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DIFFERENTIAL EQUATIONS OF STIFFENED PANELS pl

DIFFERENTIAL EQUATIONS OF STIFFENED PANELS.
&
FOURIER SERIES EXPANSIONS

INTRODUCTION

This text presents the theory used to implement in the LBRS software an analytical solution of the
stiffened panels governing equations. For that purpose, Fourier series expansions are used to solve
the governing differential equations.

In the present analysis, éylindrical shells are used as the reference panels. Stiffened plates are
considered as a simplified case of the more general cylindrical shell. In the LBR-5 software,
plates are analyzed as being cylindrical shells having a very large radius (q=1.0 10°m).

The present method has been developed for fast and accurate linear elastic analysis of stiffened
structures, particularly in regard to structural optimization.

DIFFERENTIAL EQUATIONS OF THE CYLINDRICAL STIFFENED SHELL

Figure 1 shows the coordinate system (oxg) with z=0 at mid plate thickness. The relation between
the @ coordinate (used for shell) and the y coordinate is: y=qe.

Q is the. radius, & the plate thickness, L the panel length (along x) and ¢, the opemng angle
(radian). : .

Figure 1: The panel coordinate system
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The stresses acting on a small volume element [dx dz (q+z) dg] are presented in Figure 1. But for
this study, the thin shell (plate) theory is used. This means that <,, , T, and o, are not considered

(g, » Yy, and y,, =0).

The proposed governing differential equations are known as the D.K.J. differential equations
(Donnell, von Karman and Jenkins). They are based on the Love-Kirchoff hypotheses.

These hypotheses are the following:

1. Thin shell theory. This means that 8/q <<< 1 and that 8/q is negligible with regard to 1. For
LBRS5, we impose that 6/q < 1/100.

2. Small deformation and linear analysis,

3. The points that are on a perpendicular line to the mid plate surface (z=0) before deformation
remain on the same perpendicular after deformation, so y,, and Yo = 0.

4. 0, and its effects are negligible.

5. No deformation along oz (g, =0).

Therefore, the linear “deformation-displacement” relationships are (Eq.1):

n

e =u'—zw , y
x g, =u'—zw
SHELL &,=V"+—-zw®  PLATE &, =V —zw® [1]
q

] ] or
=u’+v —-2zw
Vep = U +V' =220 Vo

=

and the “stress-displacement” relationships are (Eq.2):

Oy = 5 {u' +u.(v°+ -v-v-) -z (w”+v.w°°)] ~
I-v - q S , : :
E o, W ' oo >
SHELL Oy = V' + ) +vu' - z(W+uw”) [2] -
? 102 q ]

Typ = Glu® +v' - 22w |

o, = i{[u’ +v.(V°) -~z (w”+v.w°°)]
1-v
E
PLATE Op = 3
1-v
Typ = G(u" +v = 2zw°")

[(v") +vu' =z (w° +v.w”)] {

With  E =the Young Modulus ‘ é
v = the Poisson Coefficient
G = the Shear Modulus = E / 2(1+v)

Note: the derivation of a f function according to the x and y variables are noted:

o _ and I _LI _ o | » [3] |
. dy g op
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% Figure 2 shows the internal resultant forces and moments that are applied on an elementary
cylindrical shell (plate). Hereafter they are called “resultants”. This element is included between

the upper surface (z=-8/2) and the lower surface (z=-8/2) and has a surface dimension of dx.qdg

: (or dx dy)

Resultant forces: Nx, Qx, Nxo,

No, Qop, Nox,

o
B

Resultant moments: Mx, Mxg, Mo, Mox

J
30, (Qy+ ?gx-xdx)qdw

(Nxﬂx dx )gde

\J< {Nxtp —I—-—dx)qdnp

(%—-—-dw)dx
AN

N
gt o ﬁ\Pd X \/{/

| (N PX + d‘P)d /. Q{p dx
] o |
| qu.d@—-- = |
[g N\p dx
| Nygde  QxGde  Neydx

o T3
LT

:

Figure 2 : Resultant forces and Resultant moments
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With reference to the thin shell element (Figure 2), we can establish the “resultant-stress”
relationships (Egs.4). These resultant forces and moments are referenced to the plate neutral axis
(z=0).

N, = [ o, dz N, = _[ o, (1+>)dz Inplane Axialresultant
o4 o4 q
W84 w84
M, = ! o,zdz M, = ! o, 1+5zdz Bending Moments
2 2 q
4 % [4]
%% %
N, = [rw dz N,, = _[ Ty (1+-2:~)dz InplaneShear resultant
kY :
% % 1
M, = [tw zdz M,, = f Trp (l+;)zdz ~ Torsion Moments
% %

Qx and Q, (transverse shear resultant) cannot be calculated by integration of the t,, and T,
stresses as these shear stresses are assumed to be equal to 0 (thin plate assumption). Nevertheless,
Qx and Q,, can be evaluated using the 4™ and the 5™ equilibrium equations (Egs.8).

If we replace the “stress-displacement” relationships [Eqs.2] within the “resultant-stress”
relationships [Eq.4] we obtain the “resultant-displacement” relationships [Egs.5].

Q w !
N, =D(°+—+vu)
N, = D@ +w°+v. )
SHELL 1-v) ., . 5
N, =N, =D—(——-i-———)-.(v +14°) [5a]
M, =KW*°+uw)
M, =KW +uw°°)
M, =M, =K(@-v)»"
N, =D(°+vu')
N, = D@ +w°)
N, =N, =D 0-Y) o)
PLATE 2 [5b]
M, =KW +vw')
M, =KW +uw®®
M, =M, =K(Q(-v)w"
3
with: D = E9 and K = £0

1-v? 12 -v?
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Figure 3 shows the additional resultant forces and moments acting on the shell (plate) coming
from a stiffener oriented along 0x (N, cone> My cones Nxy cones Qx cone @0d M, cope ). For a transverse
member (frame) oriented along o@ the additional resultant forces and moments would be (N, ¢y

My Conc? Nyx Conc» Qy Conc and Myx Conc )

1 - Figure 3: Resultant forces and moments acting on the shell (plate) due to a stiffener.

If we consider a stiffened thin shell element, the “resultant-stress” relationships including the
1 plate and the stiffener components become (Eqs.6):

A ,
i N, = 4' o,dz + fx) [o, —gﬂdz Inplane Axial Resultant
d . A Zn @ :
&
B *%
[ N, = ! o, (1+ZZ]~)dz + @) [o, -Zf—dz
; 3 ),
[6]
i *%
} M, = .[ o,zdz + f(x) f 0,z gﬂdz Bending Moments
2 @, ?
, :
54

M, = [0x2(1+-z—)dz + f(@) [0,z Zidz
,_A q W, X

with o, and o, the cross-sections of, respectively, the frame and the stiffeners.

The second term of each equation (Eqs.6) corresponds to the stiffeners f(¢) (frames (f(x) ).
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Eqgs 4 (unstiffened element) are a simplified form of Eqs.6 (stiffened element). Their first terms
are identical. For stiffened element the equations (Eqs.6) include Heaviside functions [f(x) and
f(q)] that are equal to zero excepted at the stiffener locations [f(x)=1 and f(p)=1]. Figure 4 shows

these f(x) and f(¢p) functions for respectively frame members [f(x)] and longitudinal stiffeners ..

[f(g)].
F(x) = H[x~(b-d/2)] - H[x-(b+d/2)] £1x) d
....... !
with H(x) the Heaviside function: 1 I
- H®)=0 ifx<0 ; X
- Hx)=1 ifx>0 ’ i a Ib

d

j"“"fi’h
R

z

gfm e¢ (Z )

Figure 4: Heaviside functions [f(x) and f(¢)]
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If we replace the “stress-displacement” relationships [Egs.2] in the “resultant-stress” relationships
[Eqs.6], we obtain the “resultant-displacement” relationships [Egs.7] for stiffened panels
(including stiffeners and frames).

o
R 53

N, =D(°+ Y rvu b +f(x) —f—((v" + lVy-).a)(p -w° h, ) including framecontributions
q P q

[
0o " E o W 0o
M, =K (W™ +uw") +f(x)2— (v +;).h¢_w 1,
’ @
F M, =K(@1-v)w” +f(x)"§“(Kq, W+, Q) (v’+u°))
) v |

X

"N, = D@ +w° +v.~W-) +f ((p),;?—-(u’wx -w’h, ) including stiffener contributions
q

x

E
M_ =KW +uw®°® + —wh -wI
. =K( ) f@ b T) 7a)
‘};} ‘A/‘[ _K 1 O3 G @ O Al Q" ( 3 0))
» =K(1-v)W +f(q9)—(7— WAL Q7 Vi
i 1-v ’ G
5 N, =N, =D( 5 ).(v +u?) +f(x)—d—£2’q, (v’+ u°) frame contribution
@

\ G ] ) o 3 v .
J + f ((p)Z-Q ; (v +u ) stiff . contribution
} with ®,,®, = transversal section of a stiffener (frame) without plating,

h,,h, = firstsectional moment of w, (w, ) _related _to the plate neutral axis z =0,
; I,,I, = second sectional moment of w, (w,) related to the plate neutral axis z = 0, it is
A also called inertia moment .

K,,K, = twisting rigidity (or torsional rigidity) of a stiffener (frame),

Q,, Q. = reduced flange section (for flange in-plane shear contribution),
' AN, = flange eccentricity to the plate neutral axis z = 0.
. and
| d,,d, = strip width where the longitudinal stiffeners (frames) are acting (Figure 4)

FeRedvin; CRCRDA

S
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A major uncertainty related to the validity of these equations (Eq.7) concerns the flange
contribution to the in-plane shear effects (Figure 5).

If these contributions are not considered (N, ¢,,=0), we obtain:
STIFFENED SHELL

N, =D(°+ Y rvu )] + f(x) f—-((v" + K—).w(p -w° h, ) including framecontributions
q q

¢
@

M, =KW +uw") + f(x):f;((vc' +-:]K).hq, —wee 1[,,) -
@

M, =K(@1-v)w” + f(x)g-;——(l(m w®)

N, = D@ +v»° +v.—Mi) + f(p) z?—(u’wx -w”h, ) including stiffener contributions
q :

X

M, =KW +ow*) + f(<p)§i(u’hx —w’I.)

x

M, =K(1-v)w® +f<¢)§—-(f<x W)

N, =N, = D(E—;‘B) .(V'+u°) no flangecontribution
STIFFENED PLATE
N, =.D (y° +vau) +f (x);—(v°.wq, -w° h, ) including framecontributions |
9 :
;0 " E o 00
M, =K(w°+uw")  +f(x) =0, -we 1)
d B
® [7c]

M, =K(1-v)w” +f(x)—§~(l<¢ W)

X

N, = D@ +w°) + f ((p)-f-—(u’wx -w”h, ) including stiffener contributions

X

M, =KW +uw™)  + f((p)-f—-(u’hx-w”lx)

X

M, =K(1-v)w" +f(<p)§—(f<x W)

N, =N, = D(l—;—li) (V' +u°) no flangecontribution
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Figure 5: Flange contributions to the in-plane shear resultant (N,,) and torsional moment M,,)
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To resume, the D.K.J. governing differential equations of a cylindrical shell (plate) are obtained
by using:

° The 6 equilibrium equations [Eqs.8] (Figure 2):

SHELL PLATE
N +N%+X =0
Neawl -2y o Net Na+ X =
1 N;+N,, +Y =0
N
“riQieg -Z =0 0 +0, -7 = -
q < ,
Mg+ M, -0, =0 Mo+ Mo =0y =0
M +MZ-0, =0 M+ My =0, =0
¥ N,, -N, =
N,-N,+—% =0
q

with X, Y and Z the external loads (N/m?), see Figure 17.

* Using of the 5 hypotheses of linear thin shell theory (see here above),
* Using the “stress-displacement” relationships (Eqs.2) and the “resultant-stress”
relationships (Egs.6) to establish the “resultant-displacement” relationships (Eqs.7).

The problem is composed of 13 unknowns:
- ouv,z
- Nx, Mx, Qx, Nxog, Mxg
- Nq)a MCp, QCP’ NCPX, MCPX

And there are 13 available equations:
- 4 “resultant-displacement” relationships (Eq.7) corresponding to Nx, Mx, Nx@, Mx@
(there is no available equation for Q,)
- 4 “resultant-displacement” relationships (Eq.7) corresponding to Ng, Mg, Nox, Mgx
«  (there is no available equation for Qp)
- 5 equilibrium equations (Eq.8)
(the last equilibrium equation has already been used and cannot be considered).

Replacing the “resultant-displacement” relationships (Eqs.7) in the 5 first equilibrium equations
(Egs.8) and replacing Qx and Qg (4™ and 5" equations) in the 3™ equilibrium equation, we obtain
the 3 governing differential equations in u, v and w. This is a system of 3 differential equations.
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j SHELL WITH SHEAR CONTRIBUTING OF THE FLANGES

2 Stiffened shell with stiffeners [f and frames [f(x

D" +vvs 22y 4D (-————1 ;U )(u“" +v°)

q
+ f(x) E'q, (v°’ + u°°)]
+ f(p) szu" - wa” +85, (v°' + u°°)} @) E‘x (v’+u°)] +X =0
D@+ £+ vu®)+ D (1 _U)(u"’w”
: q

2
Ji + f(x) Elq) (v +w)-H, W+ Sp (v”+u°’)} f(x) E'q, (v’+u°)]
+ f(@) [fx (T +Y=0'

D w
2O+ —+vu) + Kwl + 2K W+ K W

e

oo

2w

b -Q(p w

} + f(x) |——=(" + =) - Hgp( +V°%°) + Ry, w0 + Ty, w* % Ly v
- q q q

L

+ fa(x) Tq] Wwoo't Lq) (vov+uon)]

+ f((p) | qu”q'Rx W””’*‘Tx w00n+Lx v057+uoo:)]

” : + @) Iy v+ L, (v”+u°’ -Z =0 - [9]
}
j

with
i Ew Eh
i Q = ¢ Q,\ = wa H = @ Hx — Ehx
= ’ d(p dx ? d(p dt
! EI GO' o’
; R = __l Rx - E]x S = y Sx - G x

¥od, d, v d, d,

" i
i T, = E-Kq., T, =E—Kx L, =-#"—GQ; L = -}}iGQ;
d, d, d, d,
J? A major uncertainty related to the validity of these equations (Eqs.9) concerns the flange

contribution to the in-plane shear effects.
X In the next developments (Eqs.10 and 12), these contributions will not be considered. It is a
i

conservative assumption.
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SHELL WITHOUT THE FLANGE SHEAR CONTRIBUTING

Stiffened shell with stiffeners [f(g)] and frames [f(x)]
( )(u°°+v°') rf@leu -aw] +x=0

D(u”+vv°

q

0

D(v°°+— +vu°’)+D( )(u V™) +f(x)[£2(p(v°°+w°)——Hq,wm] +Y =0
q

D w
—(V+—+vu) + KW+ 2K W+ K w™”
q

[10]
+ f(x) "’(v +——-—) H, (————+ Vo) + R, W+ T, w°°”
q q ,
+f(¢) _'__qu,33+ Rx w””_!_Tx WOO’,]
+f’(x)[T,p Woo,]'l"fo((p) [é-vx won]
with
Eh
= el QX=E(D" H, =" Hx-_-Ehx
? ” d. v d, d,
EI
R, = g RX=EI*' T¢=§-Kq, T, =—G~-Kr
d, d, d, d,
Unstiffened shell
D@" +vv°+ (I;U)(u°°+v°’ +X =0
D(v°°+_w_+vu°’)+D( )( +Y =0 [11]
q

£(v° +K+Uu’)+ Ew+ 2w+ Kw”™ -7 =0
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PLATE WITHOUT THE FLANGE SHEAR CONTRIBUTING

Stiffened plate with stiffeners [fi and frames [f(x)]

D(u”+vv°’)+D( )(u°°+v°') sl -aw] +X =0

e

D(v°°+vu°’)+D( )(u +v”) +f(x)[9«p(voo+wo)"wam] +7=0

patcsarsad

g P—(v°+vu’)+Kw°°°°+2Kw°°”+Kw”” [12]
q ’
)
L +f(x)E_H vOOD+R WOODO+T WOD')’
[} +f((p)[_.H u9’9+R W””‘*—T WOO’B ‘
i s 00
’ @l b r@ ] -z-0
8
) with
Eo Eh

o 2% Qx'_'wa g ol Hx=Eh"
1 v d, d, vod, d,

4 EI
1 R,=—" Rx=EI" Tq,=—G—Kq, T, =§-Kx
| d, d, d, d,
i
)
15 Unstiffened Plate
! 1-
D(u”+vv°’)+D( 5 )(u°°+v +X =0
ti oo X l-v 03, . 9 '
w DG’ +vu®)+D — @ +v +Y =0 : [13]
z K woooo +2K W0079+K w” -7 =0
7\ These equations are not coupled. The bending (3™ equation) can be solved independently of the

in-plane forces (1* and 2" equations).




DIFFERENTIAL EQUATIONS OF STIFFENED PANELS p.14

THE LBR-5’s STIFFENED CYLINDRICAL SHELL (PLATE) ELEMENTS

Figure 6 shows a typical LBR-5 stiffened cylindrical shell element and a typical stiffened plate
element. Both are composed of a plating (8) (curved or not) and 3 layers of stiffeners. Shells are
the generic elements and plates are analyzed as a particular case.

There are 2 layers along the longitudinal (ox) direction and 1 layer along the (o) direction.
Typically the layer along o corresponds to the transverse frames.
Longitudinally (ox), there are the stiffeners (smaller in size) and the girders (larger).

It is assumed that:
- all the stiffeners belonging to the same panel are identical and they have the same spacing,
- all the frames belonging to the same panel are identical and they have the same spacing.
On the contrary, the girders can differ, one to the others, and their spacing is free. So the girders
can be non-uniformly located. ,

‘ Longitudinal stiffeners

Long. Girder n°1

Lengitudinal stiffeners

o

Long. Girder n°2

A

Frames
Transversal stiffeners

Figure 6: Stiffened cylindrical shell and plate elements
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RESULTANT FORCES AND MOMENTS OF THE LBR-5’s THREE LAYERED

STIFFENED PANELS
Figure 7 shows the standardization procedure used to consider the stifféner and frame
contributions.
E
[
3
b
1
1
A
1\ Figure 7: Uniformly distributed frames: f(x) = -iﬂ = cst.
5 @
} Egs.14 give the resultant forces and resultant moment of the three-layered stiffened panels.
.
il
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Eqs.14 present the revised form of the previous set of equations (Eq.7) for shell element
with the 3 layers of members (stiffeners, frames and girders).

"""" N, =+ sz)(+ _;Y.) sDva'-Hpw

N, =(D+Q_)Ju'+ Dv(v°+ —M:) -H w' +f((p)[§2;u' —H;w"]
q

¢

M =(K+R¢)w°°+Kvw"——H¢(lv-+v°)
q

M, =(.K+Rx)w"+Kvw°°-—qu' _f((p).@i;u'-—R; W"]

qur =_K(1_U)+qu ]Vo’+Lw(vl+uo). ' k : [14]
M,, =|KQ-v)+T, -}M°'+Lx(v'+u°) + f(gp)[;w°'+Lfr(v'+u°)] |

N D57 o [€nr) sl

N, =N,

.Y 000 wo 00 " ol
0, =(K+T, )" +(K+R,)w -—Hw(—;+v Y+ L. 0" +u

+ f @+ L6 +u)]
O, =(K+T )W +(K+R)W ~Hu"+L,[° +u°°

I

X e

Ry

with for stiffeners (subscript Xx) and frames (subscript @)

_Eo, _ Eo =£’_’_a; H _Eh,
P, A, °7 A, A,
EI EI GQ G,
R ::—-Z R = —~ S¢’= . SJ = e
A A A, A,
W X j‘ )'
G G @ ’ — X ’
=—K, T = K, L, =~2GQ, L ==GQ
T{P A,p @ x A: ’ ¢ Ap ¢ x

w, , W, = transversal section of a stiffener (frame) without plating,
h, ,h, = first sectional moment of w, (w,) to the plate neutral axis z= 0,

I,,I, =second sectional moment (inertia) of w, (w,) to the plate neutral axis z= 0,
K, , K, = twisting rigidity (or torsional rigidity) of a stiffener (frame),

Q/, Q. = reduced flange section (Shear contribution),

A, A, =flange eccentricity to the plate neutral axis z= 0.

A, , A, =spacing between longitudinal stiffeners (frames),
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and for each individual girder (subscript xt)

3l

0 ; _ Ew, H; _ Eh, RL _ EI,
f} dy dy dy
Tx’ =..C.;_le S; = GQ, I = _."_’_Gg;t
dxl dxt dxt

®, = transversal section of the girder without plating,

, h, = first sectional moment of w,__ related to the plate neutral axis z= 0,
% I, =second sectional moment of w, (inertia) related to the plate neutral axis z = 0,
K . - - - - 3 . .

K, = twisting rigidity (or torsional rigidity) of the girder,

Q' =reduced flange section (Shear contribution),
A, = flange eccentricity to the plate neutral axis z= 0.
d, = _the stripwidth where the girder is acting.

In Egs.14 include different components:
} - Plate components (terms in D and K),
W - Stiffeners components (S2,, R,, S;, Hy, Ty, L),
- Frame components (,, Ry, S;, Hy. Ty, L) and :

!; - Girder components (2,',R,', S,’, H,', T,', L,' ; terms multiplied by f(¢) ).

. - The f(p) Heaviside ﬁinctions allow to model the non—uriiformity of the girders (in size and in
! “location). The f(¢) functions are always equal to zero excepted at the girder locations where
i f(p)=1 (Figure 4).

A On the contrary, for the stiffeners the f(¢) function is replaced by d,/Ag and for the frames f(x) 1s
replaced by d,/Ax (Figure 7).

This standardization does not mean that the stiffeners (frames) are smeared and replaced by an
equivalent plate thickness but it means that each individual characteristic (cross section, first
sectional moment, inertia moment, torsional rigidity,...) is standardized on the entire plate.
1 Globally, the stiffened panel behavior is accurately modeled but it is locally simplified. This
3 simplification is only valid if the spacing between stiffeners (frames) is constant and remains
small (compared to their span).

R

s

e

w
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Based on the equilibrium equations (Eqgs.8) and the “resultant-displacement” relationships
(Egs.14) the 3 governing differential equations are obtained (Egs.15). In these equations we can
distinguish the components related to the plating (D .K), stiffeners (S,,2,,. ) frames (S,.L2,,..) and
girders [f(¢).X,, f(@).Y, , ft@).Zy, £°().Upx and £°(9).Ugz . -

) R ¥ L N e

——f@feu - Hw + 567 )]~ st )] - x

D Xo===- Uoz

[D(I—ZP—>+S +S

I e B et

-~ f@ 567 +u)] -¥

e————-—_YO [ —E [15]

-H u' +(L +L ),t°°'+23}—-u'+—(D+Q¢))°—Hq7 y°0°

+(L;+L¢)V°"+—2QD+Q¢)W+(K+R¢)W°°°° .’
+(2K+T +T, )W '+ (K +R, " %fg_woo-

= _f((p) [T' oo Htul/l+R1Wr/lr+Lt (V°”+u°°')]

e Z e
""f (qv) []vtwoll+Lt (v"+u°')] +7
— U,

Related to the girders, one can see that the X, Y, Z,, Uy and U,; components can be considered
as external loads (X,Y,Z). These X,, Y,, Z, loads are in fact “force load lines” (Figure 8)
corresponding to the girder reactions on the panels.

Uox and Uoz are “moment load lines”. They correspond to the f°(g) terms.
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[

Figure 8: The girder load lines (forces and moments).
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AN ANALYTICAL SOLUTION FOR THE STIFFENED PANEL GOVERNING
DIFFERENTIAL EQUATIONS

It is only for the unstiffened plate (Eqs.13) that the u and v variables (in-plane displacements) are
not coupled with the w transversal displacements (linear thin plate theory).

When shells (unstiffened or stiffened) or stiffened plates are considered, the u, v and w
displacements are coupled. The 3 equations have to be solved simultaneously (Egs.9, 10, 11, 12,
15).

The principle to solve any of these 3 governing differential equations is the same.

These governing equations can be written on the following way:

a,u+b,v+cw=+XX0) , , ,
au+b,v+c,w=+Y(X,Q) : [16]
au+b,v+c,w= -Z(x,p)

with :

- u(x,p), v(x,) and w(x,p) the displacements;

- x and g are the coordinates of a point on the mid-plane of the cylindrical shell (plate). The
z coordinate does not appear as we only look for the displacements (u, v and w) at the
mid-plate thickness where z= 0 (linear thin shell theory).

- X, Y and Z(x,p) are the surface loads (Figure 17).

Trtrnnse

The a;, by, ... and ¢, are the derivative operators. For instance, for the system of Eq.10 we have:

al=Di+D 1:.1_)_ i
ax 2 )y

NB: At that stage the f(p) concentrated terms of the differential equations (Egs.15)
corresponding to the girders must be discarded. Their effects will be considered at a latter
stage (STEP 6).

U,
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STEP 1: HOMOGENEOUS SOLUTION (or Complementary solution)

To get the homogeneous solution of the governing.differential equations (Eqs.16) we have to
solve the system defined by Eqs.17 (i.e. without the loads).

au+bv+cw=0 ‘ [17]
au+byv+cw=0
au+byv+cw=0

This problem (Eqs.17) has a solution if the determinant of the matrix constituted by the derivative
operators (a,, a,, ..., C3) is zero (Egs.18a and 18b).

[18a]
or a, (bycs + byc,) + @, (byc - bics) + a5 (bic, - byey) =0 [18b]

If we apply this o'per‘atof (Eq.18b) to the w(x,@) displacement, we obtain:
Awgy + Bweg + CWg® + Dwyg+ Ewgy” ...+ Jwyg ™™ + Kwge™ =0 [19]

This is an 8" order differential equation with 2 coupled variables (x and @).

Note : w;; means i" order derivative of w by x and j" order derivative by y (y=q@ ). For instance

w,; has the same meaning that w

1000
.
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STEP 2: THE FOURIER SERIES EXPANSIONS

To solve this 8" order differential equation we have to make an assumption on the form (shape) of
the u,v and w displacements. This assumption-is required-to obtain-an-8® order differential--
equation with 2 separable variables: w(x,p) = w,(@) . w, (%)

This assumption is satisfy if we use the “Fourier Series Expansion Theory”, i.e. if we assume that:

u(x,p) = u(p) .cos Ax
v(x,9) = v(@p) .sin Ax [20]
w(x,p) = w(®) . sin Ax

with  A=nxa/L ,
n = the term number of the Fourier Series Expansion.
L = Span of the structure (and panels) along ox. L is the same for each panel.

The shape of the displacements used by the Fourier Series Expansion imposes some limitations
on the boundary conditions. The 2 edges (x = 0 and x = L) must behave as simply supported
edges,ie.. w=v=M, =N, =0 (see Figure 9).

If we plug the assumed displacement forms (Eqs.20) in the one of the considered governing
differential equations (Egs.9, 10, 11, 12, 15), Eq.19 becomes an 8" order polynomial differential
equation with one single variable (@) instead of 8" order differential equation with two variables
(x and @). ' ' '

Figure 9: Sine Fourier series expansion and boundary conditions. -
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STEP 3: THE LOADS’ FOURIER SERIES EXPANSION
Having decided to expand the displaceménts using Fourier series (STEP 2) to solve the governing
differential equations means that the Z(x.p) loads (Eqs.16) have to also satisfy the Fourier series
expansion’s shapes:

Z(x.@)= Z*() - Q(x) = Z*(p). Z a sin(Ax)].

The way to implement the actual loads in the analytical procedure is explained in STEP 5.

Presented here are the sine and cosine Fourier series expansiohs of a Q(x) generic load. The basic
equation to expand a function Q(x) with sine and cosine series are given by Eqs.21 (Figure 10a).

For a sine expansion
o140 . (nw N\ . (nm .
x) =) |—=sin| —(x; + x,) |.s1n| —(x, — X . sin—— 2la
o) Z[m (57 in{ 5 ))] : 21a]
For a cosine expansion

o) =2 [%cos(g-’z“(xl + x»).sin(j’;_%m —xl)) } o™ [218]

&

Figure 10.a: Fourier series expansions of a uniform load applied between x, and x, (along 0x).

Hydrostatic pressure is usually uniformly distributed along ox and varies linearly along op. T he
variation along og is considered in STEP 5. Here we present the expansion along the ox direction.
Figure 10.b shows the Fourier series expansion of a uniformly distributed loads (such as the
hydrostatic pressure). This figure and Eq.21.c shows that for a symmetric load only the odd terms
are used. So, n of Eq. 21.a is replaced by 2n-1 in Eq.21.c.

In practice, 3 terms are enough to model accurately such loads. They are, in fact, the 1%, 34 and
5™ terms of Egs.21a.

Q(x)=i 40 . Qn-Dax

[21c]

~ (2n-Dm L
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Figure 10b: Fourier series expansions of a uniform load applied between 0 and L (along ox).

Cargo loads and weight distribution are not uniformly distributed. To model such loads we
consider that they vary by steps (Figure 11). In such a case about 7-13 terms have to be used.
Tests have shown that the use of 100 terms or more does not provide more accurate results.

LPON o | | ]

Figure 11: Fourier series expansions (13 terms) of a non-uniformly distributed Iqad (along ox).
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To model primary bending moment, it is requested to apply axial longitudinal loads at the both
ends of each panel. As concentrated loads cannot be expanded with the Fourier series, these end
loads are assumed to be applied on a small zone on each side. The width of these zones is taken in

LBR-5 as 1/20 of the span (L). This is a compromise between the number of terms to apply and
the accuracy. Figure 12 shows the Fourier series expansion of such axial forces. Note that the
forces can be different on the right and on the left as the primary bending moment changes along
the hull girder. For such expansions, cosine Fourier series is used. In such a case about 7-13 terms
have also to be used.
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Figure 12: Fourier series expansions (13 terms) of axial loads induced
! by the primary hull bending moment.
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STEP 4: SOLVE THE 8" ORDER DIFFERENTIAL EQUATION (homogeneous solution)

From the solution of the 8" order polynomial differential equation with a smgle variable (cp)
(Eq:19) and keeping in mind that w(x,p) = w(@p) sinAx (Eq.20), we obtain:-

99 . . Qi .
w(x, (P) - € (At cos ﬁz qe + Bx sm ﬂxq‘p) sinAx [22]

+e%9%™®) (C, cos B;q(2n -~ @) + D, sin B,q(27 - p)) +...
with i=1 to 2, 3 or 4.
Ifp,and B, =0 then i=1to2 ie. (04, =B (0, =B,)

2 complex solutions
IfB,=0and B,=0 or

B;=0andPB,=0  -then - i=1to3 ie. — (0, %B,),(0,,0),(05,0)
1 complex and 2 real solutions
P, == then i=1to4 ie. (0,,0)(01,,0)(03,0) (0, 0)

4 real solutions

A, B;, C,, D, are the 8 integration constants included in Eq.22. These constants are determined
through the boundary conditions (STEP 5).

For u(ep) and v(@) similar equations than Eq.22 can also be written. The u(¢p) and v(@) equations
contain other integration constants that are directly dependent of the 8 integration constants of w
(A;, B;, C;, D,.). This means that once these 8 constants are fixed for w, the equations for u and v
are also completely defined. In addition, using the “resultant-displacement” relationships (like
Eqs.14) the resultant and displacement derivatives (e ... w° = slope) are also known. These will
be required later (STEP6) to find the boundary forces to apply along the panel boundary edges
(=0 and @=g,).

Eq.22 for w(p) and those for u(p) and v(g) are defined as to be the “homogeneous solution” of
the differential equations.

In fact, due to the procedure followed hereafter (superposition principle) it is not necessary to find
a particular solution. The “homogeneous solution” is our basic solution. From this one, the
solution of the actual panel can be found.
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STEP 5: THE SUPERPOSITION PRINCIPLE

At this stage it is valuable to resume briefly the general philosophy to solve.analytically the
governing differential equations of structures composed of cylindrical stiffened shells (plates).

The

rocedure is the following:

A. - To decompose (mesh modeling) the global structure in a series of stiffened cylindrical shells
and stiffened plates (Figure 13). More information can be found in the LBR-5 User guide.
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}» Figure 13: Modeling the structure in stiffened panels
1 B. - Using the displacement shape of the Fourier Series Expansion, we solve for each panel the
3 governing differential equations without second member (homogeneous solution). At that
stage, the f(¢) concentrated terms of the differential equations (Egs.15) corresponding to the
i girders are discarded. For each panel, (Eq.22) gives the homogeneous solution, which
d includes the 8 unknown integration constants.
} - This procedure (STEP 2 and STEP 7) has to be repeated for each term of the Fourier series
A expansion. At the end, the superposition principle will be applied by summing all the
) solutions (one per term) to get the actual solution. The number of terms to use depends on
1 the problem’s complexity of the load patterns. Usually 3-13 terms are required.

- Each panel (cylindrical shell) is considered as being a complete 360° cylinder (i.e. the shell
opening angle is 360°). At this stage the actual opening angle () of the actual panels is not
yet considered (Figure 14).

Figure 14:
A stiffened panel with

. its actual ¢, opening angle.
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C - Definition of the 4 “basic unitary load lines”: X,,Y,,Z,, M, .

The principle is to find the 8 integration constants for the 4 “basic unitary load lines” (Figure
15) applied on the complete cylinder (360°).

This means-that 4 sets of integration constants-will be determined (one per unitary load line). -
Based on these 4 basic cases (unitary load lines and 360° cylinder) and using the
SUPERPOSITION PRINCIPLE it is possible to find the solution (u,v,w) for the actual
stiffened panels [actual opening angle (¢p,) and loads (pressure, deadweight, axial
compression,...)] that compose the structure.

- The 4 “basic unitary load lines” (Figure 15) applied on the complete cylinder (360°) are the
following.

X, =10,000 cos Ax (N/m) ‘

Y, =10,000 sin Ax (N/m) ‘ [23]
Z, =10,000 sin Ax (N/m) ‘ '

M, = 10,000 sin Ax (N.m/m)

Their forms are compatible with the Fourier series expansions of the actual loads. These
unitary load lines are applied at ¢ = 0.

My

Figure 15: The 4 basic unitary load lines.

- For each of these “unitary load lines” a set of 8 integration constants are obtained through the
boundary conditions at ¢=0 and @ = 360°. To satisfy the boundary conditions, we can define
4 equations (equilibrium and/or compatibility). In addition, the symmetry or the anti-
symmetry of the resultants and displacements induced by the load line provides 4 other
equations (Fig. 16).
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For instance for the Z, load case, the conditions are (Figure 16)

v = 00 sinAx ingp=0 (per symmetry)
Ny = 00 cosAx inp=0 (per symmetry)
w® = 00 sinAx ingp=0 (per symmetry)
R, =-5000 sinAx (N/m) in @p=+¢

R(—e:l '
‘L.L.

vy 10000 N/m

k)

of ¥

Figure 16:{ The Z, =9810 sin Ax (N/m) basic unitary load line.

- At this stage, only the stiffeners and the frames are explicitly considered but the girders are
not yet considered. Their effects on the global solutions will be added by introducing
additional load lines (X,, Yy, Zy, Upy and U,). These load lines correspond to the reactions
between the panel and the girders. These additional loads line are considered as external
loads (Figure 19) applied on the cylindrical shell (plate). This is explained in STEP 6.

- It is also possible to consider the effects ‘of the lateral pressure (varying along og), the
deadweight and the longitudinal axial compression (induced by the primary bending
moment) by integration the solution(s) obtained for the basic unitary load lines (Figure 17).
The unitary load lines (Figure 17) are assumed to be applied on a small surface (L.dy or
L.qdo) at z=0 (L is the panel length along ox).

Integrating the solutions obtained for the basic load lines according to the actual load
distribution (Fig. 17), we get the solutions (u, v and w) for a complete cylinder (360°)
submitted to the real load conditions. But still the girder contribution have to be added (see
STEP 6). ‘
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Figure 17: External loads (pressure, deadweight...) and integration procedure
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STEP5: THE ACTUAL PANELS

-In

order to get the solution of the real panel (for the actual g, shell opening angle) we have to

consider the actual boundary conditions imposed along the 2 longitudinal edges (¢ =0 and

Q= Pp)-
NOTE: Even if we look for the solution for the actual panel, the analyzed panel will remain a

360° cylinder that has to satisfy the boundary conditions of the actual panel along
the @ =0 and @= @, edges.

- To satisfy these 2-edge boundary conditions the idea is to apply along each edge (¢ =0 and

" @= qy) a set of 4 basic load lines (X,, Y,, Z, and M,). The problem is to find the amplitude of

these load lines. For each panel, the unknowns are the “edge amplification factors” of these

load lines (4 acting along the ¢ =0 edge and 4 along the = edge). Then, there are 8
unknowns per panel.

-In

order to determine these “edge amplification factors”, conditions related to the boundary

conditions must be imposed.

For a free edge, the 4 conditions are: Mg = Ng = Nxp = Rp =0

For a clamped edge, the 4 conditions are: w = v = u = dw/dy =0

For a simply supported edge, the 4 conditions are: w=u=Mg=Ng=0

For an edge (node) corresponding to the junction between.2 panels, we impose 4
compatibility conditions between the displacements of the 2 panels and 4 equilibrium
equations,

For an edge (node) corresponding to the junction between 3 panels, we impose 8
compatibility conditions between the displacements of the 3 panels (4 between panels #1
and #2 and 4 between panel #2 and #3) and 4 equilibrium equations,

- These “edge amplification factors” for all the panels of the structure are determined at the
final stage (STEP 7). For a structure composed by N panels, there are 8N unknowns
corresponding to the “8 edge multiplication factors” per panel. They are determined by
solving a linear problem of 8N equations and 8N unknowns.

- In order to establish the equations (compatibility or equilibrium) at the panel edges, it is
necessary to know the displacements (u, v, w, w°) and the resultants (M, N,,, N, R,) acting
along the edge (¢ = 0) and the edge (¢ = @,). This work must be done for the “9 standard
loading cases” (Figure 18) that are:

The actual external loads:

— pressures (quasi-static): Z type,

~ gravity loads (deadweight, cargo ...) that have component along og and along oz: Y and
Z types,

- axial compression (induced by the primary bending moment) : X type,

the 4 basic unitary load lines (X,, Y,, Z, and M,)) acting at (¢ = 0),

the 4 basic unitary load lines (X,, Y,. Z, and M,) acting at (¢ = @y).

All these displacements and forces are calculated from the solutions of the homogeneous
differential equations for the 4 basic load lines applied on the 360° cylinder (see STEPS 2
and 3).
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coskx(N/m}

sinAx (N/m) \

Figure 18: The *“9 standard loading cases” (applied on the 360° cylinder)
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STEP 6: THE GIRDERS

In order to include the effects of the girders on the stiffened panels it is necessary to evaluate
their individual contributions (each girder individually) on the complete cylinder (360°) submitted

to the “9 standard loading cases” (Figure 8).
Practically, for each “standard loading case” (external load case, 4 unitary load lines at @=0

and 4 unitary load lines @=¢,) we establish the displacement compatibility and the force
equilibrium between the MT girders and the 360° cylindrical shell (which includes stiffeners and
frames). So, a linear equations system has to be solved including 5xMT equations (MT being the
number of girders of the panel). There is one equation for each girder and for each girder load line
(X,dx, Yodx, Zydx, Uy, Uy, see Figure 19).

Note that: :
- “dx” (Figure 4) is width of the strip where the X, Yo, Z, girder forces act. It corresponds to
the width where f(p)=1.
- Units of X,, Y, Z, are (N/m®) and those of X,dx, Y, dx, Z, dx are (N/m),
- It is better to talk about (X dx, Y,dx, Z,dx) load lines than (X, Yo, Zp).

From Eq.15, we obtain that:

Xodr =|Qiu"—Hiw +810" +u>°)]dx

Yodx =:S;(v"+u°')]dx

Zodx =W - H s R+ L6+ i [242]
Uy - = :T;wc’"+L;(v”+u°'

Upz = _:5; (V +u’ )]dx

If the flange shear contributions (Egs.10 and 12) are neglected (S,=0 , L,=0):

X,dx =l ~H'w ]ax

Yodx =0

Zods =[riwe - "+ R i [24b]
Uox =[Txlwo"]d"

Uy, =0

Note that the X dx, Y,dx, Z,dx, Uy, load lines are proportional to, respectively, Xy, Yy, Zy, My,
basic unitary load lines shown at Figure 15. No the load line is defined to represent Uy,. The
reason is that Uy, can be discarded as negligible. Nevertheless, in principle, Uy, can also be
considered. It will continue to appear in the next equations.

Let’s consider:

- @=Y, the coordinate of the current line where displacements are calculated,
- @=A, the coordinate of the current line where a load line is applied,

- MT girders located at A=K, j=1 MT
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- WKy Wyo(K) W (K) Wy, (K WK the unknown amplitudes of the X,dx, Y,dx, Z,dx,
Ugy, Uy, girder load lines (located at A= K)),

- Uo(9),Vo(9),Wo(p)  the shell (plate) displacements due to one “standard loading case”.

= Uxo(®),Vxo(9), W (@) the shell (plate) displacements due to an unitary load (Xu = 10000

cosAx ; Fig.15) that is similar to X,dx (at one constant).

= Uyo(®),Vyo(9),Wyo(®) the shell (plate) displacements due to an unitary load (Yu = 10000

sinAx ; Fig.15) that is similar to Y,dx (at one constant).
and similarly for [Uz,(),Vzo(@),W2o(@)], [Uyoe(®),Vuex(®),. Wy (@)] and
[Uued®): Vol @) Wy (@)1

- (XodX)xo, v=ki, a=kj » (YodX)xo, y=ki, A< k5 » (ZodX)xo, v=ki, a=k5 » Uooxo, v=ic, A= Kj
and (Ug,)xo, v=xi, A= kj are the values of the girder load lines at the location of the “i” girder
(Y=K;) due to an unitary load Xu = 10000 cosAx applied at the location of the “j” girder
(A=K)). They are calculated by replacing the displacements [Uy,(@),Vy,(®), Wy (¢)] in (Eq.24)
for p=K;-K;

= (XodX)yo, veki, a=kj » (YodX)yo, vari, 4 ki » (ZodX)yo, y=i, a=K; » €LC.
are the girder load lines at the location of the “i” girder (Y=K;) due to an unitary load Yu =
10000 sinAx applied at the location of the the “j” girder (A=K,). They are calculated by
replacing the displacements [Uyo(@),Vy,(9),Wy,(@)] in (Eq.24) for ¢=K;-K;;
and similarly for _

0 (XodX)z, yoki, a=1j » (YodX)zo, votii A= ki » (ZodX)zo, vexci, a=x; » €LC.
0 (XodX)uox, v=ii, =kj » (YodX) gox, voi, a< ki » (ZodX) yox, y=ki, a=Kj » €LC.
O (XodX)uer, v=ki, a=kj » (Y0aX) oz, v=ici, A= ki » (ZodX) yos, v=xi, A= » €LC.

- (XodX)o, yxi » (YodX), vai » (ZodX)g, yoki » (Upo, yoxi and (Up)o, yx: are the values of the girder
load lines at the location of the “i” girder (Y=K,) due to the considered “standard loading
case’. They are calculated by replacing the displacements [Uy(9),Vy(9).Wo(@)] in (Eq.24) for
=K.

Based on this a typical equation is (Eq.25):

Mg (K ,
W, (K,)=(X,dx), . TANNE L STNG 4. P
X 0 0.Y=K, ; 10000 0 Xo,Y=K;,A Kj

B, K)
410000

My (K)
—L (X dX) ., e ke A
j= 10000 ( 0 )ZO,Y—K‘ ,A—Kj [25]

(XodX)y,,vax, aek,

and
MT
+ ‘an (Kx)

lIIZo (Ki ) = (Zodx) 0.Y=K,
4 10000

(Zo%) x0,v-k, n-k : |

(Zodx)Yo,Y=K,,A=Kj e

+ 4 ‘PYa (Kx)
Z 10000
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In principle the five components should be considered but LBR-5 only considers the X, and Z,
components. The 3 others are assumed negligible. '

The rigidity matrix of the system (Eq.25) does not change with the load case. So the system
has to be solved only once but with 9 different sets of independent terms. For LBR-5, one set of
(X,, Z,) is obtained for each “standard loading case”.

X ) ___)_(_o.dx

18000 N/m .

‘P=Ai

Figure 19: The five “girder unitary load lines™.

In conclusion, one needs for each girder 9 sets of (X,, Z,) “girder load lines”. Each set
corresponds to one of the “9 standard loading cases”. Then, these girder load lines are
applied on the 360° cylindrical shell in addition to the standard loading cases in order to
determine the displacements (u, v, w, w°) and the resultants (N, M,, Ni,, R) along the 2
edges (p =0 and @ = @y).

Having now determined along the boundary edges of each panel all the displacements and
resultants (including the girder contribution), we can solve the global system for the complete
structure and get the amplification factors (STEP 5) to apply at the 8 “unitary load lines” on
each panel (see STEP 7).
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STEP 7: FINAL SOLUTION

At the final stage each panel is a 360° cyhndncal shell 1nclud1ng stlffener and frame
- contributions but-also girders contributions: -

For these panels we know the displacements (u, v, w, w°) and the resultants (N, M,,,
along their 2 boundary edges (¢ =0 and ¢ = ,) for the “9 standard loading cases »
To satisfy at the actual boundary conditions of each panel, we determine the “ampliﬁcation
factors” of the 4 “unitary load lines” applied at =0 and the 4 “unitary load lines” applied at
@=q,. This is done through the compatibility and the equilibrium equations between panels
(see STEPS). By solving the global system including all these equations (8 per panel) we get
the amplification factors.

R,)

Noxs

Then, the final solutions (u,v,w) of a panel of the structure is obtain by adding 9 different
solutions of the same 360° cylindrical panel (including stiffeners, frames and glrders)
- the 360° cylindrical panel under actual external loads,
- at @=0, the 360° cylindrical panel under the X, Y,, Z, and M, “unitary load lines”
multiplied by their respective “amplification factor”,
- at g=q,, the 360° cylindrical panel under the X, Y,, Z, and M, “unitary load lines”
multiplied by their respective “amplification factor”,

Figure 20 shows the use of the superposition principle to get the final solution.
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Figure 20:
Final solution using the superposition principle to sum the “9 standard loading cases”.







