Bottom friction formulations for free surface flow modeling
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Abstract: Bottom friction modeling is an important step in
river flows computation with 1D or 2D solvers. It is usually
performed using empirical laws established for uniform flow
conditions or a modern approach based on turbulence analysis.

Following the definition of the flow validity field of the main
friction laws proposed in the literature, an original continuous
formulation has been developed. It is suited to model river flows
with a high variability of properties (water depth, discharge,
roughness...).

The efficiency of this new formulation, theoretically
established and numerically adjusted, is demonstrated through
various practical applications.

Keywords: Shallow water, Bottom friction, Empirical laws,
Modern laws

[.INTRODUCTION

Shallow Water equations are commonly used to model
numerically river flows. Indeed, their only assumption states
that the flow velocity component normal to the main flow
plane is smaller than the flow velocity components in this
plane. This is the case for the majority of river flows where
vertical velocity component is negligible regarding the
horizontal ones, except in the vicinity of singularities such as
weirs for example.

This paper focuses on bottom friction modeling in such
mathematical models. This effect is indeed of very high
importance for real flow computation despite it is generally
evaluated from empirical formulations experimentally
determined for ideal uniform flows.

The bottom friction term should represent the whole of the
energy losses induced by the friction of the fluid on the rough
river bed. It is thus related to the bed characteristics (shape,
roughness), to the fluid characteristics (viscosity) and to the
flow features (water height, velocity).

The concept of friction slope has been early used to
characterize bottom friction. It is an non-dimensional number
corresponding to the slope to give to a uniform channel to
observe a uniform flow for a given discharge. This concept is
at the basis of the first friction laws proposed in the second
part of the 18" century by the researchers of the so called
“empirical” school. Authors such as Chézy and Manning
proposed laws based on experimental results consisting in
measuring the friction slope for varied idealized flows in a
laboratory flume. A second approach appeared later following
works of Prandtl. It provided laws issued from a scientific
reasoning on the physics of the shear layer phenomena. It is
the “modern” school.

Today, both approaches are used by free surface flow
modelers, and these laws are sometimes applied to flow

conditions far from those on the basis of which they have
been developed.

The aims of the developments presented in this paper were
to define the validity fields of wvaried bottom friction
formulations proposed in the literature, and to find a single
law usable to describe the bottom friction phenomena for
largely variable flow conditions.

II.MAIN FRICTION LAWS

The large range of bottom friction formulations proposed in
the literature can be divided into two parts: the empirical and
the modern approaches.

The first ones have been defined from experimental results
in idealized uniform channel and for uniform flows. It’s thus
important to know the assumptions and the experimental
conditions which are at the basis of the formula elaboration.

The second ones are based on theoretical developments
related to the physics of the friction phenomena. The structure
of these modern formulations is thus more congruent with the
laws of fluids mechanics.

The main formulations of these two schools are summarized
in this paragraph with the reasoning leading to their
elaboration.

A.Empirical laws

The laws of the so called “empirical” school have all been
developed on the basis of experimental tests. These tests
consisted in measuring the slope to give to a uniform channel
to observe a uniform flow [1]. In these flow conditions, the
effects of bottom friction are exactly counterbalanced by the
gravitational forces. Thus the friction slope is equal to the
bottom slope of the channel and simple formulae can be set up
to link the channel roughness, the flow variables and the
bottom slope. Replacing the bottom slope by the friction
slope, the friction effects can be computed for other flow
conditions than the uniform ones.

The general form of empirical friction formulations writes:

U =aJ’R} (1)

It relates the friction slope J to hydraulic and geometric
parameters affecting the bottom friction such as U the mean
flow velocity, a a friction coefficient and R, the hydraulic
radius. This last parameter reflects the effect of the cross
section shape.

The difference between the different friction formulations
of the empirical school is in the y exponent value and in the o
coefficient form.



It is important to note that these formulations are not
explicitly dependent on the turbulence regime of the flow,
despite it is well known this flow state is of great influence on
the friction losses.

The first empirical friction law has been proposed by Chézy
in 1775 [2], when this engineer had to determine the cross
section of channels necessary to provide water to the city of
Paris. It writes:

U =CJ"R)? @)

where C is the roughness coefficient, for which different
authors such as Bazin [3], Ganguillet and Kutter [4] proposed
formulations function of the shape and the nature of the
channel bed.

Another remarkable law is the one developed by Manning
in 1919 [5]. It writes:

U = lJVzR,f“ 3)
n
where 7 is the Manning’s coefficient relating the effects of the
bottom roughness.

The success of the Manning’s formulation is mainly due to
the Strickler’s relation [6] to define the roughness coefficient.
Strickler studied the value of the bottom roughness coefficient
K and defined a relation directly related to the size of the
roughness elements d.
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Varied literature sources provide values for K coefficient
depending on flow conditions as well as the shape and the
nature of channels or rivers beds.

Chézy and Manning-Strickler formulations are the most
widely used empirical friction laws. Others exist, based on the
same assumptions, such as the laws of Gauckler,
Forchheimer, Christen, Hagen and Tillman [1]. They differ
only by the exponent of the hydraulic radius in the general
formulation (1) (Table I).

TABLEI

VALUE OF & EXPONENT OF THE HYDRAULIC RADIUS FOR
DIFFERENT EMPIRICAL FRICTION FORMULATIONS [1]

Author X
Gauckler 0.4
Forchheimer 0.7
Christen 0.625
Hagen 0.714
Tillman 0.7

B.Modern school

At the opposite of the empirical laws, the formulations from
the modern school are based on a theoretical reasoning on the
physics of the friction phenomena [1].

The developments of the modern school appear one century
later than the first empirical development. That is at the start
of the 20™ century that, under the leadership of Prandtl, many
researchers from the University of Gottingen (Germany)
developed formulations of a friction coefficient, 4, function of

the turbulence of the flow through the Reynolds number Re,
and the size of the roughness elements of a pipe, £.

Modern formulations have been initially developed for
pressurized flows to determine head losses along a pipe.

The Darcy-Weisbach relation [7] allows to link the friction
slope J to the friction coefficient A:

AU’
4R, 2g
where 4 R, is the equivalent diameter of a channel regarding
pressurized flows and g is de gravity acceleration.
The friction coefficient A evaluation depends on the flow
turbulence regime, and thus the Reynolds.
1) Laminar regime
The friction coefficient variation in laminar flows (Re <
5000) has been described by Poiseuille [8]:

A= Lad Q)
Re

For this flow regime, the roughness of the pipe has no

effects on the flow as it’s in laminar conditions.
2) Smooth turbulent regime

In turbulent regime, the effect of the size of the roughness
elements on friction depends of the Re value.

Prandtl expressed the variation of the friction coefficient A
for flows on smooth walls in the Prandtl-Von Karman
formulation [9]:
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This formulation is a simple function of the state of the
fluid such as (6). Indeed, on smooth walls, the size of the
roughness elements is negligible compared to the size of the
laminar boundary layer.

In the same scope, Blasius [10] proposed an explicit
formulation of the friction coefficient for flows on smooth
walls:

0.3164

Re '
It fits well to Prandtl results for Re lower than 10°.
3) Rough turbulent regime

The rough turbulent regime is defined by a ratio between
the Reynolds number, Re, and the relative roughness, k/R;.
Indeed, more turbulent is the flow, smaller is the laminar
boundary layer and more important is the effect of the wall
roughness on the flow.

The rough turbulent regime appears when the effects of the
roughness are predominant, i.e. for values of the Reynolds
number higher than a limit value Rey;,, defined by:

Re,, =2240 % ©)

A= ®)

For this regime, Nikuradse [11] developed an explicit
formulation of the friction coefficient 4 function of the
relative roughness k/R;:

\/I =2 log L
p 14 8R,

(10)



4) Transitional regime
The transitional regime is the regime between the smooth
and the rough turbulent ones. Colebrook [12] proposed a
formulation of the friction coefficient by combining the
Nikuradse (10) and the Prandtl (7) formulations:

A £114.8R,  ReJA

The implicit character of this equation gives it an uneasily
use. It is the reason why different authors tried to find an
explicit equivalent formulation, such as Barr [13, 14] and Yen
[15]. The second law of Barr provides the best results
regarding the Colebrook formulation (11), with less than 1%
error on the friction coefficient values:

4.518 log(R;j (12)
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\F: —2log k +
A 14.8R,

5) Macro-roughness
Macro-roughness is considered when the size of the
roughness elements becomes comparable to the water depth 4.

k, =0.25h (13)

Developments on macro-roughness are more recent and are
directly related to the development of hydrological modeling.
They are associated to the modern school because of the
similar form of the mathematical formulations.

The formulation of Bathurst [16], developed in 1985, is a
reference to study flows on macro-roughness:

\/I: —1.987 log k
A 5.15h

The formulation of Dubois [17] can also be cited. Based on
the same form of Bathurst’s law, this formulation takes into
account the density p of the roughness elements:

8 h ~0.613
—=5.62log—+3.13
V4 £ % P

In 2D flow modeling, the hydraulic radius R, is equivalent
to the water depth /. In the rest of this paper, both expressions
will be used similarly.

Lim

(14)

(15)

III.VALIDITY FIELDS OF THE EMPIRICAL LAWS

On the other hand, the empirical laws have not been
developed regarding the variation in turbulence regime of real
water flows. All of them have been defined in the scope of
specific applications and for fixed uniform flow conditions.
On the other hand, modern laws take better into account the
turbulence regime of the flow but none of them can be applied
to the whole flow conditions of real river flows. In this
paragraph, the validity field of the main empirical laws is
defined regarding the friction losses values provided by the

different modern laws depending on the flow turbulence
regime.

For laminar flows, the Poiseuille law (6) can be written,
using the Darcy-Weisbach relation (5), such as:

U= Jg?ew/JRh

This equation is similar to the general form of empirical
laws. For laminar flow condition:

7=0.5

o= /gRe
8

Thus, only Chézy’s formulation with an adapted value of a
can model friction losses in laminar conditions.

In the smooth turbulent regime, Prandtl’s law (7) has to be
considered. Its implicit form makes the comparison more
difficult, but, as the law is independent of the hydraulic
radius, the empirical like formulation of equations (5) and (7)
is similar to equation (16) and thus  has to be equal to 0.5
again. Thus, Chézy’s formulation is again the only law suited
to model friction losses in the smooth turbulent regime.

Blasius formulation can be used to set another empirical
like formulation in smooth turbulent regime:

U =+/253gRe" /IR, (18)

In rough turbulent regime, the Nikuradse formulation (10)
is a complex function of the hydraulic radius, R,. Inserted in
the Darcy-Weisbach relation (5), the modern law cannot be
compared directly with the empirical formulations. This
problem can be solved by replacing the logarithm of the
relative roughness by its power development. The empirical
like formulation of equation (5) and (16) writes then:

U = (8g)1/2 (Ak )—1/2M JI/ZRJII/ZH/ZM

R —ln(lO)log[M'ERh]
A=-""|-2log (19)
with k 14 .8R,

I 1n(10)10g[14.8th
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The empirical laws are thus valid for rough turbulent
regime if the double equality (20) is satisfied:

L
Y
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The first equality can be satisfied for each value of the
hydraulic radius exponent y but for a particular value of the
relative roughness k/R,.

For y = 0.5, the coefficient M value must be infinity. This
means that the relative roughness has be 0. So the Chézy’s
formulation is a limit to the bottom friction evaluation in
turbulent regime in case of smooth bed. The formulations
with y value lower than 0.5 are not valid in this specific flow
regime.

In the Manning’s formulation, with y = 0.667, the value of
M has to be 3. That means the bottom friction is correctly

(16)

amn

(20)



evaluated for a relative roughness equal to 0.037. In this case,
the Strickler coefficient is equal to:
26.613
e
This value is very close to the Strickler formulation (4).
For other empirical laws using an exponent y higher than
0.5, the same calculations can be performed. Each of these
laws is thus suited to describe correctly the bottom friction
phenomena for a specific value of the relative roughness and a
particular form of the a coefficient (Table II).

K = 1)

TABLE II

VALUE OF RELATIVE ROUGHNESS AND COEFFICIENT o FOR A
SUITABLE DESCRIPTION OF THE BOTTOM FRICTION EFFECTS IN

ROUGH TURBULENT REGIME
Author X k/R,, a
Christen 0.625 0.005 31.71/k%
Manning 0.667 0.037 26.61/k"'%’
Tillman 0.7 0.1 24.26/k"?
Forchheimer 0.7 0.1 24.26/k™*
Hagen 0.714 0.138 23.51/k™"

Considering the whole of the empirical laws, the bottom
friction in rough turbulent flows can be correctly evaluated
for relative roughness until 0.2. This last value is near the
limit of macro-roughness. However, each law considered
separately is only valid for a single relative roughness value,
and none is thus available for general use.

The same developments as for the Nikuradse’s formulation
can be performed with the Colebrook’s one. However, the
coefficients 4 and M become also a function of the Reynolds
number and thus of the state of the flow:

R
A= h
(22)
k 2.51
k| —21o +
€1 14.8R, o\
Re| A—
Rh
k 2.51 18.574
M =—log TRTR T (10 0.5+ —————=
B R k y2M k
el A— Re A —
h Rh

The empirical laws are again valid to predict the bottom
friction value if the double equality of equation (20) is
verified.

The Chézy’s formulation is still a limit for smooth bed and
the laws with y exponent value lower than 0.5 are not valid
for transitional regime.

The other empirical formulations are valid for a single value
of the relative roughness. However, this value varies with the
Reynolds number (Fig. 1).
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Fig. 1. Value of relative roughness for a correct description of
the bottom friction value in transitional regime — B (laminar —
A, rough turbulent — C, macro-roughness — D).

As for the rough turbulent regime, the bottom friction value
for transitional flows can be correctly evaluated with
empirical laws for specific flow condition but none of the
laws is of universal application.

Finally, for macro-roughness, the same reasoning can be
applied than for the rough turbulent regime. Coefficients A4
and M are defined such as:

5.15h
i k —ln(lO)log[Tj
A==|-1.987 log| ———
k 5.15h (23)
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They are not a function of the flow regime.
As no empirical law is valid for relative roughness higher
than 0.2, none of them is applicable to macro-roughness.

IV.USING FIELDS OF THE FRICTION LAWS

As a result of the study here above, a choice of friction law
for modeling could be done depending on the flow conditions
(Table III) [18].

When an explicit formulation is available to describe
correctly the friction phenomena for particular flow
conditions, it has been preferred to the corresponding implicit
modern law.

TABLE III
FRICTION LAWS USABLE FOR AN EFFICIENT MODELING OF THE
FRICTION PHENOMENA
Fixed flow Variable flow
conditions conditions
. Chézy or Chézy or
Laminar Poiseuille Poiseuille
Chézy or Chézy or
Smooth Prandtl Prandtl
Transitional Empirical I?WS Colebrook
(ex : Manning)
Turbulent Empirical laws
Rough (ex : Manning) Nikuradse
Macro- Bathurst Bathurst
roughness




V.EXTENSION OF THE EMPIRICAL LAWS VALIDITY FIELDS

To define more precisely the true validity field of the
different empirical friction laws compared to the modern
ones, it is necessary to define an acceptable error for friction
losses evaluation between both approaches. The following
developments consider that an error of 5% is acceptable on
the water depth evaluation, defined as:

Ah _ hmodcrn - hcmpirical
h h modern

For example, considering the Colebrook’s formulation, the
water depth is computed, using equation (5), as:

2 -1/M
- SU J [A%j 29
&

Regarding the study of the rough turbulent regime, the «
coefficient (1) could be expressed as a function of the
roughness:

24)

Colebrook

B

a = PYalE

(26)
where B is a constant parameter.

By extension of this value for all turbulent flows, the water
depth computed by the empirical laws can then be evaluated,
using the equation (1), as:

U (k7
hempirical = T o
B J \ h

Using the water depths computed by the Colebrook
formulation (25) and by the empirical laws (27) in (24), it is
formal that this error is only function of the relative
roughness. Validity fields of the friction laws for the
description of transitional regime can thus be defined in terms
of relative roughness (Table IV) [18].
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TABLE IV
VALIDITY FIELDS OF THE PRINCIPAL FRICTION LAWS IN TERMS
OF RELATIVE ROUGHNESS

Validity field
Author (k/h)
Chézy 0
Christen [0;0.032]
Manning [0.007 ; 0.1]
Tillman [0.023 ; 0.29]
Hagen [0.034 ; 0.38]
Gauckler No validity
Poiseuille Only laminar
Prandtl 0
Colebrook [0;0.1]
Barr [0;0.1]
Nikuradse [0;0.1]
Bathurst [0.1;5.15]

The limit values of these validity fields are actually function
of the Reynolds number. However, the variations are
negligible for usual values of Reynolds for river flows (Re >
5000).

The higher terms of the validity fields of the Tillman and
Hagen laws have been determined by comparison with the
Bathurst formulation (14) because they concern macro-
roughness.

The limitation of the macro-roughness has been extended to
relative roughness of 0.1. It’s the results of a comparison,
presented in paragraph VII, between modeling results and in
situ measurements on river.

Today, the empirical laws of Manning and Chézy are the
most widely used formulations for friction modeling. This
success comes from their using simplicity and the large
existing literature on their parameters values. However, the
modern laws are more representative of the physics of bottom
friction. Furthermore, explicit forms of the modern laws exist
such as the one of Barr (12). The modern laws have thus an
important interest for flow modeling.

In practice, other losses, such as these due to the turbulence,
are included in the friction term used by most flow solvers. In
this case, it is then important to keep in mind that the friction
slope J represents not only the bottom friction phenomenon.

VI.LOOKING FOR A CONTINUOUS FRICTION FORMULATION

Regarding the validity fields of the empirical and modern
laws (Table IV), it is remarkable that it doesn’t exist a single
formulation suited to compute friction effects on the wide
range of relative roughness encounter in real river flow,
where /1 goes from 0 on the banks to several meters in the
channel center with constant roughness height &. However,
the k/h ranges of several laws are contiguous such as for
example for Colebrook or Barr and Bathurst.

To solve this problem, an original approach has been
developed on the basis of the three following statements:

— The Colebrook or Barr formulation is suited to
model turbulent flows with relative roughness k/A
lower than 0.1.

— The Bathurst formulation is suited to compute
friction effect on macro-roughness, i.e. for k/h
higher than 0.1.

— But these two formulations are not equal for a
relative roughness &/k of 0.1.

Developments have been performed to link continuously
these two formulations close to relative roughness &/4 equal to
0.1.

Due to its explicit expression, the Barr’s formulation has
been preferred to the Colebrook one.

To link the laws of Barr (12) and Bathurst (14), a third
degree polynomial expression of the relative roughness has
been set up:

3 2
ﬁ = A(%) + B(%} + C(%} +D (28)

The limits of application range of the different formulations
have been choosen to ensure that the relative variation of the 4
coefficient stays lower than 0.5 for a water depth variation of
I cm. This condition allows to ensure the stability of
traditional solvers. So, the equation (28) has been developed
for k/h values between 0.05 and 0.15.

The parameters 4, B, C and D values have been determined
to get a continuous variation of A (same value and tangent)



between the polynomial, the Barr and the Bathurst
expressions at each limit of &/h range. Parameters 4, B, C and
D have thus to solve the following complex system,
depending on Re:

For £= 0.05 :
h

0.3
0.0413 log R—E]Re“2 5)
ol 7 h

14.8 0.52 0.7 )2
Re[l+7Re (k/n) ]

76 .531
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However, for Reynolds numbers higher than 5000, which

characterize most of usual river flows in the range of k/A ratio
between 0.05 and 0.15, the variation of the parameters values
with Re is negligible. The final form of the polynomial
expression can then been established with constant parameters
values:

1 kY kY k (30)
—=1469.76| — | —382.83| —| +9.89| —|+5.22
VA h h h

and the following expressions can be used to compute

continuously the bottom friction effects in rivers or channels
whatever the variation of k/A:

Forks 0.05:
h
4.518 log ke
L——210 ’ + k
Ji i Re*2 (k/h)"" ) 14.8h
Re|ll+ —————~2— (31)
76.531
k

For 0.05 S;S 0.15:

3 2
L 1469 .76(2} - 382.83[;{lj + 9.89(;2) +5.22
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VII.VALIDATION

Two Belgian river reaches have been considered to validate
the continuous approach: the Ourthe near the town of Hamoir
and the Semois near Membre. These two reaches of 2.6 km
and 1.6 km have been selected because of the presence of two
water depth measurement stations on both of them. The
downstream water depth measurement combined with the

discharge measurement provides the necessary boundary
conditions for river reach modeling in case of subcritical flow.

The two river reaches have been modeled using the 2D-
horizontal flow solver WOLF2D, developed at the University
of Liege [19], using different friction laws such as Manning,
Barr, Bathurst and continuous formulations, with a 2 x 2 m
mesh.

The comparison between the upstream water depths
computed using the laws of Barr (12), Manning (3), Bathurst
(14) and the continuous formulation (31), and the water depth
measurements at the upstream gauging station for different
discharges has been used to show the interest of the
continuous formulation (Fig. 2 and 3, and Table V).

The computed models, using the different laws named here
above, need a comparable calculation time.

The Manning’s coefficient n has been set up to ensure
correspondence with real measurements for the highest
discharge. It is equal to 0.025 s/m"* in the Ourthe and to
0.031 s/m'? in the Semois. The & value for Barr, Bathurst and
continuous formulations has been set up to get close of the
real measurements as well for the lowest discharge with the
Bathurst formulation than for the highest one with the Barr
equation. Its value is 0.09 m in the Ourthe and 0.3 m in the
Semois.
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Fig. 2. Computed and measured rating curves in Hamoir on
the Ourthe river.
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Fig. 3. Computed and measured rating curves in Membre on
the Semois river.



TABLE V
MEAN RELATIVE ERROR ON THE REAL WATER DEPTHS (%)
. 0.05<
Situation Mﬂgs\lllng <’5/185 k/h >’6/?5
) <0.15 '
Manning 0.9 14.3 30.6
Hamoir — Barr 1.5 13.1 26.1
o Bathurst 11.1 4.0 9.8
urthe ;
Continuous | 6.4 10.3
formulation
Manning - 5.9 33.9
Membre - Bathurst - 53 15.9
Semois Contmuqus i 17 15.9
formulation

The water depth is not homogeneous on all the studied river
reaches. The k/h ratio indicated in the table V is thus the ratio
value at the upstream limit of the river reaches, at the center
of the cross section. That is the reason why the results
provided by the continuous formulation are not exactly
equivalent to these provided by the Barr and the Bathurst
formulations, respectively for &/ < 0.05 and &7k > 0.15.

On Ourthe river, for k/h ratios lower than 0.05, the water
depths computed using the Manning, Barr and continuous
formulations are relatively close to the real measurements,
when the Bathurst results are further. This expresses well the
validity of Barr and continuous formulations for 2D free
surface flow with low relative roughness modeling. This also
expresses the efficiency of the Manning’s formulation for
flow conditions near its setting ones. Finally, this shows the
limitation of the Bathurst’s formulation on low relative
roughness.

For k/h ratios higher than 0.15, the water depths, provided
using the Bathurst and the continuous formulations, are the
closest to the real measurements. The important value of the
relative error is partially due to the important effect of
measurement uncertainty for low water depths. Indeed, the
water depth measurements vary of until 5 cm for closed
discharge measurements. However, the results show the
interest of the Bathurst and the continuous formulation for
flow modeling on high relative roughness. They also show the
limitations of the Barr formulation for high relative roughness
and of the Manning’s one when flow conditions move away
from its setting conditions.

For intermediary k/h ratios, the Bathurst formulation stays
attractive when the water depths have a low variability on the
river reach such as on the Ourthe river. However, when the
water depths are more variable, such as on the Semois river,
the continuous formulation becomes more attractive.

VIII.CONCLUSIONS

Friction is a complex phenomenon which has a non
negligible influence on the flow characteristics. It is thus
necessary to take it into account for a correct flow modeling.

Many authors have thus developed friction formulations. But
these laws are not always suited to describe the friction
phenomenon in the whole range of real varied flow
conditions.

In this study, a determination of the different application
ranges of the principal laws has been proposed. In parallel,
the validity fields of these laws have been calculated in terms
of relative roughness to describe correctly usual river flows.

An original friction law has also been developed to fill the
lack of a continuous law able to describe the friction
phenomenon for the highly variable flow conditions often
meet in river flows. This law has been validated by
comparison of water depth values on two different rivers in
Belgium.
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