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Abstract An approach is proposed to predict the forced response of one-dimensional struc-
tures under arbitrary excitation using the combined dynamic stiffness and transfer matrix
method and fast Fourier transform. In this approach, the system is first modeled with arbi-
trary selected degrees of freedom to which the exciting forces are applied and the responses
are to be calculated. The dynamic equilibrium equation in frequency domain is then solved
by the fast Fourier transform. The procedure provides flexibility to consider any kind of
excitations. Few numerical examples are given and the results are compared with those
obtained by the Newmark direct time integration method.

1. Introduction

Various methods for the determination of transient response of one-dimensional vibration
structures such as beam or shaft systems have been developed and widely used during the
last decades. Among these techniques, the modal superposition method (MSM), the direct
time integration method (DTIM) are widely used. Consider the matrix equations of motion
for a given system:

[M]E(2) + [Cla(2) + [K]=(2) = f(2) (1)
where [M], [C], [K] are respectively the mass, damping and stiffness matrix obtained by
a finite element discretization of the structure, z(t) is the time response and f(t) is the
exciting force.

In the finite element method (FEM), the number of degrees of freedom (dof) is usually very
large which can lead to matrices [M], [C], [K] of large dimension. The use of the MSM
requires to solve first the corresponding free vibration problem in order to get the modal
parameters. The Duhamel integration and the decomposition into generalized coordinates
and forces are required. The effectiveness of the MSM is remarkable as long as funda-
mental modes are predominant in the response [1]. However, in the opposite case where
the frequency spectrum requires to include a high number of modes so as to ensure good
convergence, the procedure calculating the response by this method is often tedious.

The DTIM, which is based on finite time differences, allows to take care of high frequency
components in a straightforward manner. It is also the only powerful method for nonlin-
ear systems. However, the parameters of the time integration process are to be adjusted
correctly according to the accuracy and the stability required. For large structures, this
method can become very time consuming.

Recently, the combined finite element and transfer matrix method (FETM), which was first
developed by Dokainish in 1972 [2] and extended by others [3-5], was further modified to
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transient dynamic analysis of linear and nonlinear rotors [6]. In this method, the finite
element matrices is first. transformed to discrete time transfer matrix. The response is then
obtained by making use of appropriate time marching numerical integration algorithms.
Obviously, for each time steps, one needs to form the transfer matrix and to solve a set of
equations. Furthermore, because the basic matrices are obtained by the FEM, some errors
in the response calculation cannot be avoided.

An improved dynamic stiffness matrix method (IDSM), which is based on the combination
of dynamic stiffness and transfer matrices, has been developed recently for beam structures
and rotor-bearing systems [7,8,9]. Omne of the most important characteristics is that the
global dynamic stiffness matrix for a system or a subsystem is directly obtained from the
corresponding transfer matrix which is very low in dimension. Because the element dynamic
stiffness matrix is exact, the IDSM is also exact.

In this paper, the IDSM is further extended to the forced response analysis of the one-
dimensional structures, such as beam or rotor-bearing systems. The frequency response
function (FRF) matrix between any two points of the structures is first obtained by inverting
the corresponding dynamic stiffness matrix. Because the dynamic stiffness matrix obtained
by the IDSM is usually very low, exact FRF matrix may be obtained. In order to calculate
the forced response, the dynamic equations in frequency domain are transformed to time
domain by the inverse fast Fourier transform (IFFT). Few examples are given to show the
procedures and the reliability of the method.

2. Theory
2.1. Element dynamic stiffness matrix

Consider a uniform beam shown in Fig.1. The exact dynamic stiffness matrix for the
dampened beam is obtained by Leung [10]: ‘

Fio X, Fa Xeo
( T Elm,L " T )
) M1 @ k M2 @2
Fig.1: A beam element '
F1 Z1 Z2 Z4 -—Z5 Xl
]Vfl N Z2 Zs Z5 Z6 01
Fz =B ' Z4 Zs Z1 —Zz Xz (2)
M, ~Zs Zs —Zo Zj )

where

B = FEI/(1 —cosaLcoshal)

7, = a®(cos aLsinhal +sinaLcoshal); Z; = a?sinalsinhal;

Z3 = a(sinaL coshal — cosaLsinhal); Zy = —a3(sinal + sinhal);
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Zs = a*(cosal — coshal); Zg = a(sinhal — sinal);

a = (w? — 2i6w)pA/EI(1 + 2iyw))/*

with E being Young’s modulus, L length, I area moment of inertia, p mass density and A
cross section area. The additional damping constants 7 and ¢ are due to stress rate and

inertia, respectively.

2.2. Element transfer matrix

Equation (1) may be rewritten in submatrix form as follows:

R\ _ (D4 D)\ (X
F)T\ps D5 )\ X

where Fl = [Fl,]‘/fl]t, X[ = [Xl,gl]t, F.,. = [Fz,]!/[g]t, XT = [Xg,gz]t.

Equation (3) may be rewritten in the following transfer matrix form:

e __ e e e —1 e e e ne —1
13 = D3y + D3, D3, DYy, Ty = —D5, Dy,

(3)

(4)

The transfer matrix of a lumped system with stiffness £ and damping ¢ or a lumped system

with mass m can be directly written respectively as:

1 0 0 0
0 1 0 0
Tel =k tswe 0 1 0
0 0 0 1
1 0 0 O
0 1 0 0
[Tn] = —mw? 0 1 0
0 0 0 1

2.3. Substructure transfer matrix

(6)

Shown in Fig.2 is a typical substructure which consists of Ny elastic supports and N,, rigid

masses and N beam element.




+3

! +1 12 1+4 1+5 +6

[ E

Fig.2: A substructure
The.global transfer matrix for the substructure is:

[T = [TNITN -1]----[T2][T1] (M
where N is the total number of elements and N = Ny + Ny + N,

2.4. Substructure dynamic stiffness matrix

The global transfer matrix [T] of a substructure relates the forces and displacements at both
ends of the substructure in the following way:

(%) -(2 ) () ®

where F; and X; are the force and displacement vectors at the left end of the substructure,
F, and X, are the same quantities at the right end. Equation (8) may be rewritten in the
dynamic stiffness matrix form:

(f)=(22 2) () o

 with
Dy =TTy
Dyy = T3

Doy = =Ty + Too T 11
Doy = ~Too T3}

where [D] is the global dynamic stiffness maftrix of the substructure whose elements are
frequency dependent. Note that the global dynamic stiffness matrix of the substructure has
the same dimension as the element dynamic stiffness matrix.

2.5 Global dynamic stiffness matrix

The global dynamic stiffness matrix for the entire structure can be assembled using the above
dynamic stiffness matrices of all substructures. After introducing the boundary conditions
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at both ends, the dimension of the global stiffness matrix can further be decreased. The
restrained global dynamic stiffness matrix is denoted by Dy(w). The unwanted degrees of
freedom such as rotational d.o.f. can be removed in an exact manner [7,8].

2.6 FRF matrix

The transfer function matrix H(w) for the selected d.of. can be obtained by inverting the
above global dynamic stiffness matrix. We have

[H(w)] = [Dy(w)) ™ (10)

Because one can always establish a model using the improved dynamic stiffness matrix
method with any two node’s coordinates, the matrix [Dg] is usually very low in dimension.
For example, for axial, torsional and in-plane lateral (deleting the rotational d.o.f.) vibra-
tions , [Dgy] is 2 X 2 in dimension and for lateral vibrations of rotating beam after deleting
the rotational d.of., [Dg] is 4 X 4 in dimension. Therefore, the inversion of matrix [D,] is
very easy to perform.

2.7 Modal parameter evaluations

Once the global dynamic stiffness matrix [D,] of the system is obtained, the natural fre-
quencies are those values of w for which

[Dg(w)]X =0 (11)
where X is the mode shape. There are many ways to solve this nonlinear eigenvalue prob-
lems [11,12,13]. Because [D,] is very low in dimension, equation (11) can be solved by a
straightforward procedure of calculating det[D,(w)] by inspection method. The mode shape
at arbitrary locations may be recovered using the shape function [14].

The modal mass for n¢, mode may be obtained by [15]:

M7 = XTM(2.)]X, (12)

2.8 Forced responses
(a.) Harmonic excitation
The response to harmonic excitation at any frequency w can be obtained by solving equation

(13).
X(w) = [Hw)]F(w) (13)

(b.) Non-harmonic excitation

As stated before, there are two main ways to calculate the steady-state response under any
type of excitation: modal superposition method (MSM) and direct time integration method
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(DTIM). However, if the model is established by dynamic stiffness matrix method or by
the improved dynamic stiffness matrix method as presented in this paper, both the MSM
and the DTIM are not convenient due to the fact that the elements of matrix are frequency
dependent. In this section, a FFT-based method is proposed.

Theoretically, the FRF matrix obtained in section 2.6 is valid not only for harmonic excita-
tion but also for other type excitations. That is, equation (13) is still hold for any kind of
excitation in which X (w) and F(w) are displacement and force vectors in frequency domain.
Performing IFFT on equation (13), we have:

a(t) = if fi[H(w)F(w)] (14)
where z(t) is the displacement vector in time domain. In Equation (14), the FRF matrix
[H (w)] may be calculated in advance and stored in the computer for a given system because
it depends only on the eigenproperties of the system. Therefore, for different types of
excitations, it is not necessary to calculate the FRF matrix repeatly.

If the exciting force function has explicit form, its Fourier transform used in equation (14)
can be easily obtained. In this case, the usuage of equation (14) is convenient. However, if
the exciting force f(t) has no explicit form or only avaalable by experiment, equation (15)
may be more convenient.

o(t) = [h(e)] + (2 (15)

where * denotes the convolution, matrix [h(t)] is the IFFT of FRF matrix [H(w)].
equation (15), the matrix [A(t)] may be calculated in advance and stored in the computer
for different type of excitations.

3. Numerical Examples
3.1. Force function

_The objective here is to show the ability of the proposed method to perform a dynamic
response calculation. For this purpose, four typical transient excitation forces are considered
as the input.

Type 1: Exponentially varying harmonic excitation
f1(t) = Foe=Pisin(wot) (16)
where Fp, B and wy are given real constants.

Type 2: Step excitation
A ={g EHZ% (1)

otherwise.

where Fj is a real constant.

Type 3: Impulse excitation

Fy, if0 <t <to;

0, otherwise. (18)

f(t) = {
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where %y is a very small value, usually t5 < 0.1.

Type 4: Sweep sine excitation
fa(t) = Fysin(bt?) (19)

where Fy and b are real constant.

3.2 Example 1

Consider the six d.o.f. lumped mass-stiffness-damper system shown in Fig.3. The system is
excited at the sixth mass. We want to know the response at mass six.

1 2 3 4 S 6

NI M Y M

— HE HEH HE HE —EI——L

Fig.3: A six d.o.f. lumped system

Because all the internal d.o.f. are not needed, the system can be treated as one substructure.
The global transfer matrix is:

T =T8T T3TE..... T TL, (20)

where T, and T}, are defined as:

TTJT'L = <__mljw2 g) (21)
Ti = ((1) 1/(k; wlLiij)> 22)

where 1 = /—1

The global dynamic stiffness matrix can be obtained by rearranging the global transfer
matrix T using equation (9). Introducing the boundary condition at the left end, the global
dynamic stiffness matrix is reduced to a single complex number, d(w), for a given frequency.
The FRF matrix is H(w) = 1/d(w).

Table 1: Eigenfrequencies (Hz) obtained by the different methods

Mode 1st 2nd 3rd 4th 5th 6th

Analytical 0.7744 2.2423 3.4229 6.5947 7.0053 7.3986

Present 0.7744 2.2423 3.4229 6.5947 7.00563 7.3986
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Table 1 lists the eigenfrequencies obtained by the present method and by the direct analytical
methods. The results are exactly the same because both methods are exact method. The

harmonic response is shown in Fig.4.

Log. amplitude

Phase, Deg'.
& &
(=] f=

-150

. , Hz
200 1 2 3 4. 5 6 7 8 9

0.02} 1
£
)
o
2 0
£
E
<
-0.021 i
: ' . time, s
0 5 10 15 20
a): Response of exponentially harmonic varying excitation
0.04 T T H

Amplitudé, m

0
b): Response of step excitation

Fig.5: Forced responses in time domain
——: present method; -.-.-.: Newmark method
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Fig.5 and Fig.6 depict the dynamic responses under the four types of excitation described
above. The initial conditions are zero. For comparson, the responses obtained by the
direct time integration method (Newmark algorithm) are also shown. In Fig.5b, the static
response or constant component in the response has been removed. It is seen that the
responses obtained by the two methods are very close.

0.02 T T T

e
o
-

Amplitude, m
(=]

o
o
2

002 5 10 15 20

a): Response of impulse excitation

0.02 T T T

Amplitude, m
o
o
?

-0.01}
0.02 . \ : time, s
0 5 10 15 20
b): Response of sweep sine excitation
Fig.6: Forced responses in time domain
——: present method; -.-.-.: Newmark method

3.3 Example 2

A non-uniform cantilever beam shown in Fig.6a is studied as the second example. The beam
is excited at the internal node 3. We want to know the responses at node 3 and node 6.

f R=0-025I R=0.02l R=0.015 R=0.01 R=0.005

5*0.6m R
(@
1 2 3 3 4 5 6
| I ] I Jm—
M @
(b)

Fig.7: A non-uniform cantilever beam
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To this end, the beam is first divided into two substructures as shown in Fig.6b. The
transfer matrix for each substructure [7}] and [T,] can easily be obtained by multiplying the
element transfer matrices. Their corresponding dynamic stiffness matrices [D1] and [Ds]
are obtained by rearranging the matrices [71] and [T3] using equation (9), respectively.

The global dynamic stiffness matrix [D] can be obtained by assemblying the matrices [D;]
and [D;] as done in the finite element method. After introducing the boundary conditions at
the left end, one finally obtains the dynamic equilibrium equation in the frequency domain:

Vi) o)
F:(w) = [D(w)]ax4 X:;(w) (23)
Me(w) O6(w)

The rotational d.of., s, 0, can be removed from the above equation by setting the corre-
sponding moments M3 and Ms to zero. We have finally:

(R} = (P Bt (59) &2

By inverting the matzix [D(w)], we obtain the FRF matrix [H(w)] = [D(w)]~!. Equation
(24) can be rewritten as:

(Xg(td)) — (Hll(w) Hm(&))) (F;;(w)) (25)
Xs(w) Hy(w) Hap(w) ) \ Fs(w)

Note that there is no difficulty to obtain [D]~! because [D] is 2 X 2 in dimension.

The eigenfrequencies, mode shapes, modal masses can be easily obtained from equation (24)
according to section 2.7. The dynamic responses can be obtained by performing IFFT as

described in section 2.8.

Table 2: Eigenfrequencies (Hz) obtained by the different methods

Mode 1st 2nd 3rd 4th 5th 6th

FEM 8.2937 17.8431 35.3019 68.3871 118.2586 152.4120

Present 8.2935 17.8430 35.3013 68.3860 118.1380 |- 152.2290

Table 2 lists the first six eigenfrequencies obtained by the present method and by FEM
(Samcef, beam element type 1). The results obtained by the present method are theoretically
exact values. The harmonic response is shown in Fig.8.
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Fig.8: Harmonic response in frequency domain

x 10

Amplitude, m
o = m

*
-t
i

) L ' L f time, s
0 2 4 6 8 10
a): Response of exponentially varying harmonic excitation

1.5 T T T T

Amplitude, m

-0.5

: L ) fime. s

-1

N

4 -]
b): Response of pulse excitation
Fig.9: Forced responses in time domain

The forced dynamic responses at node 6 under different types of excitations are shown in
Fig.9.

-11-



4. Conclusions

An approach to calculate forced dynamic response has been developed for one-dimensional
vibrating structures based on the improved dynamic stiffness matrix method and fast Fourier
e e O A IS o

Three outstanding advantages associated with this method are: (1) The system can be
modeled exactly with arbitrary degrees of freedom, most of the internal degrees of freedom
can be automatically avoided. This fact makes it possible to obtain directly the FRF matrix
between any two points (one is exciting point and another is response point). (2) Any kind
of exciting forces can be considered without difficult thanks to the introduction of the
FFT. (3) The method handles only small matrices, hence, the computation effort is reduced
considerably without losing any accuracy.

The simplicity and high efficiency of the method has been demonstrated by the numerical
examples shown in the paper.
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