
ApproximateDynamicProgramming

with aFuzzyParameterization ⋆

Lucian Busoniu a, Damien Ernst c, Bart De Schutter a,b, Robert Babuška a

aDelft Center for Systems & Control, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands

bMarine & Transport Technology, Delft University of Technology

cResearch Associate, FNRS; Institut Montefiore, Univ. Liège, Sart-Tilman, Bldg. B28, Parking P32, B-4000 Liège, Belgium

Abstract

Dynamic programming (DP) is a powerful paradigm for general, nonlinear optimal control. Computing exact DP solutions
is in general only possible when the process states and the control actions take values in a small discrete set. In practice,
it is necessary to approximate the solutions. Therefore, we propose an algorithm for approximate DP that relies on a fuzzy
partition of the state space, and on a discretization of the action space. This fuzzy Q-iteration algorithm works for deterministic
processes, under the discounted return criterion. We prove that fuzzy Q-iteration asymptotically converges to a solution that
lies within a bound of the optimal solution. A bound on the suboptimality of the solution obtained in a finite number of
iterations is also derived. Under continuity assumptions on the dynamics and on the reward function, we show that fuzzy
Q-iteration is consistent, i.e., that it asymptotically obtains the optimal solution as the approximation accuracy increases.
These properties hold both when the parameters of the approximator are updated in a synchronous fashion, and when they
are updated asynchronously. The asynchronous algorithm is proven to converge at least as fast as the synchronous one. The
performance of fuzzy Q-iteration is illustrated in a two-link manipulator control problem.

Key words: approximate dynamic programming, fuzzy approximation, value iteration, convergence analysis.

1 Introduction

Dynamic programming (DP) is a powerful paradigm for
solving optimal control problems, thanks to its mild as-
sumptions on the controlled process, which can be non-
linear or stochastic [3, 4]. In the DP framework, a model
of the process is assumed to be available, and the imme-
diate performance is measured by a scalar reward sig-
nal. The controller then maximizes the long-term per-
formance, measured by the cumulative reward. DP al-
gorithms can be extended to work without requiring a
model of the process, in which case they are usually
called reinforcement learning (RL) algorithms [24]. Most
DP and RL algorithms work by estimating an optimal
value function, i.e., the maximal cumulative reward as
a function of the process state and possibly also of the
control action. Representing value functions exactly is

⋆ This paper was not presented at any IFAC meeting.
Corresponding author Lucian Busoniu (tel. +31 152788573,
fax +31 152786679).

Email addresses: i.l.busoniu@tudelft.nl (Lucian
Busoniu), dernst@ulg.ac.be (Damien Ernst),
b@deschutter.info (Bart De Schutter),
r.babuska@tudelft.nl (Robert Babuška).

only possible when the state-action space contains a rel-
atively small number of discrete elements. In large dis-
crete spaces and in continuous spaces, the value function
generally has to be approximated. This is especially the
case in automatic control, where the state and action
variables are usually continuous.

Therefore, this paper proposes an algorithm for approx-
imate DP that represents state-action value functions
(called Q-functions in the sequel) using a fuzzy rule base
with singleton consequents [18]. This algorithm works for
deterministic problems, under the discounted return cri-
terion. It is called fuzzy Q-iteration, because it combines
the classical Q-iteration algorithm with a fuzzy approx-
imator. The fuzzy rule base receives the state as input,
and produces the Q-values of the discrete actions as out-
puts. The set of discrete actions is selected beforehand
from the (possibly continuous) original action space. The
membership functions of the fuzzy antecedents can also
be seen as state-dependent basis functions or features
[4].

We show that fuzzy Q-iteration asymptotically con-
verges to an approximate Q-function that lies within
a bounded distance from the optimal Q-function. The

Preprint submitted to Automatica 25 January 2010

suboptimality of the Q-function obtained after a finite
number of iterations is also bounded. Both of these Q-
functions lead to policies with a bounded suboptimality.
We also show that fuzzy Q-iteration is consistent: un-
der appropriate continuity assumptions on the process
dynamics and on the reward function, the approximate
Q-function converges to the optimal one as the approx-
imation accuracy increases. These properties hold both
when the parameters of the approximator are updated in
a synchronous fashion, and when they are updated asyn-
chronously. Additionally, the asynchronous algorithm is
proven to converge at least as fast as the synchronous
one. In a simulation example, fuzzy Q-iteration is used
to control a two-link manipulator, and compared with
the state-of-the-art fitted Q-iteration algorithm [11].

The remainder of this paper is structured as follows.
Section 2 gives a brief overview of the literature related
to our results. Section 3 describes Markov decision pro-
cesses and the Q-iteration algorithm. Section 4 intro-
duces fuzzy Q-iteration. This novel algorithm is analyzed
in Section 5, and applied to a two-link manipulator ex-
ample in Section 6. Section 7 concludes the paper and
outlines some ideas for future work.

2 Related work

A rich body of literature concerns the analysis of ap-
proximate value iteration, both in the DP (model-based)
setting [10, 14, 22, 23, 26] and in the RL (model-free)
setting [1, 12, 25]. In many cases, convergence is ensured
by using linearly parameterized approximators [14, 25,
26]. Our convergence analysis for synchronous fuzzy Q-
iteration is related to the convergence analysis of ap-
proximate V-iteration for discrete state-action spaces
in [14, 26]. We additionally consider continuous state-
action spaces, introduce an explicit discretization proce-
dure for the continuous actions, consider asynchronous
fuzzy Q-iteration, and study the finite-time performance
of the algorithm. While (exact) asynchronous value it-
eration is widely known [3, Sec. 1.3.2], asynchronous
algorithms for approximate DP are not often studied.
Many consistency results for model-based (DP) algo-
rithms are found for discretization-based approximators
[10, 23]. Such discretizations sometimes use interpola-
tion schemes similar to fuzzy approximation. A different
class of results analyzes the performance of approximate
value iteration for stochastic processes, when only a lim-
ited number of samples are available [1, 12, 22].

Fuzzy approximators have typically been used in model-
free (RL) techniques such as Q-learning [13, 15, 17] and
actor-critic algorithms [2, 20]. Most of these approaches
are heuristic in nature, and their theoretical proper-
ties have not been investigated yet. In this paper, we
use fuzzy approximation with a model-based (DP) algo-
rithm, and provide a detailed analysis of its convergence
and consistency properties.

The present paper integrates and significantly extends
the authors’ earlier work on fuzzy Q-iteration [7, 8, 9],
by removing some limiting assumptions: an originally
discrete action space in [7, 9], and a restrictive bound
on the Lipschitz constant of the process dynamics in
[8]. Additionally, the solution obtained in a finite time
is analyzed, and the suboptimality of the approximate
solution is explicitly related to accuracy of the fuzzy
approximator.

3 Markov decision processes and Q-iteration

This section introduces deterministic Markov decision
processes (MDPs) and characterizes their optimal so-
lution [3, 24]. Afterwards, exact and approximate Q-
iteration are presented.

A deterministic MDP consists of the state space X, the
action space U , the transition function f : X ×U → X,
and the reward function ρ : X × U → R. As a result of
the control action uk applied in the state xk, the state
changes to xk+1 = f(xk, uk) and a scalar reward rk+1 =
ρ(xk, uk) is generated, which evaluates the immediate
effect of action uk (the transition from xk to xk+1). The
state and action spaces can be continuous or discrete.
We assume that ‖ρ‖∞ = supx,u |ρ(x, u)| is finite. Actions
are chosen according to the policy h : X → U , which is
a discrete-time state feedback uk = h(xk).

The goal is to find an optimal policy, i.e., one that maxi-
mizes, starting from the current moment in time (k = 0)
and from any initial state x0, the discounted return:

Rh(x0) =
∞∑

k=0

γkrk+1 =
∞∑

k=0

γkρ(xk, h(xk)) (1)

where the discount factor γ ∈ [0, 1) and xk+1 =
f(xk, h(xk)) for k ≥ 0. Because the rewards are
bounded, the infinite sum in (1) exists and is bounded.
The task is therefore to maximize the long-term per-
formance (return), while only using feedback about the
immediate, one-step performance (reward).

Optimal policies can be conveniently characterized by
the optimal Q-function Q∗ : X ×U → R. For every pair
(x, u), the optimal Q-function gives the discounted re-
turn obtained by first applying u in x, and then selecting
actions optimally:

Q∗(x, u) = ρ(x, u) + γ sup
h

Rh(f(x, u)) (2)

where x1 = f(x, u) and xk+1 = f(xk, h(xk)) for k ≥ 1.
An optimal policy h∗ can be found from Q∗, by ensuring
that h∗(x) ∈ arg maxu Q∗(x, u). Under mild technical
assumptions, such a policy exists. In general, for a given
Q, a policy h that satisfies h(x) ∈ arg maxu Q(x, u) is
called greedy in Q.

2

Let the set of all the Q-functions be denoted by Q. Define
the Q-iteration mapping T : Q→ Q:

[T (Q)](x, u) = ρ(x, u) + γ sup
u′

Q(f(x, u), u′) (3)

The optimal Q-function satisfies the Bellman optimality
equation Q∗ = T (Q∗) [3, Sec. 6.4]. So, Q∗ is a fixed point
of T . The Q-iteration algorithm starts from an arbitrary
Q-function Q0 and in each iteration ℓ updates it by using:

Qℓ+1 = T (Qℓ) (4)

It is well-known that T is a contraction with factor γ < 1
in the infinity norm, i.e., for any pair of functions Q and
Q′, it is true that ‖T (Q)−T (Q′)‖∞ ≤ γ‖Q−Q′‖∞. This
can be shown e.g., by extending the analogous result for
V-functions given in [4, Sect. 2.3]. Therefore, Q∗ is the
unique fixed point of T , and Q-iteration converges to
it as ℓ → ∞. Note that to implement (4), a model of
the MDP is required, in the form of the transition and
reward functions f , ρ.

In general, Q-iteration requires to store and update dis-
tinct Q-values for every state-action pair. This is only
possible when the states and actions take values in a fi-
nite, discrete set. When the state or action variables are
continuous, there are infinitely many state-action pairs,
and the Q-function has to be represented approximately.
Even when the number of state-actions pairs is finite but
very large, exact Q-iteration might be impractical and
approximation may be useful.

In this paper, we consider algorithms for approximate Q-
iteration that parameterize the Q-function using a vec-
tor θ ∈ Rn. In addition to the Q-iteration mapping T (3),
two other mappings are needed to formalize approximate
Q-iteration. The approximation mapping F : Rn → Q

produces an approximate Q-function Q̂ = F (θ) from a
parameter vector θ . So, θ is a finite representation of

Q̂. The projection mapping P : Q→ Rn computes a pa-
rameter vector θ such that F (θ) is as close as possible
to a target Q-function Q (e.g., in a least-squares sense).
We denote by [F (θ)](x, u) the value of the Q-function
F (θ) for the state-action pair (x, u), and by [P (Q)]l the
lth component in the parameter vector P (Q).

Approximate Q-iteration starts with an arbitrary (e.g.,
identically 0) parameter vector θ0 and at each iteration
ℓ updates it using the composition of P , T , and F : 1

θℓ+1 = P ◦ T ◦ F (θℓ) (5)

So, in principle, approximate Q-iteration first computes
the approximate Q-function corresponding to the cur-

1 For simplicity, we write P ◦T ◦F (θ) instead of (P ◦T ◦F)(θ),
and we use a similar notation for other composite mappings
in the sequel.

rent parameter. It then updates this Q-function with
the Q-iteration mapping, and finally computes an up-
dated parameter vector that approximates the new Q-
function. Of course, the results of F and T cannot be
fully computed and stored. Instead, P ◦T ◦F can be im-
plemented, e.g., as a single entity, as will be the case for
fuzzy Q-iteration. Once a satisfactory parameter vector

θ† has been found, a policy ĥ† can be used, with:

ĥ†(x) ∈ arg max
u

[F (θ†)](x, u) (6)

assuming that the chosen approximator guarantees the
existence of the maximum.

A similar derivation can be given for approximate V-
iteration, which uses state-dependent V-functions in-
stead of Q-functions. Approximate Q-iteration is not
guaranteed to converge for arbitrary F and P . Counter-
examples can be found for V-iteration e.g., in [26], but
this problem appears in Q-iteration as well.

4 Fuzzy Q-iteration

In this section, the fuzzy Q-iteration algorithm is in-
troduced. First, the fuzzy approximation and projection
mappings are described, followed by synchronous and
asynchronous fuzzy Q-iteration. The state space X and
the action space U of the MDP may be either continu-
ous or discrete, but they are assumed to be subsets of
Euclidean spaces, such that the 2-norm of the states and
actions is well-defined.

The proposed approximator relies on a fuzzy partition
of the state space, and on a discretization of the action
space. The fuzzy partition contains N fuzzy sets χi, each
described by a membership function (MF) µi : X →
[0, 1], i = 1, . . . , N . A state x belongs to each set i with a
degree of membership µi(x). The MFs can also be seen
as state-dependent basis functions or features [4]. They
do not necessarily have to be associated with meaning-
ful linguistic labels. Nevertheless, if expert knowledge is
available on the shape of the optimal Q-function, then
MFs with meaningful linguistic labels can be defined.
The following requirement is imposed on the MFs:

Requirement 1 Each MF has its unique maximum at
a single point, i.e., for every i there exists a unique xi for
which µi(xi) > µi(x) ∀x 6= xi. Additionally, µi′(xi) = 0
for all i′ 6= i.

Because all the other MFs take zero values in xi, it can
be assumed without loss of generality that µi(xi) = 1,
which means that µi(xi) is normal. The state xi is then
called the core of the ith set.

Example 1 (Triangular fuzzy partitions) A simple
type of fuzzy partition that satisfies Requirement 1 can

3

be obtained as follows. For each state variable xd, where
d = 1, . . . ,D and D = dim(X), a number Nd of trian-
gular MFs are defined as follows:

φd,1(xd) = max

(
0,

cd,2 − xd

cd,2 − cd,1

)

φd,i(xd) = max

[
0,min

(
xd − cd,i−1

cd,i − cd,i−1
,

cd,i+1 − xd

cd,i+1 − cd,i

)]

for i = 2, . . . , Nd − 1

φd,Nd
(xd) = max

(
0,

xd − cd,Nd−1

cd,Nd
− cd,Nd−1

)

where cd,1 < · · · < cd,Nd
is the array of cores along di-

mension d, which fully determines the shape of the MFs,
and xd ∈ [cd,1, cd,Nd

]. Adjacent functions always inter-
sect at a 0.5 level. The product of each combination of
(single-dimensional) MFs thus gives a pyramid-shaped
D-dimensional MF in the fuzzy partition of X. 2

Other types of MFs that satisfy Requirement 1 can be
obtained, e.g., by using higher-order B-splines [5, Ch. 8]
(triangular MFs are second-order B-splines), or Kuhn
triangulations combined with barycentric interpolation
[21]. Kuhn triangulations can have subexponential com-
plexity in the number of state dimensions. In contrast,
the number of MFs in triangular and B-spline partitions
grows exponentially with the number of dimensions. Al-
though our approach is not limited to triangular MFs,
they will nevertheless be used in our examples, because
they are the simplest MFs that satisfy the requirements
for the convergence and consistency of fuzzy Q-iteration.

Requirement 1 can be relaxed using results in [26], so
that other MFs can take non-zero values at the core xi

of a given MF i. If these values are small in a certain
sense, fuzzy Q-iteration is still provably convergent, after
some changes in the proofs. This relaxation allows other
types of localized MFs such as Gaussian MFs. Note that
we have indeed observed that fuzzy Q-iteration diverges
when the other MFs take too large values at xi.

Until now, approximation over the state space was dis-
cussed. To approximate over the (continuous or discrete)
action space U , a discrete subset of actions Ud is chosen:

Ud = {uj |uj ∈ U, j = 1, . . . ,M} (7)

The fuzzy approximator stores a parameter vector θ with
n = NM elements. Each pair (µi, uj) of a MF and a
discrete action is associated to one parameter θ[i,j]. The
notation [i, j] represents the scalar index corresponding
to i and j, which can be computed as [i, j] = i + (j −
1)N . If the n elements of the vector θ were arranged
into an N ×M matrix, by first filling in the first column
with the first N elements, then the second column with
the subsequent N elements, etc., then the element at

position [i, j] of the vector would be placed at row i and
column j of the matrix.

The Q-function is approximated using a multiple-input,
multiple-output fuzzy rule base with singleton conse-
quents. The rule base takes the (D-dimensional) state
x as input, and produces M outputs q1, . . . , qM , which
are the Q-values corresponding to each of the discrete
actions u1, . . . , uM . The ith rule has the form:

Ri : if x is χi then q1 = θ[i,1]; q2 = θ[i,2]; . . . ; qM = θ[i,M]

(8)

To compute the Q-value of the pair (x, u), first the action
u is discretized by selecting the discrete action uj ∈ Ud

that is closest to u. Then, the jth output of the rule base
gives the approximate Q-value. This procedure is con-
cisely written as the following approximation mapping :

Q̂(x, u) = [F (θ)](x, u) = qj =

N∑

i=1

φi(x)θ[i,j]

with j ∈ arg min
j′

‖u− uj′‖2

(9)

where ‖ ·‖2 is the Euclidean norm of the argument (here
as well as in the sequel), and φi are the normalized MFs
(degrees of fulfillment): 2

φi(x) =
µi(x)

∑N
i′=1 µi′(x)

Equation (9) describes a linearly parameterized approx-
imator. To ensure that F (θ) is a well-defined function,
any ties in the minimization of (9) have to be broken
consistently. In the sequel we assume they are broken in
favor of the smallest index that satisfies the condition.
For a fixed x, such an approximator is constant over each
subset of actions Uj given by:

u ∈ Uj if






‖u− uj‖2 < ‖u− uj′‖2 for all j′ 6= j

j < j′ for any j′ 6= j such that

‖u− uj‖2 = ‖u− uj′‖2

(10)

for j = 1, . . . ,M , where the second condition is due to
the way in which ties are broken. The sets Uj form a
partition of U .

The projection mapping of fuzzy Q-iteration infers from
a Q-function the approximator parameters according to:

θ[i,j] = [P (Q)][i,j] = Q(xi, uj) (11)

2 The MFs are already normal, see the discussion after Re-
quirement 1. However, they may not yet be normalized ; the
sum of normalized MFs is 1 for any value of x.

4

Because φi(xi) = 1 and φi′(xi) = 0 for i 6= i′, the param-
eter vector θ in (11) is also the solution of the equation:

N∑

i=1

M∑

j=1

(
[F (θ)](xi, uj)−Q(xi, uj)

)2
= 0

The (synchronous) fuzzy Q-iteration is obtained by us-
ing the approximation mapping (9) and the projection
mapping (11) in approximate Q-iteration (5). The algo-
rithms starts with an arbitrary θ0 ∈ Rn and stops when
‖θℓ+1 − θℓ‖∞ ≤ εQI. Then, an approximately optimal

parameter vector is θ̂∗ = θℓ+1, and an approximately
optimal policy can be computed with:

ˆ̂
h∗(x) = uj∗ , j∗ ∈ arg max

j

[F (θ̂∗)](x, uj) (12)

This policy only chooses discrete actions, from the set

Ud. However, because the Q-function F (θ̂∗) is constant
in every region Uj (see (10)), the action uj∗ maximizes
this Q-function over the entire action space. This means

that
ˆ̂
h∗ is greedy in F (θ̂∗), and (12) is a special case of

(6). The notation
ˆ̂
h∗ is used to differentiate from a policy

ĥ∗ that is greedy in F (θ∗), where θ∗ is the parameter
vector obtained asymptotically, as ℓ→∞:

ĥ∗(x) = uj∗ , j∗ ∈ arg max
j

[F (θ∗)](x, uj) (13)

It is also possible to obtain a continuous-action policy
using the following heuristic. For any state, an action
is computed by interpolating between the best local ac-
tions for every MF core, using the MFs as weights:

h(x) =

N∑

i=1

φi(x)uj∗

i
, j∗i ∈ arg max

j

[F (θ̂∗)](xi, uj) (14)

The index j∗i corresponds to a locally optimal action
for the core xi. For instance, when used with triangular
MFs (cf. Example 1), the interpolation procedure (14)
is well suited to problems where (near-)optimal policies
are locally (piecewise) affine with respect to the state.
Interpolated policies may, however, be a poor choice for
other problems.

Because all the approximate Q-functions considered by
fuzzy Q-iteration are constant inside every region Uj

(see (10)), it suffices to consider only the discrete actions
in Ud when computing the maximal Q-values in the Q-
iteration mapping (3). This discrete-action version of the
Q-iteration mapping is defined as follows:

[Td(Q)](x, u) = ρ(x, u) + γ max
j

Q(f(x, u), uj) (15)

This property is useful in the practical implementation
of fuzzy Q-iteration. For any θ, because T ◦F (θ) = Td ◦
F (θ), we get P ◦ T ◦ F (θ) = P ◦ Td ◦ F (θ), and each
iteration (5) can be implemented as:

θℓ+1 = P ◦ Td ◦ F (θℓ) (16)

The maximization over U in the original T mapping is
replaced with an easier maximization over the discrete
set Ud in (7), which can be solved by enumeration. Fur-
thermore, the norms in (9) do not need to be computed
to implement (16).

Fuzzy Q-iteration using (16) can be written as Al-
gorithm 1. To establish the equivalence between Al-
gorithm 1 and the form (16), observe that the right-
hand side in line 4 of Algorithm 1 corresponds to

[Td(Q̂ℓ)](xi, uj), where Q̂ℓ = F (θℓ). Hence, line 4 can
be written θℓ+1,[i,j] ← [P ◦ Td ◦F (θℓ)][i,j] and the entire
for loop described by lines 3–5 is equivalent to (16).

Algorithm 1 Synchronous fuzzy Q-iteration

1: θ0 ← 0NM

2: repeat in every iteration ℓ = 0, 1, 2, . . .
3: for i = 1, . . . , N, j = 1, . . . ,M do
4: θℓ+1,[i,j] ← ρ(xi, uj)+

γ maxj′

∑N
i′=1 φi′(f(xi, uj))θℓ,[i′,j′]

5: end for
6: until ‖θℓ+1 − θℓ‖∞ ≤ εQI

Output: θ̂∗ = θℓ+1

Algorithm 2 Asynchronous fuzzy Q-iteration

1: θ0 ← 0NM

2: repeat in every iteration ℓ = 0, 1, 2, . . .
3: θ ← θℓ

4: for i = 1, . . . , N, j = 1, . . . ,M do
5: θ[i,j] ← ρ(xi, uj)+

γ maxj′

∑N
i′=1 φi′(f(xi, uj))θ[i′,j′]

6: end for
7: θℓ+1 ← θ
8: until ‖θℓ+1 − θℓ‖∞ ≤ εQI

Output: θ̂∗ = θℓ+1

Algorithm 1 computes the new parameters θℓ+1 using
the parameters θℓ found at the previous iteration, which
remain unchanged throughout the current iteration. Al-
gorithm 2 is a different version of fuzzy Q-iteration that
makes more efficient use of the updates: in each step of
the computation, the latest updated values of the param-
eters are employed. Since the parameters are updated
in an asynchronous fashion, this version is called asyn-
chronous fuzzy Q-iteration. To differentiate between the
two versions, Algorithm 1 is hereafter called synchronous
fuzzy Q-iteration. In Algorithm 2 parameters are shown

5

updated in sequence, but they can actually be updated
in any order and our analysis still holds.

While in this paper fuzzy Q-iteration is described and
analyzed for deterministic problems only, it can also be
extended to stochastic problems. For instance, the asyn-
chronous update in line 5 of Algorithm 2 becomes in the
stochastic case:

θ[i,j] ← Ex′∼f̃(xi,uj ,·)

{
ρ̃(xi, uj , x

′)+

γ max
j′

N∑

i′=1

φi′(x
′)θ[i′,j′]

}

where x′ is sampled using the probability density func-
tion f̃(xi, uj , ·) of the next state x′, given xi and uj , and
the dot stands for x′. In general, the expectation in this
update cannot be computed exactly, but has to be es-
timated from a finite number of samples. In this case,
our analysis does not apply. Approaches to analyze the
effect of the finite-sampling errors have been proposed
in [1, 12] for variants of approximate Q-iteration, and in
[22] for approximate V-iteration. In some limited special
cases, e.g., when there is a finite number of possible suc-
cessor states, the expectation can be computed exactly,
and then our results apply.

5 Analysis of fuzzy Q-iteration

In Section 5.1, we show that synchronous and asyn-
chronous fuzzy Q-iteration are convergent and we
characterize the suboptimality of their solution. In Sec-
tion 5.2, we show that fuzzy Q-iteration is consistent,
i.e., that its solution asymptotically converges to Q∗

as the approximation accuracy increases. These results
show that fuzzy Q-iteration is a theoretically sound
algorithm. Section 5.3 examines the computational
complexity of fuzzy Q-iteration.

5.1 Convergence

First, it is shown that there exists a parameter vector θ∗

such that, for both synchronous and asynchronous fuzzy
Q-iteration, θℓ → θ∗ as ℓ → ∞. The parameter vector
θ∗ yields an approximate Q-function that is within a
bound of the optimal Q-function, and a policy with a
bounded suboptimality. Similar bounds are derived for

the solution θ̂∗ obtained in a finite number of iterations,
by using a convergence threshold εQI > 0. Additionally,
asynchronous fuzzy Q-iteration is shown to converge at
least as fast as the synchronous version.

Theorem 1 (Convergence of synchronous fuzzy
Q-iteration) Synchronous fuzzy Q-iteration (Algo-
rithm 1) converges.

Proof: We show that P ◦ T ◦ F is a contraction in the
infinity norm with factor γ < 1, i.e., ‖P ◦T ◦F (θ)−P ◦
T ◦F (θ′)‖∞ ≤ γ‖θ−θ′‖∞, for any θ, θ′. Recall that T is
a contraction with factor γ < 1. It is obvious from (11)
that P is a non-expansion. Also, F is a non-expansion:

|[F (θ)](x, u)− [F (θ′)](x, u)|

=

∣∣∣∣∣

N∑

i=1

φi(x)θ[i,j] −

N∑

i=1

φi(x)θ′[i,j]

∣∣∣∣∣
(where j ∈ arg minj′ ‖u− uj′‖2)

≤
N∑

i=1

φi(x)
∣∣∣θ[i,j] − θ′[i,j]

∣∣∣

≤

N∑

i=1

φi(x)‖θ − θ′‖∞ = ‖θ − θ′‖∞

Therefore, P ◦ T ◦ F is a contraction with factor γ < 1.
It follows that P ◦T ◦F has a unique fixed point θ∗, and
synchronous fuzzy Q-iteration converges to this fixed
point as ℓ→∞. 2

This proof is similar to the proof of convergence for V-
iteration with averagers [14] or with interpolative repre-
sentations [26]. The fuzzy approximator can be seen as
an extension of an averager or of an interpolative rep-
resentation for approximating Q-functions, additionally
using discretization to deal with large or continuous ac-
tion spaces.

In the sequel, a concise notation of asynchronous fuzzy
Q-iteration is needed. Recall that n = NM , and that
[i, j] = i+(j−1)N . Define for all l = 0, . . . , n recursively
the mappings Sl : Rn → Rn as:

S0(θ) = θ

[Sl(θ)]l′ =

{
[P ◦ T ◦ F (Sl−1(θ))]l′ if l′ = l

[Sl−1(θ)]l′ if l′ ∈ {1, . . . , n} \ {l}

So, Sl for l > 0 corresponds to updating the first l pa-
rameters using approximate asynchronous Q-iteration,
and Sn is a complete iteration of the algorithm.

Theorem 2 (Convergence of asynchronous fuzzy
Q-iteration) Asynchronous fuzzy Q-iteration (Algo-
rithm 2) converges.

Proof: We show that Sn is a contraction, i.e., ‖Sn(θ)−
Sn(θ′)‖∞ ≤ γ‖θ − θ′‖∞, for any θ, θ′. This can be done
element by element. By the definition of Sl, the first
element is only updated by S1:

|[Sn(θ)]1 − [Sn(θ′)]1| = |[S1(θ)]1 − [S1(θ
′)]1|

= |[P ◦ T ◦ F (θ)]1 − [P ◦ T ◦ F (θ′)]1| ≤ γ‖θ − θ′‖∞

6

The last step is true because P ◦ T ◦ F is a contraction.
Similarly, the second element is only updated by S2:

|[Sn(θ)]2 − [Sn(θ′)]2| = |[S2(θ)]2 − [S2(θ
′)]2|

= |[P ◦ T ◦ F (S1(θ))]2 − [P ◦ T ◦ F (S1(θ
′))]2|

≤ γ‖S1(θ)− S1(θ
′)‖∞

= γ max{|[P ◦ T ◦ F (θ)]1 − [P ◦ T ◦ F (θ′)]1| ,

|θ2 − θ′2| , . . . , |θn − θ′n|}

≤ γ‖θ − θ′‖∞

where the contraction property of P ◦ T ◦ F is
used twice. Continuing in this fashion, we obtain
|[Sn(θ)]l − [Sn(θ′)]l| ≤ γ‖θ − θ′‖∞ for all l, and thus
Sn is a contraction. Therefore, asynchronous fuzzy Q-
iteration converges. This proof is similar to that for
exact asynchronous V-iteration [3, Sec. 1.3.2]. 2

It can also be easily shown that synchronous and asyn-
chronous fuzzy Q-iteration converge to the same param-
eter vector θ∗. We show next that asynchronous fuzzy
Q-iteration converges at least as fast as the synchronous
version. For that, we first need the following monotonic-
ity lemma. In the sequel, vector and vector function in-
equalities are understood to be satisfied element-wise.

Lemma 1 (Monotonicity) If θ ≤ θ′, then P ◦ T ◦
F (θ) ≤ P ◦ T ◦ F (θ′).

Proof: It is well-known that T is monotonous, i.e.,
T (Q) ≤ T (Q′) if Q ≤ Q′. This can be shown e.g., by ex-
tending the analogous result for V-functions given in [4,
Sec. 2.3]. We will show that F and P are monotonous.

Given θ ≤ θ′, it follows that
∑N

i=1 φi(x)θ[i,j] ≤∑N
i=1 φi(x)θ′[i,j], where j ∈ arg minj′ ‖u − uj′‖2. This

is equivalent to [F (θ)](x, u) ≤ [F (θ′)](x, u), so F is
monotonous. Given Q ≤ Q′, it follows that for all for
all i, j, Q(xi, uj) ≤ Q′(xi, uj). This is equivalent to
[P (Q)][i,j] ≤ [P (Q′)][i,j], so P is monotonous. Because
P , T , and F are monotonous, so is P ◦ T ◦ F . 2

Asynchronous fuzzy Q-iteration converges at least as fast
as the synchronous algorithm, in the sense that ℓ itera-
tions of the asynchronous algorithm take the parameter
vector at least as close to θ∗ as ℓ iterations of the syn-
chronous algorithm. This is stated formally as follows.

Proposition 1 (Convergence rate) If a parameter
vector θ satisfies θ ≤ P ◦ T ◦ F (θ) ≤ θ∗, then:

(P ◦ T ◦ F)ℓ(θ) ≤ Sℓ
n(θ) ≤ θ∗ ∀ℓ ≥ 1

where Sℓ
n(θ) denotes the composition of Sn(θ) ℓ-times

with itself, i.e., Sℓ
n(θ) = Sn◦Sn◦· · ·◦Sn(θ), and similarly

for (P ◦ T ◦ F)ℓ(θ).

Proof: This follows from the monotonicity of P ◦T ◦F ,
and can be shown element-wise, in a similar fashion to

the proof of Theorem 2. This result is an extension of the
similar result on exact V-iteration in [3, Sec. 1.3.2]. 2

In the remainder of this section, in addition to examining
the asymptotical properties of fuzzy Q-iteration, we also
consider an implementation that stops when ‖θℓ+1 −
θℓ‖∞ ≤ εQI, with a convergence threshold εQI > 0 (see
Algorithms 1 and 2). This implementation returns the

solution θ̂∗ = θℓ+1.

Proposition 2 (Finite-time termination) For any
choice of the threshold εQI > 0 and any initial parameter
vector θ0 ∈ Rn, synchronous and asynchronous fuzzy
Q-iteration stop in finite time.

Proof: Consider synchronous fuzzy Q-iteration. Because
the mapping P ◦ T ◦ F is a contraction with factor
γ < 1 and fixed point θ∗, we have: ‖θℓ+1 − θ∗‖∞ =
‖P ◦ T ◦ F (θℓ) − P ◦ T ◦ F (θ∗)‖∞ ≤ γ‖θℓ − θ∗‖∞. By
induction, ‖θℓ − θ∗‖∞ ≤ γℓ‖θ0 − θ∗‖∞ for any ℓ > 0.
By the Banach fixed point theorem [16, Ch. 3], θ∗ is
bounded. Because the initial parameter vector θ0 is also
bounded, ‖θ0 − θ∗‖∞ is bounded. Using the notation
B0 = ‖θ0−θ∗‖∞, it follows that B0 is bounded and that
‖θℓ − θ∗‖∞ ≤ γℓB0 for any ℓ > 0. Therefore, we have:
‖θℓ+1−θℓ‖∞ ≤ ‖θℓ+1−θ∗‖∞+‖θℓ−θ∗‖∞ ≤ γℓ(γ+1)B0.
Using this inequality, we can choose for any εQI > 0 a

number of iterations L =
⌈
logγ

εQI

(γ+1)B0

⌉
that guaran-

tees ‖θL+1−θL‖∞ ≤ εQI. Therefore, the algorithm stops
in at most L iterations. Here, ⌈·⌉ gives the smallest in-
teger larger than or equal to the argument (ceiling). Be-
cause B0 is bounded, L is finite. Since the computational
cost of every single iteration is finite for finite N and M ,
synchronous fuzzy Q-iteration stops in finite time.

The proof for asynchronous fuzzy Q-iteration proceeds
in the same way, because the asynchronous Q-iteration
mapping Sn is also a contraction with factor γ < 1 and
fixed point θ∗. 2

The following bounds on the suboptimality of the result-
ing approximate Q-function and policy hold.

Theorem 3 (Near-optimality) Denote the set of Q-
functions representable using the fuzzy approximator F

by Q̂ = {F (θ) | θ ∈ Rn }, where Q̂ ⊂ Q, and take ε′Q
so that ∃Q̂ ∈ Q̂ with ‖Q∗ − Q̂‖∞ ≤ ε′Q. The conver-
gence point θ∗ of asynchronous and synchronous fuzzy
Q-iteration satisfies:

‖Q∗ − F (θ∗)‖∞ ≤
2ε′Q
1− γ

(17)

Additionally, the parameter vector θ̂∗ obtained by asyn-
chronous or synchronous fuzzy Q-iteration in a finite

7

time, by using a threshold εQI, satisfies:

‖Q∗ − F (θ̂∗)‖∞ ≤
2ε′Q + γεQI

1− γ
(18)

Furthermore:

‖Q∗ −Qĥ∗

‖∞ ≤
4γε′Q

(1− γ)2
(19)

‖Q∗ −Q
ˆ̂
h∗

‖∞ ≤
2γ(2ε′Q + γεQI)

(1− γ)2
(20)

where Qĥ∗

is the Q-function of the policy ĥ∗ that is greedy

in F (θ∗) (13), and Q
ˆ̂
h∗

is the Q-function of the policy
ˆ̂
h∗

that is greedy in F (θ̂∗) (12).

Proof: The proof proceeds in the same way for syn-
chronous and asynchronous fuzzy Q-iteration, because
it only relies on the contracting nature of their updates.

After observing that Q̂ is identical to the set of fixed
points of the composite mapping F ◦ P , the bound (17)
can be proven in a similar way to the bound shown in
[14, 26] for V-iteration. In order to obtain (18), a bound

on ‖θ̂∗ − θ∗‖∞ is computed first. Let L be the number
of iterations after which the algorithm stops, which is

finite by Proposition 2. Therefore, θ̂∗ = θL+1. We have:

‖θL − θ∗‖∞ ≤ ‖θL+1 − θL‖∞ + ‖θL+1 − θ∗‖∞
≤ εQI + γ‖θL − θ∗‖∞

where the last step follows from the convergence condi-
tion ‖θL+1−θL‖∞ ≤ εQI and from the contracting nature
of the updates (see also the proof of Proposition 2). From
the last inequality, it follows that ‖θL−θ∗‖∞ ≤

εQI

1−γ
and

therefore that ‖θL+1 − θ∗‖∞ ≤ γ‖θL − θ∗‖∞ ≤
γεQI

1−γ
,

which is equivalent to:

‖θ̂∗ − θ∗‖∞ ≤
γεQI

1− γ
(21)

Using this inequality, the suboptimality of the Q-

function F (θ̂∗) can be bounded with:

‖Q∗ − F (θ̂∗)‖∞ ≤ ‖Q
∗ − F (θ∗)‖∞ + ‖F (θ∗)− F (θ̂∗)‖∞

≤ ‖Q∗ − F (θ∗)‖∞ + ‖θ̂∗ − θ∗‖∞

≤
2ε′Q
1− γ

+
γεQI

1− γ
=

2ε′Q + γεQI

1− γ

where the second step is true because F is a non-
expansion (which was shown in the proof of Theorem 1),
and the third step follows from (17) and (21). So, (18)
has been obtained.

The bounds (19) and (20), which characterize the sub-

optimality of the policies resulting from θ∗ and θ̂∗, follow

from the following general inequality between the sub-
optimality of an arbitrary Q-function Q, and the subop-
timality of the policy h that is greedy in this Q-function:

‖Q∗ −Qh‖∞ ≤
2γ

(1− γ)
‖Q∗ −Q‖∞

To obtain (19) and (20), this inequality is applied to the

Q-functions F (θ∗) and F (θ̂∗), using their suboptimality
bounds (17) and (18). 2

Examining (18) and (20), it can be seen that the subopti-
mality of the finite-time solution is given by a sum of two
terms. The second term depends linearly on the preci-
sion εQI with which the solution is computed, and is easy
to control by setting εQI as close to 0 as needed. The first
term in the sum depends linearly on ε′Q, which is related
to the accuracy of the fuzzy approximator, and is more
difficult to control. This ε′Q-dependent term also con-
tributes to the suboptimality of the asymptotic solutions

(17),(19). Ideally, one can find ε′Q = min
Q̂∈Q̂
‖Q∗−Q̂‖∞,

which provides the smallest upper bounds in (17)–(20).
Moreover, if the optimal Q-function Q∗ is exactly repre-

sentable by the chosen fuzzy approximator, i.e., Q∗ ∈ Q̂,
one can take ε′Q = 0, and fuzzy Q-iteration asymptot-
ically converges to Q∗. Section 5.2 provides additional
insight into the relationship between the suboptimality
of the solution and the accuracy of the approximator.

5.2 Consistency

Next, we analyze the consistency of synchronous and
asynchronous fuzzy Q-iteration. It is shown that the ap-
proximate solution F (θ∗) asymptotically converges to
the optimal Q-function Q∗, as the largest distance be-
tween the cores of adjacent fuzzy sets and the largest
distance between adjacent discrete actions decrease to
0. An explicit relationship between the suboptimality of
F (θ∗) and the accuracy of the approximator is derived.

The state resolution step δx is defined as the largest
distance between any point in the state space and the
MF core that is closest to it. The action resolution step
δu is defined similarly for the discrete actions. Formally:

δx = sup
x∈X

min
i=1,...,N

‖x− xi‖2 (22)

δu = sup
u∈U

min
j=1,...,M

‖u− uj‖2 (23)

where xi is the core of the ith MF, and uj is the
jth discrete action. Smaller values of δx and δu in-
dicate a higher resolution. The goal is to show that
limδx→0, δu→0 F (θ∗) = Q∗.

We assume that f and ρ are Lipschitz continuous, and
require that the MFs are Lipschitz continuous as well as
local and evenly distributed, as formalized next.

8

Assumption 1 (Lipschitz continuity) The dynam-
ics f and the reward function ρ are Lipschitz continuous,
i.e., there exist finite constants Lf ≥ 0, Lρ ≥ 0 so that:

‖f(x, u)− f(x̄, ū)‖2 ≤ Lf (‖x− x̄‖2 + ‖u− ū‖2)

|ρ(x, u)− ρ(x̄, ū)| ≤ Lρ(‖x− x̄‖2 + ‖u− ū‖2)

∀x, x̄ ∈ X,u, ū ∈ U

Requirement 2 Every MF φi is Lipschitz continuous,
i.e., for every i there exists a finite constant Lφi

≥ 0 so
that:

‖φi(x)− φi(x̄)‖2 ≤ Lφi
‖x− x̄‖2, ∀x, x̄ ∈ X

Requirement 3 Every MF φi has a bounded support,
which is contained in a ball with a radius proportional to
δx. Formally, there exists a finite ν > 0 so that:

{x |φi(x) > 0} ⊂ {x | ‖x− xi‖2 ≤ νδx } , ∀i

Furthermore, for every x, only a finite number of MFs
are non-zero. Formally, there exists a finite κ > 0 so that:

|{i |φi(x) > 0}| ≤ κ, ∀x

where |·| denotes set cardinality.

Lipschitz continuity conditions such as those of Assump-
tion 1 are typically needed to prove the consistency of
algorithms for approximate DP. Requirement 2 is not
restrictive. Requirement 3 is satisfied in many cases of
interest. For instance, it is satisfied by convex fuzzy sets
with their cores distributed on an (equidistant or irregu-
lar) rectangular grid in the state space, such as the trian-
gular partitions of Example 1. In such cases, every point
x falls inside a hyperbox defined by the two adjacent
cores that are closest to xd on each axis d. Some points
will fall on the boundary of several hyperboxes, in which
case we can just pick any of these hyperboxes. Given
Requirement 1 and because the fuzzy sets are convex,
only the MFs with the cores in the corners of the hyper-
box can take non-zero values in the chosen point. The
number of corners is 2D where D is the dimension of X.
Therefore, |{i |φi(x) > 0}| ≤ 2D, and a choice κ = 2D

satisfies the second part of Requirement 3. Furthermore,
a MF will always extend at most two hyperboxes along
each axis of the state space. By the definition of δx,
the largest diagonal of any hyperbox is 2δx. Therefore,
{x |φi(x) > 0} ⊂ {x | ‖x− xi‖2 ≤ 4δx }, and a choice
ν = 4 satisfies the first part of Requirement 3.

The next lemma bounds the approximation error intro-
duced by every iteration of the synchronous algorithm.
Since we are ultimately interested in characterizing the
convergence point θ∗, which is the same for both algo-
rithms, the final consistency result (Theorem 4) applies
to the asynchronous algorithm as well.

Lemma 2 (Bounded error) There exists a constant
εδ ≥ 0, εδ = O(δx) + O(δu), so that any approximate Q-

function Q̂ considered by synchronous fuzzy Q-iteration

satisfies ‖F ◦ P ◦ T (Q̂)− T (Q̂)‖∞ ≤ εδ.

Proof: For any pair (x, u):

∣∣∣[F ◦ P ◦ T (Q̂)](x, u)− [T (Q̂)](x, u)
∣∣∣

=

∣∣∣∣∣

(
N∑

i=1

φi(x)[T (Q̂)](xi, uj)

)
− [T (Q̂)](x, u)

∣∣∣∣∣
(where j ∈ arg minj′ ‖u− uj′‖2)

=
∣∣∣

(
N∑

i=1

φi(x)
[
ρ(xi, uj) + γ max

u′

Q̂(f(xi, uj), u
′)
])

−
[
ρ(x, u) + γ max

u′

Q̂(f(x, u), u′)
] ∣∣∣

≤

∣∣∣∣∣

(
N∑

i=1

φi(x)ρ(xi, uj)

)
− ρ(x, u)

∣∣∣∣∣

+ γ

∣∣∣∣∣

(
N∑

i=1

φi(x)max
u′

Q̂(f(xi, uj), u
′)

)
−max

u′

Q̂(f(x, u), u′)

∣∣∣∣∣
(24)

Note that maxu Q̂(x, u) exists, because Q̂(x, u) can take
at most M distinct values for any fixed x. The first term
on the right-hand side of (24) is:

∣∣∣∣∣

N∑

i=1

φi(x) [ρ(xi, uj)− ρ(x, u)]

∣∣∣∣∣

≤
N∑

i=1

φi(x)Lρ(‖xi − x‖2 + ‖uj − u‖2)

= Lρ

[
‖uj − u‖2 +

N∑

i=1

φi(x)‖xi − x‖2

]

≤ Lρ(δu + κνδx) (25)

where the Lipschitz continuity of ρ was used, and the last
step follows from the definition of δu and Requirement 3.
The second term in the right-hand side of (24) is:

γ

∣∣∣∣∣

N∑

i=1

φi(x)
[
max

u′

Q̂(f(xi, uj), u
′)−max

u′

Q̂(f(x, u), u′)
]∣∣∣∣∣

≤ γ
N∑

i=1

φi(x)

∣∣∣∣max
j′

Q̂(f(xi, uj), uj′)−max
j′

Q̂(f(x, u), uj′)

∣∣∣∣

≤ γ

N∑

i=1

φi(x)max
j′

∣∣∣Q̂(f(xi, uj), uj′)− Q̂(f(x, u), uj′)
∣∣∣

(26)

9

The first step is true because Q̂ is of the form F (θ) given
in (9) for some θ, and is therefore constant in each set
Uj , for j = 1, . . . ,M . The second step is true because the
difference between the maxima of two functions of the
same variable is at most the maximum of the difference
of the functions. Writing Q̂ explicitly as in (9), we have:

∣∣∣Q̂(f(xi, uj), uj′)− Q̂(f(x, u), uj′)
∣∣∣

=

∣∣∣∣∣

N∑

i′=1

[
φi′(f(xi, uj))θ[i′,j′] − φi′(f(x, u))θ[i′,j′]

]
∣∣∣∣∣

≤

N∑

i′=1

|φi′(f(xi, uj))− φi′(f(x, u))| |θ[i′,j′]| (27)

Define I ′ = {i′ |φi′(f(xi, uj)) 6= 0 or φi′(f(x, u)) 6= 0}.
Using Requirement 3, |I ′| ≤ 2κ. Denote Lφ = maxi Lφi

.
Then, the right-hand side of (27) is equal to:

∑

i′∈I′

|φi′(f(xi, uj))− φi′(f(x, u))| |θ[i′,j′]|

≤
∑

i′∈I′

LφLf (‖xi − x‖2 + ‖uj − u‖2)‖θ‖∞

≤ 2κLφLf (‖xi − x‖2 + ‖uj − u‖2)‖θ‖∞ (28)

Using (27) and (28) in (26) yields:

γ

N∑

i=1

φi(x)max
j′

∣∣∣Q̂(f(xi, uj), uj′)− Q̂(f(x, u), uj′)
∣∣∣

≤ γ

N∑

i=1

φi(x)max
j′

2κLφLf (‖xi − x‖2 + ‖uj − u‖2)‖θ‖∞

≤ 2γκLφLf‖θ‖∞

[
‖uj − u‖2 +

N∑

i=1

φi(x)‖xi − x‖2

]

≤ 2γκLφLf‖θ‖∞(δu + κνδx) (29)

where the last step follows from the definition of δu and
Requirement 3. Finally, substituting (25) and (29) into
(24) yields:

∣∣∣[F ◦ P ◦ T (Q̂)](x, u)− [T (Q̂)](x, u)
∣∣∣

≤ (Lρ + 2γκLφLf‖θ‖∞)(δu + κνδx)

Given a bounded initial parameter vector θ0, all the
parameter vectors considered by the algorithm are
bounded. This can be shown as follows. By the Banach
fixed point theorem [16, Ch. 3], the optimal param-
eter vector θ∗ (the unique fixed point of P ◦ T ◦ F)
is finite. Also, we have ‖θℓ − θ∗‖∞ ≤ γℓ‖θ0 − θ∗‖∞
(see the proof of Proposition 2). Since ‖θ0 − θ∗‖∞
is bounded, all the other distances are bounded,
and all the parameter vectors θℓ are bounded. Let
Bθ = maxℓ≥0 ‖θℓ‖∞, which is bounded. Therefore,

‖θ‖∞ ≤ Bθ in (5.2), and the proof is complete with
εδ = (Lρ +2γκLφLfBθ)(δu +κνδx) = O(δx)+O(δu). 2

Theorem 4 (Consistency) Under Assumption 1
and if Requirements 2 and 3 are satisfied, syn-
chronous and asynchronous fuzzy Q-iteration are con-
sistent, i.e., limδx→0,δu→0 F (θ∗) = Q∗, and the sub-
optimality of the approximate Q-function satisfies
‖F (θ∗)−Q∗‖∞ = O(δx) + O(δu).

Proof: It is easy to show by induction that ‖F (θ∗) −
Q∗‖∞ ≤ εδ/(1 − γ) [4, Sec. 6.5.3]. From Lemma 2,
limδx→0,δu→0 εδ = limδx→0,δu→0(Lρ+2γκLφLfBθ)(δu+
κνδx) = 0, and the first result is proven. Furthermore,
using the same lemma, εδ = O(δx) + O(δu). 2

In addition to guaranteeing consistency, Theorem 4 also
relates the suboptimality of the Q-function F (θ∗) with
the accuracy of the fuzzy approximator. Using Theo-
rem 3, the accuracy can be further related with the sub-

optimality of the policy ĥ∗ greedy in F (θ∗), and with
the suboptimality of the solution obtained after a finite

number of iterations (the Q-function F (θ̂∗) and the cor-

responding greedy policy
ˆ̂
h∗).

5.3 Computational complexity

In this section, the time and memory complexity of fuzzy
Q-iteration are analyzed. It is easy to see that each it-
eration of the synchronous and asynchronous fuzzy Q-
iteration (Algorithms 1 and 2) requires O(N2M) time
to run. Here, N is the number of MFs and M the num-
ber of discrete actions, leading to a parameter vector of
length NM . The complete algorithms consist of L it-
erations and require O(LN2M) computation. Fuzzy Q-
iteration requires O(NM) memory. The memory com-
plexity is not proportional to L because, in practice, any
θℓ′ for which ℓ′ < ℓ can be discarded.

Next, we compare the complexity of fuzzy Q-iteration
with the complexity of two representative RL algo-
rithms, namely least-squares policy iteration (LSPI) [19]
and fitted Q-iteration [11]. We focus on the case in which
all algorithms compute the same number of parameters.
LSPI approximates in each iteration the Q-function of
the current policy (instead of the optimal Q-function),
and then uses it to find an improved policy. Typically,
the approximators employed in LSPI are structured
similarly to our fuzzy approximator: they consist of N
state-dependent basis functions (BFs) and M discrete
actions, and have NM parameters. The time complex-
ity of each iteration of the LSPI algorithm is O(N3M3),
due to solving a linear system of size NM . By solving
the system incrementally, the complexity can be re-
duced, but will still be at least O(N2M2). The memory
complexity is O(N2M2). So, LSPI requires more com-
putation per iteration and more memory than fuzzy

10

Q-iteration. However, policy iteration methods such as
LSPI often converge in a small number of iterations [24],
usually smaller than the number of iterations required
by value iteration methods such as fuzzy Q-iteration.

Fitted Q-iteration is a model-free variant of approxi-
mate Q-iteration. In every iteration, it solves a regres-
sion problem to find the updated Q-function. Many re-
gression techniques can be employed, each incurring a
different computational cost. Consider e.g., the kernel-
based regression of regularized fitted Q-iteration [12].
For this algorithm, the number of parameters computed
in an iteration is identical to the number of samples Ns

employed in that iteration. The computational complex-
ity of this iteration O(Ns

3), and its memory complex-
ity is O(Ns

2). So, compared to fuzzy Q-iteration with
NM = Ns parameters, regularized fitted Q-iteration is
more computationally expensive.

These comparisons should be considered in the light of
some important differences between fuzzy Q-iteration,
on the one hand, and LSPI and fitted Q-iteration, on
the other hand. The fact that all algorithms employ the
same number of parameters means they employ simi-
larly, but not identically powerful approximators: due to
Requirements 1–3, the class of approximators considered
by fuzzy Q-iteration is smaller, and therefore less pow-
erful. These requirements also enable fuzzy Q-iteration
to perform more computationally efficient updates, e.g.,
because the projection is reduced to an assignment (11).

Fuzzy Q-iteration is also related to interpolative V-
iteration [26], which uses N state-dependent BFs to
iteratively compute the optimal V-function V ∗(x). A
discrete, finite action space is required, and the number
of actions is denoted by M̄ . To make it comparable
to fuzzy Q-iteration, interpolative V-iteration can be
specialized for deterministic systems, and the BFs can
be restricted in a similar way to Requirement 1. The
resulting algorithm has a time complexity of O(N2M̄)
per iteration, and a memory complexity of O(N). So,
if fuzzy Q-iteration uses all the discrete actions, i.e.,
M = M̄ , it has the same time complexity as inter-
polative V-iteration. The memory complexity of inter-
polative V-iteration is lower because the approximate
V-function does not depend on the action.

6 Example: two-link manipulator

In this section, fuzzy Q-iteration is used to find a control
policy for a two-link manipulator operating in a verti-
cal plane (Figure 1). The control goal is to stabilize the
manipulator pointing up. In order to create a challeng-
ing, highly nonlinear control problem, the torque of the
first motor is limited to a value that is not sufficient to
push the manipulator up in a single rotation. Instead,
the first link needs to be swung back and forth (desta-
bilized) to gather energy, prior to being pushed up and

m
1

m
2

l
2

l
1

motor
1

motor
2

α
1

α
2

m
2
g

m
1
g

Fig. 1. Schematic drawing of the two-link manipulator.

stabilized. The manipulator is a fourth-order nonlinear
system with two control inputs, described by the model:

M(α)α̈ + C(α, α̇)α̇ + G(α) = τ (30)

where α = [α1, α2]
T, τ = [τ1, τ2]

T. The state vector con-
tains the angles and angular velocities of the two links:
x = [α1, α̇1, α2, α̇2]

T, and the control vector is u = τ .
The angles wrap around in the interval [−π, π) rad, and
the velocities and torques are bounded as in Table 1. The
sampling period is set to Ts = 0.05 s, and the discrete-
time dynamics f are obtained by a numerical integration
of (30) between consecutive time steps. Table 1 gives the
meaning and values (or domains) of the manipulator’s
variables. For the expressions of the mass matrix M(α),
the Coriolis and centrifugal forces matrix C(α, α̇), and
the gravity matrix G(α), see [6].

Table 1
Physical ranges and parameter values of the manipulator.

Symbol Domain or value Units Meaning

g 9.81 m/s2 gravity

α1; α2 [−π, π); [−π, π) rad link angles

α̇1; α̇2 [−2π, 2π]; [−2π, 2π] rad/s link velocities

τ1; τ2 [−3, 3]; [−1, 1] Nm motor torques

l1; l2 0.4; 0.4 m link lengths

m1; m2 1.25; 0.8 kg link masses

I1; I2 0.067; 0.043 kg m2 link inertias

c1; c2 0.2; 0.2 m centers of mass

b1; b2 0.08; 0.02 kg/s joint dampings

The goal (stabilization around α = α̇ = 0) is expressed
by the quadratic reward function:

ρ(x, u) = −xTQrewx, Qrew = diag(1, 0.05, 1, 0.05)

The discount factor is set to γ = 0.98. To apply fuzzy
Q-iteration, triangular fuzzy partitions are defined for
each state variable and then combined, as in Exam-
ple 1. For the angles, a core is placed at the origin, and
6 logarithmically-spaced cores are placed on each side
of the origin. For the velocities, a core is placed in the
origin, and 3 logarithmically-spaced cores are used on

11

−2 0 2

−3

−2

−1

0

1

2

3

α
1
 [rad]

α
2
 [
ra

d
]

τ
1
(α

1
,0,α

2
,0) [Nm]

−2 0 2

−3

−2

−1

0

1

2

3

α
1
 [rad]

α
2
 [
ra

d
]

τ
2
(α

1
,0,α

2
,0) [Nm]

Fig. 2. A slice through the discrete-action policy, for
α̇1 = α̇2 = 0 and parallel to the plane (α1, α2). Darker shades
correspond to negative actions, lighter shades to positive ac-
tions. The fuzzy cores for the angle variables are represented
as small white disks with dark edges.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−2

0

2

4

α
1
,

α
2
 [

ra
d

]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−5

0

5

α
’ 1

,
α

’ 2
 [

ra
d

/s
]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−5

0

5

τ
1
,

τ
2
 [

N
m

]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−20

−10

0

r
[−

]

t [s]

Fig. 3. A discrete-action controlled trajectory of the manip-
ulator from the stable equilibrium (thin black line – link 1,
thick gray line – link 2). Appropriate multiples of 2π have
been added to the values of the angles, to eliminate any (ar-
tificial) discontinuities introduced by wrapping the angles in
the interval [−π, π).

each side of the origin. This leads to a total number of
(2 · 6 + 1)2 · (2 · 3 + 1)2 = 8281 MFs. The cores are
spaced logarithmically to ensure a higher accuracy of
the solution around the origin. Each torque variable is
discretized using 5 logarithmically spaced values: τ1 ∈
{−3,−0.72, 0, 0.72, 3} and τ2 ∈ {−1,−0.24, 0, 0.24, 1}.
The convergence threshold is set to εQI = 10−5. Syn-
chronous fuzzy Q-iteration was applied, and it converged
in 529 iterations.

Figure 2 presents a slice through the resulting discrete-
action, near-optimal policy (12). Figure 3 presents a con-
trolled trajectory of the manipulator, starting from the
stable equilibrium. The controller successfully swings up
and stabilizes the system in about 2.5 s. However, be-
cause only discrete actions are available, chattering is
required to stabilize around the unstable equilibrium.

To avoid chattering, the interpolated policy (14) can be

−2 0 2

−3

−2

−1

0

1

2

3

α
1
 [rad]

α
2
 [
ra

d
]

τ
1
(α

1
,0,α

2
,0) [Nm]

−2 0 2

−3

−2

−1

0

1

2

3

α
1
 [rad]

α
2
 [
ra

d
]

τ
2
(α

1
,0,α

2
,0) [Nm]

Fig. 4. The interpolated policy (zero-velocity slice).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−2

0

2

4

α
1
,

α
2
 [

ra
d

]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−5

0

5

α
’ 1

,
α

’ 2
 [

ra
d

/s
]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−5

0

5

τ
1
,

τ
2
 [

N
m

]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−20

−10

0

r
[−

]

t [s]

Fig. 5. A continuous-action controlled trajectory of the ma-
nipulator from the stable equilibrium.

used. A slice through this policy is shown in Figure 4, and
is clearly smoother than the discrete-action policy. Fig-
ure 5 presents the trajectory controlled with interpolated
actions. Chattering has been eliminated. Note that, al-
though the interpolated policy is continuous, the control
signal sometimes varies significantly from one sampling
instant to the next. This happens in state space regions
where the policy is represented with a high resolution,
and can therefore vary quickly.

Finally, we compare the solution of fuzzy Q-iteration
with a solution obtained by the state-of-the-art fitted Q-
iteration algorithm, employing ensembles of extremely
randomized trees to approximate the Q-function [11].
Distinct ensembles are used to approximate the Q-
function for each of the discrete actions, similarly to
how the fuzzy approximator is working. Each ensemble
consists of 50 trees, and the other tree construction pa-
rameters are set to their default values, namely K = 4,
nmin = 2 (see [11] for details). To enable a better com-
parison, fitted Q-iteration is supplied with the same
samples as those employed by fuzzy Q-iteration, namely
the cross product of the 8281 MF cores with the 25
discrete actions, leading to a total number of 207025
samples. This is close to the largest amount of samples
that we could use, because the memory required to

12

build the trees was already close to the capacity of our
machine. Figure 6 illustrates the resulting policy.

−2 0 2

−3

−2

−1

0

1

2

3

α
1
 [rad]

α
2
 [
ra

d
]

τ
1
(α

1
,0,α

2
,0) [Nm]

−2 0 2

−3

−2

−1

0

1

2

3

α
1
 [rad]

α
2
 [
ra

d
]

τ
2
(α

1
,0,α

2
,0) [Nm]

Fig. 6. The fitted Q-iteration policy (zero-velocity slice).

Although it resembles Figures 2 and 4, the fitted Q-
iteration policy contains spurious (and probably incor-
rect) actions for many states. This policy is unable to
swing the manipulator up from the stable equilibrium,
so the resulting trajectory is not shown. We have also
attempted tuning fitted Q-iteration (e.g., by supplying
fewer discrete actions to simplify the learning problem,
changing nmin, and generating samples in other ways)
but this did not improve the results. So, for this exam-
ple, fuzzy Q-iteration outperforms fitted Q-iteration.

A possible explanation for the poorer results obtained
by fitted Q-iteration in this example is the following.
The tree construction algorithm includes random ele-
ments, which introduce variance in the approximate Q-
values. If in some regions of the state space this variance
is comparable to the differences between the Q-values of
the discrete actions, the maximal Q-value may be incor-
rectly identified, which would lead to incorrect actions.
An approximator variant that employs a single ensem-
ble of trees, rather than a distinct ensemble for each dis-
crete action, may alleviate such a problem – but would
be less comparable with the fuzzy approximator.

7 Conclusions and future work

In this paper, we have considered fuzzy Q-iteration, an
approximate dynamic programming algorithm that rep-
resents state-action value functions using a fuzzy parti-
tion of the state space and a discretization of the action
space. The algorithm was shown to be convergent to a
near-optimal solution, and consistent under continuity
assumptions on the dynamics and the reward function.
The performance of fuzzy Q-iteration was illustrated in
an example involving the control of a two-link manipula-
tor, in which fuzzy Q-iteration also compared favorably
with fitted Q-iteration.

An important next step is extending fuzzy Q-iteration
to stochastic problems. Section 4 indicated some possi-
ble approaches to perform this extension. The fuzzy ap-
proximator influences the computational complexity of

fuzzy Q-iteration, as well as the accuracy of the solution.
While we have considered in this paper that the MFs
were given a priori, a technique to construct for a given
accuracy an approximator with a small number of MFs
would be very useful in practice. Furthermore, action-
space approximators more powerful than discretization
could be studied, e.g., approximators based on a fuzzy
partition of the action space.

Acknowledgements

This research was financially supported by the BSIK-ICIS
project (grant no. BSIK03024) and by the STW-VIDI
project DWV.6188. We thank Pierre Geurts for allowing us
the use of his code for building ensembles of regression trees.

References

[1] A. Antos, R. Munos, and Cs. Szepesvári. Fitted Q-
iteration in continuous action-space MDPs. In J. C.
Platt, D. Koller, Y. Singer, and S. T. Roweis, editors,
Advances in Neural Information Processing Systems 20,
pages 9–16. MIT Press, 2008.

[2] H. R. Berenji and D. Vengerov. A convergent actor-
critic-based FRL algorithm with application to power
management of wireless transmitters. IEEE Transac-
tions on Fuzzy Systems, 11(4):478–485, 2003.

[3] D. P. Bertsekas. Dynamic Programming and Optimal
Control, volume 2. Athena Scientific, 3rd edition, 2007.

[4] D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic
Programming. Athena Scientific, 1996.

[5] M. Brown and C. Harris. Neurofuzzy Adaptive Modeling
and Control. Prentice Hall, 1994.

[6] L. Buşoniu, B. De Schutter, and R. Babuška. Decentral-
ized reinforcement learning control of a robotic manip-
ulator. In Proceedings 9th International Conference of
Control, Automation, Robotics, and Vision (ICARCV-
06), pages 1347–1352, Singapore, 5–8 December 2006.

[7] L. Buşoniu, D. Ernst, B. De Schutter, and R. Babuška.
Fuzzy approximation for convergent model-based rein-
forcement learning. In Proceedings 2007 IEEE Interna-
tional Conference on Fuzzy Systems (FUZZ-IEEE-07),
pages 968–973, London, UK, 23–26 July 2007.

[8] L. Buşoniu, D. Ernst, B. De Schutter, and R. Babuška.
Consistency of fuzzy model-based reinforcement learn-
ing. In Proceedings 2008 IEEE International Confer-
ence on Fuzzy Systems (FUZZ-IEEE-08), pages 518–
524, Hong Kong, 1–6 June 2008.

[9] L. Buşoniu, D. Ernst, B. De Schutter, and R. Babuška.
Continuous-state reinforcement learning with fuzzy ap-
proximation. In K. Tuyls, A. Nowé, Z. Guessoum, and
D. Kudenko, editors, Adaptive Agents and Multi-Agent
Systems III, volume 4865 of Lecture Notes in Computer
Science, pages 27–43. Springer, 2008.

[10] C.-S. Chow and J. N. Tsitsiklis. An optimal one-way
multigrid algorithm for discrete-time stochastic control.
IEEE Transactions on Automatic Control, 36(8):898–
914, 1991.

[11] D. Ernst, P. Geurts, and L. Wehenkel. Tree-based
batch mode reinforcement learning. Journal of Machine
Learning Research, 6:503–556, 2005.

13

[12] A. M. Farahmand, M. Ghavamzadeh, Cs. Szepesvári,
and S. Mannor. Regularized fitted Q-iteration for
planning in continuous-space Markovian decision prob-
lems. In Proceedings 2009 American Control Conference
(ACC-09), pages 725–730, St. Louis, US, 10–12 June
2009.

[13] P. Y. Glorennec. Reinforcement learning: An overview.
In Proceedings European Symposium on Intelligent
Techniques (ESIT-00), pages 17–35, Aachen, Germany,
14–15 September 2000.

[14] G. Gordon. Stable function approximation in dynamic
programming. In Proceedings 12th International Con-
ference on Machine Learning (ICML-95), pages 261–
268, Tahoe City, US, 9–12 July 1995.

[15] T. Horiuchi, A. Fujino, O. Katai, and T. Sawaragi.
Fuzzy interpolation-based Q-learning with continuous
states and actions. In Proceedings 5th IEEE Interna-
tional Conference on Fuzzy Systems (FUZZ-IEEE-96),
pages 594–600, New Orleans, US, 8-11 September 1996.

[16] V. I. Istratescu. Fixed Point Theory: An Introduction.
Springer, 2002.

[17] L. Jouffe. Fuzzy inference system learning by reinforce-
ment methods. IEEE Transactions on Systems, Man,
and Cybernetics—Part C: Applications and Reviews,
28(3):338–355, 1998.

[18] R. Kruse, J. E. Gebhardt, and F. Klowon. Foundations
of Fuzzy Systems. Wiley, 1994.

[19] M. G. Lagoudakis and R. Parr. Least-squares policy it-
eration. Journal of Machine Learning Research, 4:1107–
1149, 2003.

[20] C.-K. Lin. A reinforcement learning adaptive fuzzy con-
troller for robots. Fuzzy Sets and Systems, 137(3):339–
352, 2003.

[21] R. Munos and A. Moore. Variable-resolution discretiza-
tion in optimal control. Machine Learning, 49(2–3):291–
323, 2002.

[22] R. Munos and Cs. Szepesvári. Finite time bounds for
fitted value iteration. Journal of Machine Learning Re-
search, 9:815–857, 2008.

[23] M. S. Santos and J. Vigo-Aguiar. Analysis of a numer-
ical dynamic programming algorithm applied to eco-
nomic models. Econometrica, 66(2):409–426, 1998.

[24] R. S. Sutton and A. G. Barto. Reinforcement Learning:
An Introduction. MIT Press, 1998.

[25] Cs. Szepesvári and W. D. Smart. Interpolation-based
Q-learning. In Proceedings 21st International Confer-
ence on Machine Learning (ICML-04), pages 791–798,
Bannf, Canada, 4–8 July 2004.

[26] J. N. Tsitsiklis and B. Van Roy. Feature-based methods
for large scale dynamic programming. Machine Learn-
ing, 22(1–3):59–94, 1996.

14

