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ABSTRACT

The LBR-35 software is an integrated package to perform cost and/or weight optimiza-
tion of stiffened ship structures. This paper describes the theoretical background of the
LBR-5 software about the linear elastic analysis procedure. This method is based on an
analytical solution of the stiffened panels governing equations using Fourier series

expansion.

KEY WORDS: Stiffened panel; governing differential equation; analytical solution; Fourier
series expansion; LBR-5 software, linear elastic analysis.

1. Introduction

This paper presents the theory used to implement in
the LBR-5 software an analytical solution of the stiff-
ened panels governing equations. For that purpose,
Fourier series expansions are used to solve the gov-
erning differential equations. In the present analysis,
cylindrical shells are used as the reference panels.
Stiffened plates are considered as a simplified case of
the more general cylindrical shell. In the LBR-5 soft-
ware, plates are analyzed as being cylindrical shells
having a very large radius (q = 10' m). The present
method has been developed for fast and accurate lin-
ear elastic analysis of stiffened structures, particularly
in regard to structural optimization.

Applications of the LBR-5 software to ship struc-
tures including its associated background about the
scantling optimization procedure have been presented
in various papers and conferences, Rigo (2001ab,c,
2003), Rigo and Fleury (2001). The presented devel-
opments were initiated in Rigo (1989a) and the gen-
eral methodology presented in Rigo (1989b, 1992a,b,
2004). After 15 years the LBRS software is now well-
established and patented; it is therefore relevant to
publish the extensive theoretical background of this
method.

2. Differential Equations of Cylindrical
Stiffened Shells

Fig. 1 shows the coordinate system ox¢ with z =0
at mid plate thickness. The relation between the ¢
coordinate (used for shell) and the y coordinate (used
for plate) is: y = q ¢, with q the radius.

Fig. 1: Panel Coordinate System

Fig. 2 presents the stresses acting on a small volume
clement [dx, dz, (q+z)dg]. In this study, the thin shell
(plate) theory is used, i.e. T, , Ty, and o, are not con-
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sidered (&, = Yo =Ygz = 0).

Fig. 2: Stresses Acting on a Small Volume Element

The goveming differential equations, known as the
D.K.J. differential equations (Donnell, von Karman
and Jenkins), are based on the Love-Kirchoff hy-
potheses:
1.Thin shell theory, i.e. 8/q <<< 1. For LBRS, we

impose that 3/q < 1/100.
2.Small deformation and linear analysis.
3.The points that are on a perpendicular line to the

mid plate surface (z = 0) before deformation remain

on the same perpendicular after deformation, thus

Vi a0d Yo = 0.

4.0, and its effects are negligible.
5.No deformation along oz (g, = 0).
Let us denote partial derivatives as follows:

=2 and Pe—=—— m

Then the linear ‘deformation-displacement’ rela-
tions for a shell are:
e =0 —zw"

£y =V ez @
q

Vg =0+ = 22w

and the “stress-displacement’ relations are:

Oy = E 5 _Hc. +u{v® +qu| NAE...Tciaé._
1-v q J

Gy = E 5 _H?o +Hv+cm~|NA€8+ci:v_._ 3
I-v q i

Tap = Gu® +v' — 22w
E is the Young modulus, v the Poisson coefficient,
G=E/[2(1+v)]the shear modulus. The special case
of a plate is derived by simply setting w/q = 0 in Eqgs.
2-3.

Fig. 3 shows the intemnal resultant forces Ny, Q.
Ny, Nip» Qg Ny, and moments My, My, My, Mo that

~

are applied on an elementary cylindrical shell (plate),
hereafter called resultants. This element is included
between the upper surface (z = 6/2) and the lower sur-
face (z = -8/2) and has a surface dimension of
dx-qdp (ordx-dy). With reference to the thin shell
element (Fig. 3), we can establish the ‘resultant-stress’
relationships (Eqgs. 4). These resultant forces and mo-
ments are referenced to the plate neutral axis (z=0).

hm. ,,mml. T« -
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Fig. 3: Resultant Forces and Moments
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Q, and Q, (transverse shear resultant) cannot be cal-
culated by integration of the 1., and T, siresses as
these shear stresses are assumed to be equal to 0 (thin
plate assumption). Nevertheless, Q and Q, can be
evaluated using the 4" and the 5® equilibrium equa-
tions (Egs. 9).

If we replace the ‘stress-displacement’ relationships
(Eqs. 3) within the ‘resultant-stress’ relationships

@

Nox
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(Eqgs. 4), we obtain the ‘resultant-displacement’ rela-
tionships:

N, =D{¥+—+uvu')

q
N, =D +vv+v0)
q

P

1-v 5
Ny =Ngp =D57 (v +u°) ®
M, =K (w*°+ow")
M, =KW +ow®)
Mgy =My = K(i-0)w*’
withD=E8 /(1 -v?) and K=E8/[12 (1 -v¥]

Fig. 4 shows the additional resultant forces and
moments acting on the shell (plate) coming ffom a
stiffener oriented along 0X (Nxcome> Mxcones NayCone
Qx.cone and Myycone). For a transverse member (frame)
oriented along op the additional resuitant forces and
moments are (Nycones Myceoner Nyxcones Qycone and
Myxconc)-

If we consider a stiffened thin shell element, the ‘re-
sultant-stress’ relationships including the plate and the
stiffener components become:

%

Ny = [o,dz+ () [ o,
Ix By
%

Ny= [ o @+2)dz+£(o) | quk
lx q oy x
%

M= [ogzdz+£(x) [0z mh&

|.m\~ 0g @

8,

+\N z ex
My= | ogz(@+Ddz+ o) [ o,z %

lm\m q oy dy
with o, and o the cross section of, respectively, the
frames and the stiffeners. e, &,, d. and d,, follow from
Fig. 5. The second term of each equation in Eqgs. 6
corresponds to the stiffeners f{p) [frames f{x)].

Egs. 4 (unstiffened element) are a simplified form of
Egs. 6 (stiffened element). Their first terms are identi-
cal, For a stiffened element, Eqgs. 6 include Heaviside
functions [f{x) and f{g)] that are equal to zero except
at the stiffener locations, b - d/2 < x < b + d/2, where
they are equal to 1 (Fig. 5).

) =Hfx ~ (b - d/2)] ~ H[x - (b + d/2)] M
with H(x) =0ifx <0 and H)=1ifx>0

If we replace the “stress-displacement’ relationships
(Eqs. 3) in the ‘resultant-stress’ relationships (Egs. 6),
we obtain the ‘resultant-displacement’ relationships
for stiffened panels (including stiffeners and frames)
(Egs. 8).

0€
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®

Fig. 4: Resultant Forces and Moments Acting on the
Shell (Plate) Due to a Stiffener
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with o 0, transversal section of a stiffener
(frame) without plating
hy, by 1* sectional moment of o (0,) rela-
tive to the plate neutral axis z=0

I Ip 2" sectional moment of o, (coy) rela-
tive to the plate neutral axis z=0
Ky, K, torsional rigidity of a stiffener (frame)
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Q, Q" reduced flange section (for flange in-
plane shear contribution)
*o Ay  flange eccentricity to the plate neutral
axisz=0 .
dy, d, effective strip width of longitudinal
stiffeners (frames)
A major uncertainty related to the validity of these
equations concerns the flange contribution to the in-
plane shear effects. In the following developments
these contributions are not considered. Q’, Q,’ are
thus set to zero in Eqs. 8. This is a conservative as-
sumption.

Fig. 5: Stiffener Spacing and Heaviside Function

To summarize, the D.K.J. governing differential
equations of a cylindrical shell (plate) are obtained by
using:

-~ The six equilibrium equations (Fig. 3):

Ny +No +X=0

v Y
Ng +Nyp 1aal+<uo

N

—L+Q5 +Q~Z=0
q 9
o 3 .

Mg +My, —Q, =0

MY + Mg, ~Qy=0

Mgy -0
q
The special case of a plate follows by omitting all
terms containing q in Egs. 9.

- The five hypotheses of linear thin shell theory (see
above)

- The ‘stress-displacement’ relationships (Egs. 3) and
the ‘resultant-stress’ relationships (Egs. 6) to estab-
lish the ‘resultant-displacement’ relationships (Eqs.
8).

The problem is composed of 13 unknowns:

- nLV,W

- Ne My, Qg Nepy My,

- No, My, Qg N, Mo

Nyp = Ngx +

and there are 13 available equations :

- 4 ‘resultant-displacement’ relations corresponding
to Ny, My, No, Mg, (Egs. 8) (there is no available
equation for Q)

- 4 ‘resultant-displacement’ relations corresponding
to Ny, Mg, Now Mex (Egs. 8) (there is no available
equation for Q)

- 5 equilibrium equations (Eqgs. 9) (the last equilib-
rium equation has already been used and cannot be
considered). .

Replacing the ‘resul displacement’ relations (Egs.

8) in the 5 first equilibrium equations (Eqs. 9) and

replacing Q, and Q, (4" and 5t equations) in the 3¢

equilibrium equation, we obtain the three governing
differential equations in u, v and w. This is a system of
three differential equations.

E&i%%ﬁ%.?c@;qcu?giev

+mevTx=.umxs.,Txuo

. : (19)
Uﬁ<oq+w<l+c :ev+0ﬁ|.|c,w wHv'')
q 2
+2&Te ﬁ%u+2ov!mssug”_ +Y=0

W?f.ﬁ;é u' )+ K w4+ 2K woo '+ Kw' "
q q

oo 1
2w +yoe0)

Q . w
sepo| g g e

+W€ e<nuoo+‘m.€ wee! .w
@ Hw R W T, we]
+E()[T, sz.Tﬁi Ir, wt|-z=0

Em mrs
s Hy =

-6
o)
»
I
&l

—2 . H, =
X &e ¥ dy
El, . T = QHAG .

3. Stiffened Cylindrical Shell (Plate)
Elements

Fig. 6 shows a stiffened cylindrical shell element
composed of a plating (8) and two layers of stiffeners.
Shells are the generic elements and plates are ana-
Iyzed as a particular case. Typically the layer along op
corresponds to the transverse frames and along ox to
the longitudinal stiffeners. We assume that all stiffen-
ers and frames belonging to the same panel are identi-
cal and have the same spacing.

Note: In the LBR-5 software, the typical stiffened
cylindrical shell element is composed of a third
layer along ox corresponding to the girders
(larger than the stiffeners). Contrary to the
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stiffeners, they can differ and their spacing is
free. Details about girders are available in Rigo
(2004).

— Longhudinal sttfonors

d,/A, (Fig. 7). This standardization does not mean that
the stiffeners (frames) are smeared and replaced by an
equivalent plate thickness but it means that each indi-
vidua! characteristic {cross section, first sectional
moment, inertia moment, torsional rigidity,...) is stan-
dardized on the entire plate. Globally, the stiffened
panel behaviour is accurately modelied but it is locally
simplified. This simplification is only valid if the
spacing between stiffeners (frames) is constant and

Fig. 6: Stiffened Cylindrical Shell Element

3.1 Resultant Forces and Moments of
Two-Layered Stiffened Panels

Egs. 11 give the resultant forces and moments of
two-layered stiffened panel:

N, =D+, vﬁ%+mw+9=. ~Hyw

Ny u?+b¢=i9?+.$:mxs,

M

o u%+mevsa+wce,:mim+§

M, =(K+Rw'+Kow~H.u'

Mox u_wcncfﬁ.fe
My, u—ﬁolcv.,.ﬁh Te an
N uUﬁ.W.m.w?..T:ov
Zus HZez
Qp =(K+T )W +(K+Rp )W~
w®
H, ()
" q
Qy Hamﬁ+ﬂav2oc.+ﬁﬁ+mﬂzvial
H.u"
with
Eo Eh
Oy et g By ey B
Ay Ay Ay Ay
EI GK
Ws"llllswmﬂnﬂmr.ﬂsu ew.u.»"nwmﬁn
By Ay A, Ay

and A,, A, the spacing between longitudinal stiffeners
resp. frames.

Egs. 11 include different components:
- Plate components (D, K),
- Stiffener components (Q, Ry, Sy, Hy, Ty, Ly) and
- Frame components (€, Ry, Sp, Hes Ty Le)-

For the stiffeners, the f{¢) Heaviside function is re-
placed by dJ/A,. For the frames, f{x) is replaced by

small (compared to their span).

¥ D. 3 >¢ N
4 d,
e B o e MO
B NN SN
|22 |27 |47 A
22 722, 2
F10] . A, A t
! t
N N7
3/
dg ¢4 e
 RERNNERY
i !
Fig. 7: Uniformly Distributed Frames:
4y
f{x) =——=const.
4y

Based on the equilibrium equations (Egs. 9) and the
‘resultant-displacement’ relationships (Eqs. 11), three
governing differential equations are obtained:

(D+0, r,+0mﬁmv,uo+omﬁv<e
: 2 2
Du

~H W +==w'+X=0
q

b ofief s

1mes§+wAU+bs vio +Y=0 a2
~Hy ::+%:.+.Wou+be v%nms voee
+MW.AU+DLE+AN+W€VSSS
+2K T, +T Jweo (KR Jw'™
IE«,\EINH 0
q

4. Analytical Solution for the Governing
Equations of Stiffened Panels

Only for the unstiffened plate u and v (in-plane dis-
placements) are not coupled with w (transversal dis-
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placements) within linear thin plate theory. In all other
cases, u, v and w are coupled and the three equations
for them (Eqgs. 10 or 12) have to be solved simultane-
ously. The principle to solve any of these three gov-
erning differential equations is the same. They can be
written as:

au+ by + ow =+ X(x0)

au + byv + 6w =+ Y(x,9) (13)
a1 + byv + ew = - Z(x,0)
with

- u(x,p), v(x,0) and w(x,p) the displacements.

- x and ¢ are the coordinates of a point on the mid-
plane of the cylindrical shell (plate). The z coordi-
nate does not appear as we only look for the dis-
placements (u,v,w) at the mid-plate thickness where
z= 0 (linear thin shell theory).

- X, Y and Z{x,ip) are the surface loads.

- ay, by, ..., c3 are the derivative operators. E.g. for
the system of Eqs. 10 we have:
ar= UM. +D ﬁ‘uu nW»

% 2 )oy

4.1 Homogeneous Solution (or Comple-
mentary Solution)

The homogeneous solution of the governing differ-
rential equations (Eqs. 13) yields:

ay b ¢
a; by cyl=0 or (14)
a3 by c3

ay (b3 + bacy) + 8z (bacy - byea) + 83 (bicz - bacy) = 0
1f we apply this operator (Eq. 14) to the w{x,@) dis-
placement, we obtain:

Awgot+ Bwyy+ Cwey +Dw yp+Ew o + as)
+IWyg+ Kwpg =0
This is an 8" order differential equation with two
coupled variables x and . w; denotes the i* order
derivative of w by x and j° order derivative by y (y =
qp). E.g. w3 =w'o%°,

4.2 Fourier Series Expansions

To solve this 8" order differential equation we have
to make an assumption on the shape of the displace-
ments u, v, W to obtain an 8" order differential equa-
tion with.two separate variables:

w(x,0) = wi(p) . wa(x) (16)
We use the Fourier series expansion theory and as-
sume:

u(x) =u(p) . cos (Ax)

V(%) =v(9) . sin (Ax) an
wixp) = w(p) . sin (Ax)

with A = nn / L, n the term number of the Fourier se-
ries expansion, and L the span of the structure (and
panels) along ox. L is the same for each panel.

‘The shape of the assumed displacements imposes
some limitations on the boundary conditions. The two
edges x = 0 and x = L must behave as simply sup-
ported edges, i.e. w=v =M, = N, = 0 (Fig. 8).

X(u)

Fig. 8: Fourier Series Expansion and
Boundary Conditions

Inserting Eqs. 17 in the one of the considered gov-
erning differential equations (Eqs. 10 or 12) yields an
8" order polynomial differential equation with now
only one variable .

4.3 Loads’ Fourier Series Expansions

Having decided to expand the displacements using
Fourier series (Section 4.2) to solve the governing
differential equations means that the Z(x¢) loads
(Eqs.13) have to also satisfy the Fourier series expan-
sion’s shapes:

Z(x,0)=Z*(p) . Q(x) = Z*(p). L asin(Ax) . (18)
The way to implement the actual loads in the analyti-
cal procedure is explained in Section 4.5.

Presented here are the sine and cosine Fourier series
expansions of a Q(x) generic load, which consists of a
uniform load Q, between x, and x,, and zero else-
where.

For a sine expansion

" %mgﬁmﬁf._.x&@..ﬁ
oSuM o “ ; .,&T_wmw 19
n= mE_HumumAxn lv:v_._ .
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For a cosine expansion The u{(p) and v(p) equations contain other integration
4Q on 11 constants that depend directly on the eight integration

. .mnﬁﬁm (x; +x~u_._ s constants of w (A;, B;, G, D;). This means that once

Qx)= M - .cos—— (20} these eight constants are fixed for w, the equations for
1 L u and v are also completely defined. In addition, using

=l . | nm
mE_,VNP (xq x_v: Y

Hydrostatic pressure is usually uniformly distributed
along ox and varies linearly along og. The variation
along oy is considered in Section 4.5. The expansion
along ox for such a symmetric load uses only the odd
terms in a sine series:
sl 4Q . (@2n-Dmx
Qx) =Mu..~ Gn-Dr sin T @n
In practice, the first three terms of the series are
enough to model such loads with sufficient accuracy.

Cargo loads and weight distribution can be ap-
proximated by step functions. In such cases, 7 to 13
terms usually suffice to model the loads with sufficient
accuracy.

To model the primary bending moment, it is neces-
sary to apply axial longitudinal loads at the both ends
of each panel. As concentrated loads cannot be ex-
panded with the Fourier series, these end loads are
applied on a small zone on each side. The width of
these zones is taken in LBR-5 as 1/20 of the span L.
This is a compromise between computational effort
and accuracy. For such expansions, cosine Fourier
series are used truncated typically after 7 to 13 terms.

4.4 Homogeneous Solution of Differen-
tial Equations
From the solution of the 8® order polynomial differ-
ential equation with a single variable ¢ (Eq. 15) and
keeping in mind that w(x,p) = w(®) . sin (Ax) (Eqs.
17) we obtain:
e™% (A; cosB;qp+ B; sinB;qp) 1
+e%80=® (€ cosBiq(2n-g)
+Dj sinBiq(2n— o))
e Ui
(22)

w(x,p) = - sinAx

Table 1: Values of index ‘i’

If theni | ie.

(ot B1), (o2t B2)
Bi&pB,#0 12, complex solutions

(@EB1), (02,0) 5 (22,0)

Bi#0&P,=0 | 1103 | complex, 2 real sol.

- (ot B s (02,0) , (03,0)
Pr=0&p,=0 | Ito3 | complex, 2 real sol.

oa | @.0,(00).(50,(0)
4 real solutions

Bi=P2=0

A;, B, G, D; are the eight integration constants in-
cluded in Eq. 22. These constants are determined
through the boundary conditions (Section 4.6).

For u(p) and v(p) similar equations can be written.

the ‘resultant-displacement’ relationships (like Eqgs.
11) the resultant and displacement derivatives (e.g. w°
= slope) are also known. These will be required later
(Section 4.6) to find the boundary forces to apply
along the panel boundary edges (p = 0 and ¢ =gq).

Eq. 22 for w(p) and those for u(p) and v(p) are the
‘homogeneous solution” of the differential equations.
The ‘homogeneous solution’ is our basic solution to
determine the solution of the actual panel.

4.5 Superposition Principle

At this stage it is valuable to resume briefly the gen-
eral philosophy to solve analytically the governing
differential equations of structures composed of cylin-
drical stiffened shells (plates):

1. We decompose {mesh modelling) the global struc-
ture in a series of stiffened cylindrical shells and

stiffened plates (Fig. 9).
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= &
F cablos o~ / n\,
B i AN P
[ ws ' v cndeOl v f
| Jenk o ~ Sorugo tank, k
E L AN :
Eono A E
5 g S -
SN AN E
I . . k
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3 . N E
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Fig. 9: Modelling of the Structure with
Stiffened Panels

2.Using the displacement shape of the Fourier series
expansion, we solve for each panel the governing
differential equations without second member (ho-
mogeneous solution). For each panel, Eq. 22 gives
the homogeneous solution, which includes the eight
unknown integration constants, This procedure is
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repeated for each term of the Fourier series expan-
sion. At the end, the superposition principle is ap-
plied by surnming all the solutions (one per term) to
get the actual solution. The number of terms to use
depends on the problem’s complexity in terms of the
load patterns. Usually 3 to 13 terms are required.
Each panel {(cylindrical shell) is considered as a
complete 360° cylinder (i.e. the shell opening angle
is 360°). The actual opening angle p, will be con-
sidered later.

3. Definition of the four ‘basic unitary load lines™: X,
Yy, Zy, M,,. The principle is to find the eight integra-
tion constants for the four ‘basic unitary load lines’
applied on the complete cylinder. Four sets of inte-
gration constants are determined (one per unitary
load line). The superposition principle allows then
to find the solution (wv,w) for the actual stiffened
panels (actual opening angle ¢ and loads) that
compose the structure. The four ‘basic unitary load
lines’ applied on the complete cylinder are:

X, =10000 cos (Ax) (N/m)

Y, =10000sin(Ax) (N/m) 23)

Z, =10000sin (Ax) (N/m)

M, =10000sin (Ax) (Nm/m)

Their forms are compatible with the Fourier series

expansions of the actual loads. These unitary load

lines are applied at @ = 0 (and g = 360°).

For each of these ‘unitary load lines’, eight integra-

tion constants are obtained through the boundary

conditions at ¢ = 0 and ¢ = 360°. To satisfy the

boundary conditions, we can define four equations

(equilibrium and/or compatibility). In addition, the

y y or the anti-sy y of the resul and

displacements induced by the load line provides four

other equations. E.g. for the Z, load case, the condi-

tions are, Fig. 10:

v = 00 sin(Ax) in¢ =0 (per symmetry)

Nge = 0.0 cos(Ax) ing =0 (per symmetry)
0.0 sin(Ax) ing =0 (per symmetry)
R, = -5000sin(Ax) ing=+¢

Fig, 10: Z, = 10000 sin (Ax) (N/m)
Basic Unitary Load Line

Lateral pressure (varying along o), the deadweight,
and the longitudinal axial compression (induced by
the primary bending morment) can also be consid-
ered using the basic unitary oad lines. The unitary

load lines are assumed to be applied on a small sur-
face (L.dy or L.qdp) at z = 0. Integrating the solu-
tions obtained for the basic load lines according to
the actual load distribution, we get the solutions (u,
v and w) for a complete cylinder under the real load
conditions.

4.6 Actual Panels

In order to get the solution of the real panel (for the
actual shell opening angle gg) we have to consider the
actual boundary conditions imposed along the two
Iongitudinal edges (p = 0 and @ = @g). To satisfy these
boundary conditions, we apply along each edge a set
of four basic load lines (X,, Yy, Z, and M,;). The prob-
lem is to find the amplitude of these load lines. For
each panel, the unknowns are the ‘edge amplification
factors’ of these load lines. Conditions to determine
these ‘edge amplification factors” are:

- For a free edge: My = N =Ny, =Ry =0

- For a clamped edge: w=v=u=dw/dy =0

- For a simply supported edge: w=u =M, =N, =0

- For an edge (node) corresponding to the junction
between two panels, we impose four compatibility
conditions between the displacements of the two
panels and four equilibrium equations.

For an edge (node) corresponding to the junction
between three panels, we impose eight compatibility
conditions between the displacements of the three
panels and four equilibrium equations.

The ‘edge amplification factors’ for all panels are
determined at the final stage (Section 4.7). For a struc-
ture with N panels, there are 8N unknowns corre-
sponding to the eight ‘edge amplification factors’ per
panel. They are determined by solving a system of 8N
linear equations.

The equations (compatibility or equilibrium) at the
panel edges require the displacements (u, v, w, w°)
and the resultants (M, Ng, Ny, Ry) acting along the
edge @ = 0 and the edge 9 = @p. These are determined
for the nine “standard loading cases’, Fig. 11:

- The actual external loads:
o pressures {quasi-static): Z type
o gravity loads (deadweight, cargo, ...) having
component along op and along oz Y and Z
types
o axial compression (induced by the primary bend-
ing moment) : X type
- The four basic unitary load lines (X,, Y., Z, and

M,) acting at ¢ =0
- The four basic unitary load lines (X, Y., Z, and

M,) acting at @ = @

Al these displacements and forces are calculated from
the solutions of the homogeneous differential equa-
tions for the four basic load lines applied on the 360°
cylinder.
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- the 360° cylindrical panel under actual external
loads,

- at @ = 0, the 360° cylindrical panel under the X,,
Y., Z, and M, ‘unitary load lines’ multiplied by
their respective ‘amplification factor’,

- at @ = g, the 360° cylindrical panel under the X,,
Y., Z, and M, ‘unitary load lines” multiplied by
their respective ‘amplification factor’,
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was p d in this paper. It is based on the resolu-
tion om the stiffened numaﬁm differential equations by
using Fourier series expansions. This method has been
developed for fast and accurate linear elastic analysis,
particularly in regard to structural optimization. This
is precisely the reason it was implemented in the LBR-
5 optimization software.
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