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Abstract. This paper studies the expressive power of finite automata
recognizing sets of real numbers encoded in positional notation. We con-
sider Muller automata as well as the restricted class of weak deterministic
automata, used as symbolic set representations in actual applications. In
previous work, it has been established that the sets of numbers that are
recognizable by weak deterministic automata in two bases that do not
share the same set of prime factors are exactly those that are definable in
the first order additive theory of real and integer numbers (R,Z, +, <).
This result extends Cobham’s theorem, which characterizes the sets of
integer numbers that are recognizable by finite automata in multiple
bases.

In this paper, we first generalize this result to multiplicatively independent
bases, which brings it closer to the original statement of Cobham’s the-
orem. Then, we study the sets of reals recognizable by Muller automata
in two bases. We show with a counterexample that, in this setting, Cob-
ham’s theorem does not generalize to multiplicatively independent bases.
Finally, we prove that the sets of reals that are recognizable by Muller
automata in two bases that do not share the same set of prime factors
are exactly those definable in (R,Z,+, <). These sets are thus also rec-
ognizable by weak deterministic automata. This result leads to a precise
characterization of the sets of real numbers that are recognizable in mul-
tiple bases, and provides a theoretical justification to the use of weak
automata as symbolic representations of sets.
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1 Introduction

By using the positional notation, real numbers can be encoded as infinite words
over an alphabet composed of a fixed number of digits, with an additional symbol
for separating their integer and fractional parts. This encoding scheme maps sets
of numbers onto languages that describe precisely those sets.

This paper studies the sets of real numbers whose encodings can be accepted
by finite automata. The motivation is twofold. First, since regular languages en-
joy good closure properties under a large range of operators, automata provide
powerful theoretical tools for establishing the decidability of arithmetic theories.
In particular, it is known that the sets of numbers that are definable in the first-
order additive theory of integers (Z, +, <), also called Presburger arithmetic, are
encoded by regular finite-word languages [Biic62,BHMV94]. This result trans-
lates into a simple procedure for deciding the satisfiability of Presburger for-
mulas. Moving to infinite-word encodings and w-regular languages, it can be
extended to sets of real numbers definable in (R,Z,+, <), i.e., the first-order
additive theory of real and integer variables. [BBR97,BJWO05].

The second motivation is practical. Since finite automata are objects that are
easily manipulated algorithmically, they can be used as actual data structures
for representing symbolically sets of values. This idea has successfully been ex-
ploited in the context of computer-aided verification, leading to representations
suited for the sets of real and integer vectors handled during symbolic state-space
exploration [WB95,BJW05,EK06]. A practical limitation of this approach is the
high computational cost of some operations involving infinite-word automata, in
particular language complementation [Saf88,Var07]. However, it has been shown
that a restricted form of automata, weak deterministic ones, actually suffices
for handling the sets definable in (R, Z, 4+, <) [BJW05]. Weak automata can be
manipulated with essentially the same cost as finite-word ones [Wil93], which
alleviates the problem and leads to an effective representation system.

Whether a set of numbers can be recognized by an automaton generally de-
pends on the chosen encoding base. For integer numbers, it is known that a set
S C Z is recognizable in a base r > 1 iff it is definable in the theory (Z, +, <,V}.),
where V. is a base-dependent function [BHMV94]. Furthermore, the well-known
Cobham’s theorem states that if a set S C Z is simultaneously recognizable in
two bases 7 > 1 and s > 1 that are multiplicatively independent, i.e., such that
rP # s? for all p,q € Nyg, then S is wltimately periodic, i.e., it differs from
a periodic subset of Z only by a finite set [Cob69]. Equivalently, such a set is
definable in (Z, 4+, <) [BHMV94]. It follows that such a set S is recognizable in
every base. Our aim is to generalize as completely as possible Cobham’s theorem
to automata recognizing real numbers, by precisely characterizing the sets that
are recognizable in multiple bases. We first consider the case, relevant for prac-
tical applications, of weak deterministic automata. In previous work, it has been
established that a set of real numbers is simultaneously recognizable by weak
deterministic automata in two bases that do not share the same set of prime
factors iff this set is definable in (R, Z, +, <) [BBOT7]. As a first contribution, we
extend this result to pairs of multiplicatively independent bases. Since recogniz-



ability in two multiplicatively dependent bases is equivalent to recognizability in
only one of them [BRW98], this result provides a complete characterization of
the sets that are recognizable in multiple bases by weak deterministic automata.

Then, we move to sets recognized by Muller automata. We prove that there
exists a set of real numbers recognizable in two multiplicatively independent
bases that share the same set of prime factors, but that is not definable in
(R,Z,+, <). This shows that Cobham’s theorem does not directly generalize to
Muller automata recognizing sets of real numbers. Finally, we establish that a
set S C R is simultaneously recognizable in two bases that do not share the same
set of prime factors iff S is definable in (R,Z,+,<). As a corollary, such a set
must then be recognizable by a weak deterministic automaton. Our result thus
provides a theoretical justification to the use of weak automata, by showing that
their expressive power corresponds precisely to the sets of reals recognizable by
infinite-word automata in every encoding base.

2 Representing sets of real numbers with finite automata

Let » > 1 be an integer numeration base and let X, = {0,...,r — 1} be the
corresponding set of digits. We encode a real number x in base r, most significant
digit first, by words of the form w; x wg, where wy € {0, — 1} X encodes the
integer part x; of x and wr € X} encodes its fractional part xzr. Negative
numbers are represented by their r’s-complement. The length p of wy is not
fixed but has to be large enough for —rP~! < z; < rP~! to hold; thus, the
most significant digit of an encoding of a real number is equal to 0 for positive
numbers and to r—1 for negative ones [BBR97]. Some numbers have two distinct
encodings with the same integer-part length, e.g., in base 10, the number 11/2
admits the encodings 075x50% and 075%49“. For a word w = bII)_lbII)_2 il
bEBIBL ... € {0,r — 1} 2% x X% we denote by [w], the real number encoded by
w in base r, i.e.,

p—2 e g T

I Fo—i 0 ifb, ; =0,

[w], = Zbﬂ" +Zbi rt {_T,,_l 5, —r— 1.
=0 >0

For finite words w € X%,

ie., [w], = 0w *0¥],.

If the language formed by all the base-r encodings of the elements of a set
S C R is w-regular, then it can be accepted by a (non-unique) infinite-word
automaton, called a Real Number Automaton (RNA) recognizing S. Such a set
S is then said to be r-recognizable. RNA can be generalized into Real Vector
Automata (RVA), suited for subsets of R™, with n > 0 [BBR97].

RNA and RVA have originally been defined as Biichi automata [BBR97]. In
this paper, we will instead consider them to be deterministic Muller automata.
This adaptation can be made without loss of generality, since both classes of
automata share the same expressive power [McN66,PP04]. The fact that RNA
have a deterministic transition relation will simplify technical developments.

we denote by [w], the natural number encoded by w,



The subsets of R that are r-recognizable are exactly those that are definable
in the first-order theory (R, Z, +, <, X,.), where X, (z,u, k) is a base-dependent
predicate that holds whenever u is an integer power of r and there exists an en-
coding of z in which the digit at the position specified by u is equal to k¥ [BRW9S].

It is known that the full expressive power of infinite-word automata is not
needed for representing the subsets of R that are definable in the first-order
theory (R,Z,+,<) [BJWO05]. Indeed, such sets can be recognized by weak de-
terministic automata, i.e., deterministic Bilichi automata such that their set of
states can be partitioned into disjoint subsets @1, ..., @, where each Q; con-
tains only either accepting or non-accepting states, and there exists a partial
order < on the sets Q1,...,Qm such that for every transition (g, a,q’) of the
automaton, with ¢ € Q; and ¢’ € @, we have Q; < Q;.

A set recognized by a weak deterministic automaton in base r is said to be
weakly r-recognizable and such an automaton is called a weak RNA.

It has been established [BJWO05] that the r-recognizable sets S C R that
are not weakly r-recognizable are exactly those that satisfy the dense oscillating
property: One has Jx1Ve; IwoVeadasVes - - - such that |z;41 —x;| < g; for alli > 1,
x; € S for all odd 7, and x; &€ S for all even 1.

In the technical sections of this paper, we will need to apply transformations
to sets represented by RNA (or weak RNA), or to the chosen encoding base.
The following results are immediate corollaries of [BRW98] and [BJWO05].

Theorem 1. Let S C R, r € Ny and a,b € Q. If S is (resp. weakly) r-
recognizable then the sets aS + b and S N [a,b] are (resp. weakly) r-recognizable
as well.

Theorem 2. Let S C R, r € Nyq, and k € Nsg. The set S is (resp. weakly)
r-recognizable iff it is (resp. weakly) r*-recognizable.

3 Problem reductions

In the next sections, we will consider sets S C R that are simultaneously rec-
ognizable, either by RNA or by weak RNA, in two bases r and s that satisfy
some conditions. We will then tackle the problem of proving that such sets are
definable in (R,Z,+, <). In this section, we reduce this problem, by restricting
the domain to the interval [0, 1], and introducing the notion of boundary point.

3.1 Reduction to [0,1]

Let S C R be a set recognized by a (resp. weak) RNA A. Each accepting path
of A reads exactly one occurrence of the symbol . Since A is finite-state, its
accepted language L(A) has the form | J; L!  L¥', where the union is finite, and
the languages L! and LI contain, respectively, integer and fractional parts of the
encodings of the elements of S. This induces a decomposition of S into a finite
union |J;(S7+SF"), where for each i, we have S C Z and S} C [0, 1]. It has been
shown [BBO07] that this decomposition is independent from the encoding base.



Besides, every set S/ and SI" is recognizable by the same type of automaton
as A.

Assume now that S C R is simultaneously (resp. weakly) r- and s-recog-
nizable, with respect to bases r and s that are multiplicatively independent.
By Cobham’s theorem [Cob69], each set S} is thus definable in (Z, +, <). This
reduces the problem of establishing that S is definable in (R,Z,+, <) to the
same problem for each set SI'. Since we have SF C [0,1] for all i, the problem
has thus been reduced from the domain R to the interval [0, 1].

3.2 Boundary points

The following notions are adapted from [BB07]. Given a point z € R and a value
e > 0, a neighborhood of x is the set N.(z) = {y € R | |z — y| < €}. A point
z € R is a boundary point of a set S C R iff all its neighborhoods contain at
least one point from S as well as from its complement S =R\ S.

Lemma 1. If a (resp. weakly) r-recognizable set S C R has only finitely many
boundary points, then it is definable in (R,Z,+,<).

Proof sketch. If S C R has only finitely many boundary points, then it can be
decomposed into a finite union of intervals. In order to prove that S is definable
in (R,Z,+,<), it is sufficient to show that the extremities of these intervals
are rational numbers. Since S is (resp. weakly) r-recognizable, it is definable in
(R,Z,+,<,X,), and so is the set S’ containing only those interval extremities.
The set S’ is thus finite and r-recognizable, and its elements are encoded by
words sharing a finite number of fractional parts. These are necessarily ultimately
periodic, from which the elements of S’ are rational. a

4 Multiplicatively independent bases

Let r, s € N1 be two multiplicatively independent bases, i.e., such that r? # s9
for all p,q € N5g. We consider a set S C [0,1] that is both (resp. weakly) r-
and s-recognizable. In the next section, we derive some properties under the
assumption that S has infinitely many boundary points. We will see that this
assumption leads to a contradiction in the case of weak RNA, showing that S is
definable in (R,Z, 4+, <) by Lemma 1. This will be no longer true for RNA.

4.1 Product stability

Let A, be a (resp. weak) RNA recognizing S in base . We assume w.l.o.g. that
the transition relation of A, is complete.

Since S is (resp. weakly) r-recognizable, it is definable in (R,Z, +, <, X,),
and so is the set Bg of all boundary points of S, which is thus r-recognizable.
Let AP be a RNA recognizing Bs.

By hypothesis, S has infinitely many boundary points, hence there exist
infinitely many distinct paths of AP that end up cycling in the same set of



accepting states. One can thus extract from AP an infinite language L = 0 %
wv*tw?, where t, u,v,w € X |v| > 0, |w| > 0, and L encodes an infinite subset
of the boundary points of S. We then define y = [0xuv*],. and, for each k € Ny,
yr = [0 % uvFtw®],. The sequence y1,ya,3,... € Q¥ forms an infinite sequence
of distinct boundary points of S, converging towards y € Q. If we have y > y
for infinitely many k, then we define S = (S — ) N [0, 1]. Otherwise, we define
Sl = (=S +y) N [0,1]. From Theorem 1, the set S! is both (resp. weakly) r-
and s-recognizable. Moreover, this set admits an infinite sequence of distinct
boundary points that converges to 0.

Let Al and A! be (resp. weak) RNA recognizing S* in the respective bases
r and s. The path 7y of Al that reads 0 0 is composed of a prefix labeled by
0%, followed by an acyclic path of length p > 0, and finally by a cycle of length
q > 0. It follows that a word of the form 0 % 0P¢, with ¢t € X, is accepted by
AL iff the word 0 x 0P79¢ is accepted as well. Remark that the set S admits
infinitely many boundary points with a base-r encoding beginning with 0 x 0.
Similar properties hold for .AL. In this automaton, the path 7, recognizing 0 0%
reads the symbols 0 and x, and then follows an acyclic sequence of length p’
before reaching a cycle of length ¢'.

We now define S? = rPS1 N [0,1]. Like S, the set S? admits an infinite
sequence of boundary points that converges to 0. Moreover, by Theorem 1, S?
is both (resp. weakly) r- and s-recognizable. Let A2 be a (resp. weak) RNA
recognizing S? in base r. For every t € X%, the word 0 x ¢ is accepted by A2
iff the word 0 x 09¢ is accepted as well. In other words, the fact that a number
x € [0, 1] belongs or not to S? is not influenced by the insertion of ¢ zero digits
in its encodings, immediately after the symbol x. This amounts to dividing the
value of x by r?, which leads to the following definition.

Definition 1. Let D C R be a domain, and let f € Ryg. A set S C D is f-
product-stable in the domain D iff for all x € D such that fx € D, we have
reSe frels.

From the previous discussion, we have that S? is r?%-product-stable in [0, 1].
We then define $* = s?' $2N[0,1]. The set S is r9-product-stable in [0, 1] as well.
By Theorem 1, S% is also both (resp. weakly) r- and s-recognizable. Besides,
since S® = 1252 S N [0,1], the set S3 can alternatively be obtained by first
defining §* = s?'S' N [0,1], which is both (resp. weakly) r- and s-recognizable
by Theorem 1. Then, one has S% = r?5* N [0, 1]. By a similar reasoning in base
s, we get that S3 is s7-product-stable in [0, 1]. Like S2, the set S* admits an
infinite sequence of distinct boundary points that converges to 0.

Finally, we replace the bases 7 and s by ' = r? and s’ = sq/, thanks to
Theorem 2. The results of this section are then summarized by the following
lemma.

Lemma 2. Let r and s be two multiplicatively independent bases, and let S C
[0,1] be a set that is both (resp. weakly) r- and s-recognizable, and that admits
infinitely many boundary points. There exist powers r' = r* and s’ = s of r
and s, with i,j € Nso, and a set S’ C [0,1] that is both (resp. weakly) r'- and



s'-recognizable, both v'- and s'-product-stable in [0, 1], and that admits infinitely
many boundary points.

4.2 Recognizability by weak RNA

We are now ready to prove that the sets S C [0, 1] that are recognizable by weak
RNA in two multiplicatively independent bases r and s can only have finitely
many boundary points.

By contradiction, suppose that such a set S has infinitely many boundary
points. By Lemma 2, we can assume w.l.o.g. that S is r- and s-product-stable
in [0, 1].

Hence, there exist «, 5 € (0,1] such that « € S and 8 ¢ S. For every i,j € Z
such that r's’a € (0,1], we thus have r’s’a € S. Similarly, for every i,j € Z
such that ris/3 € (0, 1], we have r's’3 ¢ S.

Let v be an arbitrary point in the open interval (0,1). Since r and [ are
multiplicatively independent, it follows from Kronecker’s approximation theo-
rem [HW85] that any open interval of Rs( contains some number of the form
ri/s) with i,j € Nsg [Per90]. Hence, for every sufficiently small ¢ > 0 and
0 € {a, f}, there exist i,j € N5 such that

O<y—e<(r/s)d<vy+e<1

showing that every sufficiently small neighborhood N, (7) of 7 contains one point
from S as well as from S. The latter property leads to a contradiction, since it
implies that S satisfies the dense oscillating property, and therefore cannot be
recognized by a weak RNA.

Taking into account the problem reductions introduced in Sections 3.1 and 3.2,
we thus have established the following result, that fully generalizes Cobham’s
theorem to weak RNA.

Theorem 3. Let r and s be two multiplicatively independent bases. If a set
S C R is weakly r- and s-recognizable, then it is definable in (R,Z,+,<).

Thanks to the above mentioned reductions, we can rephrase this theorem as
follows. If a set S C R is weakly r- and s-recognizable in two multiplicatively
independent bases, then it is a finite union (J,;(S{ + Sf°), where each S/ C Z
is ultimately periodic and each SF C [0,1] is a finite union of intervals with
rational extremities. It is worth mentioning that, as observed in [Wei99], such a
structural description of subsets S of R is equivalent to the definability of S in
(R, Z,+,<).

4.3 Recognizability by RNA

Theorem 3 cannot be directly generalized to automata that are not restricted to
be weak and deterministic. Indeed, with RNA, a set can be recognizable in two
multiplicatively independent bases without being definable in (R, Z, +, <). This
property is established by the following theorem.



Theorem 4. For every pair of bases r and s that share the same set of prime
factors, there exists a set S that is both r- and s-recognizable, and that is not

definable in (R, Z,+,<).

Proof sketch. A counterexample is provided by the set S = {n/(fi* fa* -+ f{*) |
n € Z,iy,42,...,4 € N}, where f1, fa,... fr are the prime factors of r and
s. Indeed, in either base t € {r, s}, this set is encoded by the language L; =
{0,t = 1} 2% % XF(0“ U (t — 1)¥). This language is clearly w-regular, hence S is
both r- and s-recognizable. However, S satisfies the dense oscillating property,
which prevents it from being recognized by a weak RNA. It follows that S is not
definable in (R, Z, +, <). a

The case of bases that do not share the same set of prime factors is investi-
gated in the next section.

5 Bases with different sets of prime factors

We now consider a subset of [0, 1] that is recognizable by RNA in two bases that
have different sets of prime factors. Recall that according to Lemma 1, in order
to prove that the set is definable in (R, Z, +, <), it is sufficient to show that this
set has only finitely many boundary points. Like in Section 4, we proceed by
contradiction, and assume that the set has infinitely many boundary points. By
Lemma 2, there exist bases r and s with different sets of prime factors, and a
set S C [0, 1] that is both r- and s-recognizable, both r- and s-product-stable in
[0,1], and that has infinitely many boundary points. Without loss of generality,
we assume that there is a prime factor of s that does not divide 7.

5.1 Sum stability

Our strategy consists in exploiting Cobham’s theorem so as to derive additional
properties of S. The first step is to build from S a set S’ C R>( that coin-
cides with S over [0, 1], shares the same recognizability and product-stability
properties, and contains numbers with non-trivial integer parts.

Lemma 3. Let r,s € Ny be two bases with different sets of prime factors, and
let S C [0, 1] be a set that is r- and s-recognizable, r- and s-product-stable in [0, 1],
and that has infinitely many boundary points. There exists a set S" C R>q that
is 7- and s-recognizable, r- and s-product-stable in R>q, and that has infinitely
many boundary points.

Proof sketch. Let S’ = {r¥x | x € S Ak € N}. This set is clearly r-product-
stable in R>g. Since S is r-product-stable in [0, 1], we have S'N[0, 1] = S showing
that S’ has infinitely many boundary points. We build a RNA A/ recognizing S’
in base r from a RNA A, recognizing S as follows. The automaton A’ is similar
to A, except that it delays arbitrarily the reading of the symbol *.

In order to prove that S’ is s-recognizable, notice that, since S is both - and
s-product-stable in [0, 1], we have S’ = {ris’z | z € SAi,j € Z}. The set S’ can



therefore be expressed as S’ = {s*z | z € S A k € N}. By the same reasoning as
in base r, this set is s-recognizable, and s-product-stable in R>g. a

Consider now a set S’ obtained from S by Lemma 3. As discussed in Sec-
tion 3.1, this set can be expressed as a finite union S' = (J,(S} + SF), where
for each i, we have S C N and SF C [0,1]. Moreover, for each i, the set S
is both - and s-recognizable, and it follows from Cobham’s theorem that this
set is definable in (N, +, <). Since such a set is ultimately periodic, there exists
n; € Nyg for which Vx € N,z > n; : = € Sil &S x+n; € SiI. By defining
n = lem;(n;), we have Vo € Ry, x > n: z € S’ & x +n € S’. This prompts
the following definition.

Definition 2. Let D C R be a domain, and let t € R. A set S C D is t-sum-
stable in D iff for all x € D such that x +t € D, we havex € S & x+t € S.

Let us show that the set S” = (1/n)S’ is 1-sum-stable in Rsq. For every
z>1, wehavex € S” & x+1€S5”. For x < 1, we choose k € N such that
r*x > 1. Exploiting the properties of S’ (transposed to S”), we get x € S &
rhr € 8" & rfx +17F € §7 < x4+ 1 € §”. Lemma 3 can thus be refined as
follows.

Lemma 4. Let r,s € Nsj be two bases with different sets of prime factors, and
let S C [0, 1] be a set that is r- and s-recognizable, r- and s-product-stable in [0, 1],
and that has infinitely many boundary points. There exists a set S’ C Ryq that
18 r- and s-recognizable, has infinitely many boundary points, and is r-product-,
s-product- and 1-sum-stable in Rsq.

Note that Lemmas 3 and 4 still hold if the bases r and s are multiplicatively
independent.

5.2 Exploiting sum-stability properties

Consider a set S’ C Ry that satisfies the properties expressed by Lemma 4. It
remains to show that these properties lead to a contradiction. The hypothesis
on the prime factors of r and s is explicitly used in this section.

We proceed by characterizing the numbers ¢ € R for which S’ is t-sum-stable
in Ryg. These form the set Tg = {t ER |V ERspg: 2+t ERsg=> (z €5 &
x4+t € S5")}. Since S’ is r-recognizable, it is definable in (R,Z, +, <, X..), and so
is Tlsr, that is therefore r-recognizable as well.

The set Ts» enjoys interesting closure properties:

Property 1. For every t,u € Ts: and a,b € Z, we have at + bu € Tg.

The set Tg: is also - and s-product stable in R. Since 1 € T/, this yields
the following property.

Property 2. For every k € Z, we have r* € T and s* € Ty:.



Intuitively, being able to add or subtract 7* from a number, for any &, makes
it possible to change in an arbitrary way finitely many digits in its base-r encod-
ings, without influencing the fact that this number belongs or not to S’. Our next
step will be to show that this property can be extended to all digits of base-r
encodings, implying either S’ = () or S’ = R~(. This would then contradict our
assumption that S’ has infinitely many boundary points.

Property 3. There exist [,m € N such that, for every k € Nsq, we have
m/(r'* —1) € Tsr.

Proof. By Property 2, we have 1/s* € Ts: for all k € N. The base-r encodings
of 1/s* are of the form 0% % vyuy, where uy is their period. Hence, 1/s* =
ay/(rlEl (rlesl — 1)), with ax € Nsg. Recall that, by hypothesis, there exists a
prime factor f of s that does not divide r. Thus f* must divide rl“sl — 1. Tt
follows that the length of the periods u; must be unbounded w.r.t. k.

Consider a RNA AT recognizing T in base . We study the rational numbers
accepted by AL, which have base-r encodings of the form v x wu®. We assume
w.l.o.g. that the considered periods u are the shortest possible ones. It follows
from the unboundedness of uy, that Tss contains rational numbers with infinitely
many distinct periods. As a consequence, there exist u, ', v,v’, w,w’ such that
u® is not a suffix of (u')¥, the words v xwu® and v’ xw’'(u’)* are both accepted
by AT, and the paths 7 and 7’ of AL reading them end up cycling in exactly
the same subset of accepting states. (Recall that RNA are deterministic Muller
automata.)

Let ¢q be one of these states, and uy,us € X7 be periods of the (respective)
words read by m and 7" after reaching ¢ in their final cycle. These periods can be
repeated arbitrarily, hence we can assume w.l.o.g. that |ui| = |uz|. Moreover we
can assume w.l.o.g. that [ug], > [u1],, otherwise u* would be a suffix of (u/)“.
Besides, there exist v,w € X} such that v x w reaches ¢g. From the structure of
AT it follows that for every k > 0, the word v x w(ufus)“ is accepted by A~.

For each k > 0, we thus have [v x w(ufus)®], € Ts/. Developing, we get
dy, /r"! 4 [ww % 0¥],. /r!®! € Ts/, with dy = [*(ufuz)*],. Thanks to Properties 1
and 2, and the r-product-stability property of T/, this implies dy € Ts. We
now express dy in terms of [u1]., [us]., and k:

_ [ufus), _fualy = ud], [1],- B B
dy = P 1 T kL) _q + T where [ = |u;| = |us|.

The next step will consist in getting rid of the second term of this expression.
By Properties 1 and 2, we have for all £k € N,

(rl —1)dg — [w], = .

where m = (r! — 1)([ua], — [u1],-) is such that m € N5g. For all k > 0, we thus
have m/(r'* — 1) € Ts:. O
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We are now ready to conclude. Given [ and m by Property 3, we define
S" = (1/m)S’. Like S’, this set has infinitely many boundary points. The set Ts»s
of the values ¢ for which §” is ¢-sum-stable in R-q is given by T = (1/m)Ts:.
This set is thus r-recognizable. From Properties 1 and 2, we have for every k € N,
1/r* € Tsn. Finally, from Property 3, we have for every k > 0, 1/(r'* —1) € Ts».

Property 4. The set Ts» is equal to R.

Proof. Since Tg» and R are both r-recognizable, and two w-regular languages
are equal iff they share the same subset of ultimately periodic words [PP04],
it is actually sufficient to show Ts» N Q = Q. Every rational ¢ admits a base-r
encoding of the form v * wu®, where |u| = Ik for some k € N5o. We have

[vw x 0¢],. [u],-
rlwl r|w‘(rlk — 1)

t =

Since 1/r1*l € Tg» and 1/(r'* — 1) € Tsn, the closure and product-stability
properties of Tl imply t € Tgr. O

As a consequence, we either have S” = @) or S” = Rs(, which contradicts
the hypothesis that this set has infinitely many boundary points. We thus finally
have the following theorem.

Theorem 5. Let r and s be two bases that do not share the same set of prime
factors. If a set S C R is - and s-recognizable, then it is definable in (R, Z,+, <).

6 Conclusions

In this paper, we have established that the sets of real numbers that can be rec-
ognized by finite automata in two sufficiently different bases are exactly those
that are definable in the first-order additive theory of real and integer vari-
ables (R,Z,+,<). In the case of weak deterministic automata, used in actual
implementations of symbolic representation systems, the condition on the bases
turns out to be multiplicative independence. It is worth mentioning that rec-
ognizability in multiplicatively dependent bases is equivalent to recognizability
in one of them, and that definability in (R,Z,+, <) implies recognizability in
every base. We have thus obtained a complete characterization of the sets of
numbers recognizable in multiple bases, similar to the one known for the integer
domain [Cob69].

For Muller automata, we have demonstrated that multiplicative indepen-
dence of the bases is not a strong enough condition, and that the bases must
have different sets of prime factors in order to force definability of the repre-
sented sets in (R,Z, 4+, <). Recall that the sets definable in that theory can all
be recognized by weak deterministic automata. We have thus established that
the sets of real numbers that can be recognized by infinite-word automata in
all encoding bases are exactly those that are recognizable by weak determinis-
tic automata. This result provides a theoretical justification to the use of weak
automata as symbolic data structures for representing sets of real and integer
numbers.

11



References

[BBO7]

[BBRY7]

B. Boigelot and J. Brusten. A generalization of Cobham’s theorem to au-
tomata over real numbers. In Proc. 34th ICALP, volume 4596 of Lecture
Notes in Computer Science, pages 813-824, Wroclaw, July 2007. Springer.
B. Boigelot, L. Bronne, and S. Rassart. An improved reachability analysis
method for strongly linear hybrid systems. In Proc. 9th CAV, volume 1254
of Lecture Notes in Computer Science, pages 167-177, Haifa, June 1997.
Springer.

[BHMV94] V. Bruyére, G. Hansel, C. Michaux, and R. Villemaire. Logic and p-

[BJWOS5]

[BRW9S]

[Biic62]

[Cob69]

[EKO06]

[HWS8S5]
[McN66]

[Per90]

[PP04]

[Saf8s)

[Var07]

[WB9S]

[Wei99]

[Wil93]

recognizable sets of integers. Bulletin of the Belgian Mathematical Society,
1(2):191-238, March 1994.

B. Boigelot, S. Jodogne, and P. Wolper. An effective decision procedure
for linear arithmetic over the integers and reals. ACM Transactions on
Computational Logic, 6(3):614—-633, 2005.

B. Boigelot, S. Rassart, and P. Wolper. On the expressiveness of real and
integer arithmetic automata. In Proc. 25th ICALP, volume 1443 of Lecture
Notes in Computer Science, pages 152—-163, Aalborg, July 1998. Springer.

J. R. Biichi. On a decision method in restricted second order arithmetic.
In Proc. International Congress on Logic, Methodoloy and Philosophy of
Science, pages 1-12, Stanford, 1962. Stanford University Press.

A. Cobham. On the base-dependence of sets of numbers recognizable by
finite automata. Mathematical Systems Theory, 3:186-192, 1969.

J. Eisinger and F. Klaedtke. Don’t care words with an application to the
automata-based approach for real addition. In Proc. 18th CAV, volume
4144 of Lecture Notes in Computer Science, pages 67-80, Seattle, August
2006. Springer.

G. H. Hardy and E. M. Wright. An introduction to the theory of numbers.
Oxford University Press, 5th edition, 1985.

R. McNaughton. Testing and generating infinite sequences by a finite au-
tomaton. Information and Control, 9(5):521-530, 1966.

D. Perrin. Finite automata. In J. van Leeuwen, editor, Handbook of Theo-
retical Computer Science, Volume B: Formal Models and Semantics, pages
1-57. Elsevier and MIT Press, 1990.

D. Perrin and J.E. Pin. Infinite words, volume 141 of Pure and Applied
Mathematics. Elsevier, 2004.

S. Safra. On the complexity of w-automata. In Proc. 29th Symposium on
Foundations of Computer Science, pages 319-327. IEEE Computer Society,
October 1988.

M. Vardi. The Biichi complementation saga. In Proc. 24/th. STACS, volume
4393 of Lecture Notes in Computer Science, pages 12—22, Aachen, February
2007. Springer.

P. Wolper and B. Boigelot. An automata-theoretic approach to Presburger
arithmetic constraints. In Proc. 2nd SAS, volume 983 of Lecture Notes in
Computer Science, pages 21-32, Glasgow, September 1995. Springer.

V. Weispfenning. Mixed real-integer linear quantifier elimination. In Proc.
ACM SIGSAM ISSAC, pages 129-136, Vancouver, July 1999. ACM Press.
T. Wilke. Locally threshold testable languages of infinite words. In Proc.
10th STACS, volume 665 of Lecture Notes in Computer Science, pages 607—
616, Wiirzburg, 1993. Springer.

12



