and for uniform flows. It’s thus 
important to know the assumptions and the experimental 
conditions which are at the basis of the formula elaboration. 

The second ones are based on theoretical developments 
related to the physics of the friction phenomena. The structure 
of these modern formulations is thus more congruent with the 
laws of fluids mechanics. 

The main formulations of these two schools are summarized 
in this paragraph with the reasoning leading to their 
elaboration. 

A.Empirical laws      
The laws of the so called “empirical” school have all been 

developed on the basis of experimental tests. These tests 
consisted in measuring the slope to give to a uniform channel 
to observe a uniform flow [1]. In these flow conditions, the 
effects of bottom friction are exactly counterbalanced by the 
gravitational forces. Thus the friction slope is equal to the 
bottom slope of the channel and simple formulae can be set up 
to link the channel roughness, the flow variables and the 
bottom slope. Replacing the bottom slope by the friction 
slope, the friction effects can be computed for other flow 
conditions than the uniform ones. 

The general form of empirical friction formulations writes:  
χα hRJU 21=    (1) 

It relates the friction slope J to hydraulic and geometric 
parameters affecting the bottom friction such as U the mean 
flow velocity, α a friction coefficient and Rh the hydraulic 
radius. This last parameter reflects the effect of the cross 
section shape. 

The difference between the different friction formulations 
of the empirical school is in the χ exponent value and in the α 
coefficient form. 
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It is important to note that these formulations are not 
explicitly dependent on the turbulence regime of the flow, 
despite it is well known this flow state is of great influence on 
the friction losses. 

The first empirical friction law has been proposed by Chézy 
in 1775 [2], when this engineer had to determine the cross 
section of channels necessary to provide water to the city of 
Paris. It writes: 

2121
hRCJU =   (2) 

where C is the roughness coefficient, for which different 
authors such as Bazin [3], Ganguillet and Kutter [4] proposed 
formulations function of the shape and the nature of the 
channel bed. 

Another remarkable law is the one developed by Manning 
in 1919 [5]. It writes: 

32211
hRJ

n
U =   (3) 

where n is the Manning’s coefficient relating the effects of the 
bottom roughness. 

The success of the Manning’s formulation is mainly due to 
the Strickler’s relation [6] to define the roughness coefficient. 
Strickler studied the value of the bottom roughness coefficient 
K and defined a relation directly related to the size of the 
roughness elements d.  
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K ==   (4) 

Varied literature sources provide values for K coefficient 
depending on flow conditions as well as the shape and the 
nature of channels or rivers beds.  

Chézy and Manning-Strickler formulations are the most 
widely used empirical friction laws. Others exist, based on the 
same assumptions, such as the laws of Gauckler, 
Forchheimer, Christen, Hagen and Tillman [1]. They differ 
only by the exponent of the hydraulic radius in the general 
formulation (1) (Table I). 

TABLE I 
VALUE OF χ EXPONENT OF THE HYDRAULIC RADIUS FOR 

DIFFERENT EMPIRICAL FRICTION FORMULATIONS [1] 
Author χ 

Gauckler 0.4 
Forchheimer 0.7 

Christen 0.625 
Hagen 0.714 

Tillman 0.7 

B.Modern school 
At the opposite of the empirical laws, the formulations from 

the modern school are based on a theoretical reasoning on the 
physics of the friction phenomena [1]. 

The developments of the modern school appear one century 
later than the first empirical development. That is at the start 
of the 20th century that, under the leadership of Prandtl, many 
researchers from the University of Göttingen (Germany) 
developed formulations of a friction coefficient, λ, function of 

the turbulence of the flow through the Reynolds number Re, 
and the size of the roughness elements of a pipe, k.  

Modern formulations have been initially developed for 
pressurized flows to determine head losses along a pipe. 

The Darcy-Weisbach relation [7] allows to link the friction 
slope J to the friction coefficient λ: 

g
U

R
J

h 24

2λ
=    (5) 

where 4 Rh is the equivalent diameter of a channel regarding 
pressurized flows and g is de gravity acceleration. 

The friction coefficient λ evaluation depends on the flow 
turbulence regime, and thus the Reynolds. 

1) Laminar regime 
The friction coefficient variation in laminar flows (Re < 

5000) has been described by Poiseuille [8]: 

Re
64

=λ    (6) 

For this flow regime, the roughness of the pipe has no 
effects on the flow as it’s in laminar conditions. 

2) Smooth turbulent regime 
In turbulent regime, the effect of the size of the roughness 

elements on friction depends of the Re value.  
Prandtl expressed the variation of the friction coefficient λ 

for flows on smooth walls in the Prandtl-Von Karman 
formulation [9]: 

λλ Re
.log 51221

−=   (7) 

This formulation is a simple function of the state of the 
fluid such as (6). Indeed, on smooth walls, the size of the 
roughness elements is negligible compared to the size of the 
laminar boundary layer. 

In the same scope, Blasius [10] proposed an explicit 
formulation of the friction coefficient for flows on smooth 
walls:   

41

31640
Re
.

=λ    (8) 

It fits well to Prandtl results for Re lower than 105. 
3) Rough turbulent regime 

The rough turbulent regime is defined by a ratio between 
the Reynolds number, Re, and the relative roughness, k/Rh. 
Indeed, more turbulent is the flow, smaller is the laminar 
boundary layer and more important is the effect of the wall 
roughness on the flow. 

The rough turbulent regime appears when the effects of the 
roughness are predominant, i.e. for values of the Reynolds 
number higher than a limit value ReLim defined by: 

k
RRe h

Lim 2240=   (9) 

For this regime, Nikuradse [11] developed an explicit 
formulation of the friction coefficient λ function of the 
relative roughness k/Rh: 

hR
k
8.14

log21
−=

λ
  (10) 



4) Transitional regime 
The transitional regime is the regime between the smooth 

and the rough turbulent ones. Colebrook [12] proposed a 
formulation of the friction coefficient by combining the 
Nikuradse (10) and the Prandtl (7) formulations: 
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The implicit character of this equation gives it an uneasily 
use. It is the reason why different authors tried to find an 
explicit equivalent formulation, such as Barr [13, 14] and Yen 
[15]. The second law of Barr provides the best results 
regarding the Colebrook formulation (11), with less than 1% 
error on the friction coefficient values: 
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5) Macro-roughness 
Macro-roughness is considered when the size of the 

roughness elements becomes comparable to the water depth h.  
hk Lim 25.0=    (13) 

Developments on macro-roughness are more recent and are 
directly related to the development of hydrological modeling. 
They are associated to the modern school because of the 
similar form of the mathematical formulations. 

The formulation of Bathurst [16], developed in 1985, is a 
reference to study flows on macro-roughness:  

h
k
15.5

log987.11
−=

λ
  (14) 

The formulation of Dubois [17] can also be cited. Based on 
the same form of Bathurst’s law, this formulation takes into 
account the density p of the roughness elements: 

613.013.3log62.58 −+= p
k
h

λ
  (15) 

In 2D flow modeling, the hydraulic radius Rh is equivalent 
to the water depth h. In the rest of this paper, both expressions 
will be used similarly. 

III.VALIDITY FIELDS OF THE EMPIRICAL LAWS 
On the other hand, the empirical laws have not been 

developed regarding the variation in turbulence regime of real 
water flows. All of them have been defined in the scope of 
specific applications and for fixed uniform flow conditions. 
On the other hand, modern laws take better into account the 
turbulence regime of the flow but none of them can be applied 
to the whole flow conditions of real river flows. In this 
paragraph, the validity field of the main empirical laws is 
defined regarding the friction losses values provided by the 

different modern laws depending on the flow turbulence 
regime. 

For laminar flows, the Poiseuille law (6) can be written, 
using the Darcy-Weisbach relation (5), such as: 

hJRRegU
8

=   (16) 

This equation is similar to the general form of empirical 
laws. For laminar flow condition: 

8

50

Reg

.

=

=

α

χ
   (17) 

Thus, only Chézy’s formulation with an adapted value of α 
can model friction losses in laminar conditions. 

In the smooth turbulent regime, Prandtl’s law (7) has to be 
considered. Its implicit form makes the comparison more 
difficult, but, as the law is independent of the hydraulic 
radius, the empirical like formulation of equations (5) and (7) 
is similar to equation (16) and thus χ has to be equal to 0.5 
again. Thus, Chézy’s formulation is again the only law suited 
to model friction losses in the smooth turbulent regime. 

Blasius formulation can be used to set another empirical 
like formulation in smooth turbulent regime:  

hJRReg.U 41325=  (18) 

In rough turbulent regime, the Nikuradse formulation (10) 
is a complex function of the hydraulic radius, Rh. Inserted in 
the Darcy-Weisbach relation (5), the modern law cannot be 
compared directly with the empirical formulations. This 
problem can be solved by replacing the logarithm of the 
relative roughness by its power development. The empirical 
like formulation of equation (5) and (16) writes then: 
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The empirical laws are thus valid for rough turbulent 
regime if the double equality (20) is satisfied: 
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The first equality can be satisfied for each value of the 
hydraulic radius exponent χ but for a particular value of the 
relative roughness k/Rh.  

For χ = 0.5, the coefficient M value must be infinity. This 
means that the relative roughness has be 0. So the Chézy’s 
formulation is a limit to the bottom friction evaluation in 
turbulent regime in case of smooth bed. The formulations 
with χ value lower than 0.5 are not valid in this specific flow 
regime. 

In the Manning’s formulation, with χ = 0.667, the value of 
M has to be 3. That means the bottom friction is correctly 



evaluated for a relative roughness equal to 0.037. In this case, 
the Strickler coefficient is equal to:  
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613.26
k

K =    (21) 

This value is very close to the Strickler formulation (4). 
For other empirical laws using an exponent χ higher than 

0.5, the same calculations can be performed. Each of these 
laws is thus suited to describe correctly the bottom friction 
phenomena for a specific value of the relative roughness and a 
particular form of the α coefficient (Table II). 

   TABLE II 
VALUE OF RELATIVE ROUGHNESS AND COEFFICIENT α FOR A 

SUITABLE DESCRIPTION OF THE BOTTOM FRICTION EFFECTS IN 
ROUGH TURBULENT REGIME 

Author χ k/Rh α 
Christen 0.625 0.005 31.71/k0.125 
Manning 0.667 0.037 26.61/k0.167 
Tillman 0.7 0.1 24.26/k0.2 

Forchheimer 0.7 0.1 24.26/k0.2 
Hagen 0.714 0.138 23.51/k0.214 

 
Considering the whole of the empirical laws, the bottom 

friction in rough turbulent flows can be correctly evaluated 
for relative roughness until 0.2. This last value is near the 
limit of macro-roughness. However, each law considered 
separately is only valid for a single relative roughness value, 
and none is thus available for general use. 

The same developments as for the Nikuradse’s formulation 
can be performed with the Colebrook’s one. However, the 
coefficients A and M become also a function of the Reynolds 
number and thus of the state of the flow:  
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The empirical laws are again valid to predict the bottom 
friction value if the double equality of equation (20) is 
verified. 

The Chézy’s formulation is still a limit for smooth bed and 
the laws with χ exponent value lower than 0.5 are not valid 
for transitional regime. 

The other empirical formulations are valid for a single value 
of the relative roughness. However, this value varies with the 
Reynolds number (Fig. 1). 
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Fig. 1. Value of relative roughness for a correct description of 
the bottom friction value in transitional regime – B (laminar – 

A, rough turbulent – C, macro-roughness – D). 

As for the rough turbulent regime, the bottom friction value 
for transitional flows can be correctly evaluated with 
empirical laws for specific flow condition but none of the 
laws is of universal application. 

Finally, for macro-roughness, the same reasoning can be 
applied than for the rough turbulent regime. Coefficients A 
and M are defined such as: 
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They are not a function of the flow regime. 
As no empirical law is valid for relative roughness higher 

than 0.2, none of them is applicable to macro-roughness.  

IV.USING FIELDS OF THE FRICTION LAWS 
As a result of the study here above, a choice of friction law 

for modeling could be done depending on the flow conditions 
(Table III) [18]. 

When an explicit formulation is available to describe 
correctly the friction phenomena for particular flow 
conditions, it has been preferred to the corresponding implicit 
modern law. 

TABLE III 
FRICTION LAWS USABLE FOR AN EFFICIENT MODELING OF THE 

FRICTION PHENOMENA 

 Fixed flow 
conditions 

Variable flow 
conditions 

Laminar Chézy or 
Poiseuille 

Chézy or 
Poiseuille 

Turbulent 

Smooth Chézy or 
Prandtl 

Chézy or 
Prandtl 

Transitional Empirical laws 
(ex : Manning) Colebrook 

Rough Empirical laws 
(ex : Manning) Nikuradse 

Macro-
roughness Bathurst Bathurst 

 



V.EXTENSION OF THE EMPIRICAL LAWS VALIDITY FIELDS 
To define more precisely the true validity field of the 

different empirical friction laws compared to the modern 
ones, it is necessary to define an acceptable error for friction 
losses evaluation between both approaches. The following 
developments consider that an error of 5% is acceptable on 
the water depth evaluation, defined as: 

modern

empiricalmodern

h
hh

h
h −
=

Δ
 (24) 

For example, considering the Colebrook’s formulation, the 
water depth is computed, using equation (5), as: 
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Regarding the study of the rough turbulent regime, the α 
coefficient (1) could be expressed as a function of the 
roughness: 

 21−= χα
k

B
   (26) 

where B is a constant parameter. 
By extension of this value for all turbulent flows, the water 

depth computed by the empirical laws can then be evaluated, 
using the equation (1), as:  
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Using the water depths computed by the Colebrook 
formulation (25) and by the empirical laws (27) in (24), it is 
formal that this error is only function of the relative 
roughness. Validity fields of the friction laws for the 
description of transitional regime can thus be defined in terms 
of relative roughness (Table IV) [18]. 

 TABLE IV 
VALIDITY FIELDS OF THE PRINCIPAL FRICTION LAWS IN TERMS 

OF RELATIVE ROUGHNESS 

Author Validity field 
(k/h) 

Chézy 0 
Christen [0 ; 0.032] 
Manning [0.007 ; 0.1] 
Tillman [0.023 ; 0.29] 
Hagen [0.034 ; 0.38] 

Gauckler No validity 
Poiseuille Only laminar 

Prandtl 0 
Colebrook [0 ; 0.1] 

Barr [0 ; 0.1] 
Nikuradse [0 ; 0.1] 
Bathurst [0.1 ; 5.15] 

 
The limit values of these validity fields are actually function 

of the Reynolds number. However, the variations are 
negligible for usual values of Reynolds for river flows (Re > 
5000). 

The higher terms of the validity fields of the Tillman and 
Hagen laws have been determined by comparison with the 
Bathurst formulation (14) because they concern macro-
roughness. 

The limitation of the macro-roughness has been extended to 
relative roughness of 0.1. It’s the results of a comparison, 
presented in paragraph VII, between modeling results and in 
situ measurements on river. 

Today, the empirical laws of Manning and Chézy are the 
most widely used formulations for friction modeling. This 
success comes from their using simplicity and the large 
existing literature on their parameters values. However, the 
modern laws are more representative of the physics of bottom 
friction. Furthermore, explicit forms of the modern laws exist 
such as the one of Barr (12). The modern laws have thus an 
important interest for flow modeling. 

In practice, other losses, such as these due to the turbulence, 
are included in the friction term used by most flow solvers. In 
this case, it is then important to keep in mind that the friction 
slope J represents not only the bottom friction phenomenon.  

VI.LOOKING FOR A CONTINUOUS FRICTION FORMULATION 
Regarding the validity fields of the empirical and modern 

laws (Table IV), it is remarkable that it doesn’t exist a single 
formulation suited to compute friction effects on the wide 
range of relative roughness encounter in real river flow, 
where h goes from 0 on the banks to several meters in the 
channel center with constant roughness height k. However, 
the k/h ranges of several laws are contiguous such as for 
example for Colebrook or Barr and Bathurst. 

To solve this problem, an original approach has been 
developed on the basis of the three following statements: 

− The Colebrook or Barr formulation is suited to 
model turbulent flows with relative roughness k/h 
lower than 0.1. 

− The Bathurst formulation is suited to compute 
friction effect on macro-roughness, i.e. for k/h 
higher than 0.1. 

− But these two formulations are not equal for a 
relative roughness k/h of 0.1. 

Developments have been performed to link continuously 
these two formulations close to relative roughness k/h equal to 
0.1. 

Due to its explicit expression, the Barr’s formulation has 
been preferred to the Colebrook one. 

To link the laws of Barr (12) and Bathurst (14), a third 
degree polynomial expression of the relative roughness has 
been set up:   
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The limits of application range of the different formulations 
have been choosen to ensure that the relative variation of the λ 
coefficient stays lower than 0.5 for a water depth variation of 
1 cm. This condition allows to ensure the stability of 
traditional solvers. So, the equation (28) has been developed 
for k/h values between 0.05 and 0.15. 

The parameters A, B, C and D values have been determined 
to get a continuous variation of λ (same value and tangent) 



between the polynomial, the Barr and the Bathurst 
expressions at each limit of k/h range. Parameters A, B, C and 
D have thus to solve the following complex system, 
depending on Re:  
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However, for Reynolds numbers higher than 5000, which 
characterize most of usual river flows in the range of k/h ratio 
between 0.05 and 0.15, the variation of the parameters values 
with Re is negligible. The final form of the polynomial 
expression can then been established with constant parameters 
values: 
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and the following expressions can be used to compute 
continuously the bottom friction effects in rivers or channels 
whatever the variation of k/h: 
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VII.VALIDATION 
Two Belgian river reaches have been considered to validate 

the continuous approach: the Ourthe near the town of Hamoir 
and the Semois near Membre. These two reaches of 2.6 km 
and 1.6 km have been selected because of the presence of two 
water depth measurement stations on both of them. The 
downstream water depth measurement combined with the 

discharge measurement provides the necessary boundary 
conditions for river reach modeling in case of subcritical flow. 

The two river reaches have been modeled using the 2D-
horizontal flow solver WOLF2D, developed at the University 
of Liege [19], using different friction laws such as Manning, 
Barr, Bathurst and continuous formulations, with a 2 x 2 m 
mesh. 

The comparison between the upstream water depths 
computed using the laws of Barr (12), Manning (3), Bathurst 
(14) and the continuous formulation (31), and the water depth 
measurements at the upstream gauging station for different 
discharges has been used to show the interest of the 
continuous formulation (Fig. 2 and 3, and Table V). 

The computed models, using the different laws named here 
above, need a comparable calculation time.  

The Manning’s coefficient n has been set up to ensure 
correspondence with real measurements for the highest 
discharge. It is equal to 0.025 s/m1/3 in the Ourthe and to 
0.031 s/m1/3 in the Semois. The k value for Barr, Bathurst and 
continuous formulations has been set up to get close of the 
real measurements as well for the lowest discharge with the 
Bathurst formulation than for the highest one with the Barr 
equation. Its value is 0.09 m in the Ourthe and 0.3 m in the 
Semois. 
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Fig. 2. Computed and measured rating curves in Hamoir on 

the Ourthe river. 
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Fig. 3. Computed and measured rating curves in Membre on 

the Semois river. 

 



 
 

TABLE V 
MEAN RELATIVE ERROR ON THE REAL WATER DEPTHS (%) 

Situation Modeling 
law 

k/h 
<0.05 

0.05< 
k/h 

<0.15 

k/h 
>0.15 

Hamoir – 
Ourthe 

Manning 0.9 14.3 30.6 
Barr 1.5 13.1 26.1 

Bathurst 11.1 4.0 9.8 
Continuous  
formulation 2.3 6.4 10.3 

Membre - 
Semois 

Manning - 5.9 33.9 
Bathurst - 5.3 15.9 

Continuous 
formulation - 1.7 15.9 

 
The water depth is not homogeneous on all the studied river 

reaches. The k/h ratio indicated in the table V is thus the ratio 
value at the upstream limit of the river reaches, at the center 
of the cross section. That is the reason why the results 
provided by the continuous formulation are not exactly 
equivalent to these provided by the Barr and the Bathurst 
formulations, respectively for k/h < 0.05 and k/h > 0.15.  

On Ourthe river, for k/h ratios lower than 0.05, the water 
depths computed using the Manning, Barr and continuous 
formulations are relatively close to the real measurements, 
when the Bathurst results are further. This expresses well the 
validity of Barr and continuous formulations for 2D free 
surface flow with low relative roughness modeling. This also 
expresses the efficiency of the Manning’s formulation for 
flow conditions near its setting ones. Finally, this shows the 
limitation of the Bathurst’s formulation on low relative 
roughness. 

For k/h ratios higher than 0.15, the water depths, provided 
using the Bathurst and the continuous formulations, are the 
closest to the real measurements. The important value of the 
relative error is partially due to the important effect of 
measurement uncertainty for low water depths. Indeed, the 
water depth measurements vary of until 5 cm for closed 
discharge measurements. However, the results show the 
interest of the Bathurst and the continuous formulation for 
flow modeling on high relative roughness. They also show the 
limitations of the Barr formulation for high relative roughness 
and of the Manning’s one when flow conditions move away 
from its setting conditions. 

For intermediary k/h ratios, the Bathurst formulation stays 
attractive when the water depths have a low variability on the 
river reach such as on the Ourthe river. However, when the 
water depths are more variable, such as on the Semois river, 
the continuous formulation becomes more attractive. 

 

VIII.CONCLUSIONS 
Friction is a complex phenomenon which has a non 

negligible influence on the flow characteristics. It is thus 
necessary to take it into account for a correct flow modeling. 

Many authors have thus developed friction formulations. But 
these laws are not always suited to describe the friction 
phenomenon in the whole range of real varied flow 
conditions. 

In this study, a determination of the different application 
ranges of the principal laws has been proposed. In parallel, 
the validity fields of these laws have been calculated in terms 
of relative roughness to describe correctly usual river flows. 

An original friction law has also been developed to fill the 
lack of a continuous law able to describe the friction 
phenomenon for the highly variable flow conditions often 
meet in river flows. This law has been validated by 
comparison of water depth values on two different rivers in 
Belgium.  
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