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Abstract

A mechatronic system is an assembly of technological components, such as a mech-

anism, sensors, actuators, and a control unit. Recently, a number of researchers and

industrial manufacturers have highlighted the potential advantages of lightweight paral-

lel mechanisms with respect to the accuracy, dynamic performances, construction cost,

and transportability issues. The design of a mechatronic system with such a mechanism

requires a multidisciplinary approach, where the mechanical deformations have to be

considered. This thesis proposes two original contributions in this framework.

(i) First, a modular and systematic method is developed for the integrated sim-

ulation of mechatronic systems, which accounts for the strongly coupled dynamics of

the mechanical and non-mechanical components. The equations of motion are formu-

lated using the nonlinear Finite Element approach for the mechanism, and the block

diagram language for the control system. The time integration algorithm relies on

the generalized-α method, known in structural dynamics. Hence, well-defined concepts

from mechanics and from system dynamics are combined in a unified formulation, with

guaranteed convergence and stability properties. Several applications are treated in the

fields of robotics and vehicle dynamics.

(ii) Usual methods in flexible multibody dynamics lead to complex nonlinear mod-

els, not really suitable for control design. Therefore, a systematic nonlinear model reduc-

tion technique is presented, which transforms an initial high-order Finite Element model

into a low-order and explicit model. The order reduction is obtained using the original

concept of Global Modal Parameterization: the motion of the assembled mechanism is

described in terms of rigid and flexible modes, which have a global physical interpreta-

tion in the configuration space. The reduction procedure involves the component-mode

technique and an approximation strategy in the configuration space. Two examples are

presented: a four-bar mechanism, and a parallel kinematic machine-tool.

Finally, both simulation and modeling tools are exploited for the dynamic analysis

and the control design of an experimental lightweight manipulator with hydraulic ac-

tuators. A Finite Element model is first constructed and validated with experimental

data. A reduced model is derived, and an active vibration controller is designed on

this basis. The simulation of the closed-loop mechatronic system predicts remarkable

performances. The model-based controller is also implemented on the test-bed, and the

experimental results agree with the simulation results. The performances and the other

advantages of the control strategy demonstrate the relevance of our developments in

mechatronics.
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I

Introduction

Engineers are encouraged by the market demands to the creation of tech-

nological products with increasing complexity. Therefore, they generally exploit

a modular and hierarchical system approach, which suggests that a product is

a system, that can be obtained by appropriate combination of several simpler

subsystems.

This thesis concerns mechatronic systems, whose purpose is to generate a

controlled motion. For example, robots, machine-tools or vehicles are mechatronic

systems. At a highly abstracted level, they are composed of hardware and software

technological components, such as mechanisms, actuators, sensors and control

units, as illustrated in Figure 1.1. The interactions between the subsystems are

functional: it is assumed that they occur at localized points, namely the ports of

the subsystems.

The design problem consists in refining each subsystem description, leading

to an optimal system for the task under consideration. Numerous design meth-

ods and tools are available to assist the engineer in this challenge; they usually

rely on models, which are simplified and abstracted representations of the reality.

-Reference

trajectory
Controller - Amplifiers - Actuators - Transmission -Mechanism -

Sensors �

6

Figure 1.1: A mechatronic system.
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Most methods are automated in computer software, able to achieve efficiently and

systematically expensive and complex computational treatments.

Traditional design tools are discipline-oriented, and can only be used in a se-

quential approach: each subsystem is designed independently, assuming roughly

idealized interactions with the other subsystems. Hence, the initial optimization

problem naturally defined at the system level, should be translated at the com-

ponent level, involving the judgment of the engineer. As pointed out by Van

Brussel [VB96], this pragmatic approach obviously leads to a sub-optimal design,

and great improvements are expected from a concurrent approach, where all the

interacting components are considered in a unified framework.

In particular, over the last twenty years, dedicated methods have been devel-

oped for the dynamic analysis of flexible mechanisms. In a mechatronic context,

the mechanism interacts with the control system, and the objective of this disserta-

tion is to propose modeling tools useful for the integrated design of the mechatronic

system. This idea is further developed in the following section.

1.1 Integrated design in mechatronics

The interactions between a mechanism and its control system are highly sim-

plified under the assumptions of (i) a rigid-body behavior, (ii) a simple serial

mechanical topology. Therefore, those assumptions are often considered as arti-

ficial design constraints, and we shall briefly highlight the potential benefits of

their relaxation.

The rigid-body constraint implies that the natural frequencies of the mecha-

nism are far beyond the bandwidth of the actuators. Removing this constraint,

a lighter mechanical design is possible, with the advantages of a reduced moving

mass, a better arm weight to payload weight ratio, a lower power demand, smaller

actuators, and a better transportability. A flexible mechanism offers interesting

properties to achieve compliant force control. The actuator bandwidth can also

be extended, yielding faster motions. However, a subsequent design challenge is

to control the flexible dynamics of the mechanism, in order to guarantee tracking

performances, stability and disturbance rejection.

Compared to serial topologies, parallel mechanisms are appreciated for their

higher static and dynamic stiffness. Moreover, the actuators may be located on
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the base, reducing the moving mass and simplifying the transmission mechanisms.

A difficulty comes from the complexity in the geometrical workspace and in the

nonlinear kinematic relation between the motion of the actuated joints and the

effector location.

From this early analysis, the advantages of flexible and/or parallel designs

appear especially attractive for high-speed applications (e.g. high-speed robots

and machine-tools), and problems where the mass is a critical issue (e.g. large

manipulators, space robots and foldable structures). In order to design a controller

for those complex dynamic systems, an appropriate mechanical model is highly

desirable at this level.

For a wide range of practical problems such as car suspensions and traditional

machine-tools, the flexibility of the mechanical system is not dominant, and the

complex kinematic behavior can be approximately represented by linear equations.

After a design based on simplified linear models, the engineer may worry about

the validity of the predicted performances. Then a multidisciplinary simulation

tool may be extremely valuable at a pre-prototyping stage, in order to achieve

inexpensive checks and performance predictions before physical implementation

and testing.

Even though the rigid body and serial topology constraints are discarded,

the sequential design is still a pragmatic approach, which allows a relative inde-

pendence in the design of the mechanism and of the controller. This sequential

approach suffers from inherent limitations which can be overcome by the devel-

opment of a concurrent optimization of the whole system. At this level, a mul-

tidisciplinary simulation tool is valuable for the estimation of the optimization

criterion and its sensitivities.

Those modeling, simulation, and optimization concepts are relevant at spe-

cific stages of the design procedure. In this work, we assume that a first design

of the system is available, which includes the description of the mechanism and

of the actuators. Hence, the objective is to define the control strategy, and to

optimize the remaining design variables. A procedure to solve this problem may

involve the following steps:

1. the elaboration of a mechanical model suitable for control design,

2. the design of a control system, relying on the model defined in step 1,
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3. the integrated modeling and simulation of the mechatronic system (pre-

prototyping),

4. the concurrent optimization of the remaining design variables, based on

step 3.

In order to obtain the most appropriate information at each step of the de-

sign procedure, various models should be considered. Two important distinctions

among modeling concepts are introduced in the next two paragraphs.

Mathematically, the dynamic model of a mechanism is naturally expressed

by the equations of motion, which define an instantaneous relationship between

the external actions (actuator forces, disturbances), the mechanism generalized

coordinates and their time-derivatives (velocities and accelerations). The equa-

tions of motion, supplemented with a solver algorithm, constitute a simulation

model of the system, relating time-domain responses (displacements, strains, etc)

with time-domain actions (applied forces, commands, etc). In system theory, the

same distinction can be done between the state equations, and their formulation

with a simulation algorithm.

For complex multibody systems, a modeling software is helpful to formulate

automatically the equations of motion from a high-level description. Among the

computer modeling methods, symbolic methods allow to build the equations of

motion in symbolic format, whereas numerical methods produce the equations of

motion as complex numerical procedures. The symbolic format has the advantages

of portability and efficiency, and it provides interesting insights in the analytical

structure of the equations. However, numerical methods are able to deal with

a more general class of problems, and they are especially suitable to model the

dynamics of a flexible mechanism with complex topology in a systematic way.

After this clarification, let us further characterize the modeling requirements

in the design procedure, which are directly associated with the objectives of this

research.

In step 2, the control design usually exploits the mathematical structure of

the mechanical equations of motion formulated in step 1. If a linear model is

able to capture the essential dynamics, linear control theory can be efficiently ap-

plied. Using linearizations at different operating points, it is sometimes possible

to generalize this paradigm for nonlinear systems. For the critical applications
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considered here, a nonlinear control technique is necessary, which advantageously

exploits the structure of a nonlinear model. Since the order of the controller is

often proportional to the order of the model, a low-order model in explicit and

analytical format is desirable at this stage. However, existing modeling meth-

ods for complex flexible mechanisms are not able to construct such a nonlinear

model; they lead to high-order and computationally demanding models, which

are definitely not appropriate. An important contribution of this thesis is a sys-

tematic reduced-order modeling method, leading to nonlinear mechanical models,

compatible with the requirements of a control design procedure.

Steps 3 and 4 involve a multidisciplinary simulation model, for which less

stringent simplicity requirements are imposed: the computational load and the

complexity of the model should be balanced with the generality, reliability, modu-

larity and systematic implementation issues. In this thesis, we propose an original

integrated simulation tool for mechatronic systems based on a unifying Finite El-

ement formulation. This reliable method allows a modular model definition for

both the flexible multibody dynamics and the dynamics of the control system.

In the presentation, a specific effort is delivered to define natural connections

between the fields of modeling and control. Standard formulations from both areas

are combined for the developments of our original mechatronic concepts. Hence,

we hope that our point of view can be understood, exploited and developed by

specialists from both fields.

1.2 Outline

For the sake of consistency, the dissertation follows a progression from analy-

sis to design concepts, in contradiction with the sequence of the design procedure.

Thus, the topics of integrated simulation, model reduction and control design are

successively addressed in chapters 4, 5 and 6.

Prior to the presentation of our personal contribution, an extended state of

the art is developed in chapter 2. Preliminary modeling and simulation concepts

in multibody system dynamics are reviewed before specialized discussions on the

simulation of mechatronic systems, the reduced-order modeling and the control

of flexible mechanisms. The Finite Element approach proposed by Géradin and

Cardona for flexible multibody systems [GC01, Car89, CG89, CG88] is at the core
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of our developments, and an overview is presented in chapter 3.

The simulation of mechatronic systems is addressed in chapter 4. The block

diagram language is selected for the description of the control system dynamics,

and the generalized-α integration scheme is extended to deal with the dynamics of

the state variables. After a formal presentation of the simulation method, theoret-

ical convergence and stability results are established. Three examples illustrate

the generality and the efficiency of the formulation: a four-bar mechanism, an

industrial robot, and a car equipped with a semi-active suspension.

Chapter 5 is devoted to the reduced-order modeling of flexible mechanisms.

The method is an extension of the linear component-mode synthesis, which ac-

counts for the nonlinear kinematics of the system. Therefore, the original concept

of Global Modal Parameterization is defined, and the reduced equations of motion

are formulated. The variations of the model in the configuration space are ap-

proximated by piecewise polynomial functions. Critical implementation issues are

discussed, in connection with the control design requirements. The method is il-

lustrated with two examples: a rigid parallel machine-tool, and a flexible four-bar

mechanism.

In chapter 6, the theoretical tools presented and validated in chapters 4 and 5

are exploited for the modeling and control design of a large and flexible manipu-

lator, which is represented in Figure 1.2. A reduced-order model is validated with

experimental results, and the new insights in the dynamics of the manipulator

lead to the development of an original control law. Numerical simulations of the

closed-loop mechatronic system predict that a compromise can be obtained be-

tween the motion bandwidth and the stabilization of the mechanical vibrations,

which is confirmed by the experimental results. The various advantages of the

control strategy demonstrate the relevance of a global approach in mechatronics.

Our contribution is thus described from the general to the particular: simula-

tion of mechatronic systems, modeling of flexible mechanisms, and application to

an experimental manipulator. Finally, chapter 7 draws conclusions and discusses

possible directions for future research.
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Figure 1.2: Large and flexible manipulator.



8 CHAPTER 1. INTRODUCTION



II

State of the Art

This research is developed in a multidisciplinary mechatronic framework, and

it is thus hopeless to attempt a comprehensive survey of the literature. In order

to situate our work, selected topics of interest are reviewed in this chapter: dy-

namic modeling and simulation of multibody systems, integrated simulation of

mechatronic systems, model reduction techniques, and control strategies for flexi-

ble mechanisms. On this basis, our strategic choices are motivated for the different

contributions of the dissertation.

2.1 Dynamic models for multibody systems

This section discusses existing formulations for the equations of motion in

rigid and flexible multibody dynamics, pertaining to the simulation and the con-

trol design problems. Simulation is a direct problem (or forward problem), i.e.

the equations of motion are solved in the time-domain from given information

about the applied forces and driven degrees-of-freedom (dofs). Open-loop and

feedforward control are inverse problems, i.e. the applied forces and driven dofs

are determined in order to yield a specified motion. The design of a closed-loop

controller is a non-standard problem, that may exploit the mathematical structure

of the equations of motion.

The equations of motion of a mechanism rely on a kinematic parameteriza-

tion, using a set of generalized coordinates. Sometimes, a unique set of inde-

pendent coordinates is able to describe arbitrary motion of the system, and the

equations of motion are formulated as a set of Ordinary Differential Equations
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(ODEs). But in general, the kinematic description involves redundant coordi-

nates, interrelated by algebraic and differential constraints. Therefore, the equa-

tions of motion are formulated as a set of Differential and Algebraic Equations

(DAEs), which is less convenient both for control design and simulation.

2.1.1 Rigid mechanisms

A mechanism made of rigid bodies connected by kinematic joints can be de-

scribed in terms of relative coordinates, i.e. the angles of the revolute joints and

the displacements of the prismatic joints. Usually those coordinates are physi-

cally associated with the actuators, which make them relevant for control design,

especially for the inverse dynamics problem [AS86]. For tree-topologies, the rela-

tive coordinates are independent, which is an additional advantage. Alternatively,

Cartesian coordinates have been proposed for the efficient and systematic simu-

lation of complex mechanisms [DJB94].

Two approaches can be used in order to obtain the equations of motion: the

Newton-Euler formulation, and the Lagrangian formulation.

The Newton-Euler equations come from the application of the motion laws

to each rigid-body, involving coupling reaction forces and torques. According to

d’Alembert’s principle, the reaction forces can be eliminated by projection onto

the configuration space, leading to a compact set of independent equations. For

mechanisms with tree-topology, recursive implementations of the Newton-Euler

equations lead to a direct formulation of the independent equations in terms

of the relative coordinates, with a high efficiency [LWP80, SF03]. For parallel

mechanisms, recursive methods can still be exploited using the cut-joint method

to break the loops, and adding closure kinematic constraints between the relative

coordinates.

In the Lagrangian formulation [DJB94], the system dynamics is described in

terms of work and energy using generalized coordinates, e.g. relative or Cartesian

coordinates. If the generalized coordinates are independent, the reaction forces

and torques are automatically eliminated, leading to compact equations of motion.

Redundancy in the generalized coordinates requires the introduction of Lagrange

multipliers. Optimized recursive Lagrangian formulations have been presented in

the literature [Hol80]. Both Newton-Euler and Lagrangian formulations can be
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implemented symbolically or numerically.

A detailed review of the literature about the dynamics of rigid mechanisms

is presented by Schiehlen [Sch97].

2.1.2 Flexible mechanisms

The kinematic description of a deformed body requires an infinite set of dofs.

In order to develop a systematic and general modeling method, an approximation

can be obtained by spatial discretization. The motion is thereby parameterized by

a finite number of coordinates, which are the amplitudes associated with shape

functions. Different discretization techniques are possible in flexible multibody

dynamics, leading to different formulations of the equations of motion; a few of

them are considered here.

The nonlinear Finite Element method

The most general and versatile approach in flexible multibody dynamics is

the nonlinear Finite Element method. Each flexible body is divided into elements,

and a piecewise approximation strategy is adopted for the displacement field. The

amplitudes of the shape functions are nodal parameters, namely translations and

rotations with respect to an inertial frame. The consistent description of the large

displacements and rotations requires a nonlinear geometric formulation [Sim85,

SVQ86]. A systematic methodology for mechanisms analysis using the Finite

Element method is proposed by Géradin and Cardona [GC01], who select an

updated Lagrangian point of view to handle the large rotations. In order to

circumvent the difficult treatment of rotations, Shabana [Sha98] proposed the

Absolute Nodal Coordinate Formulation, where the nodal dofs are translations

and slopes.

The nodal parameterization of the motion is highly redundant, so that alge-

braic constraints arise in the equations of motion. The resulting large but sparse

system of DAEs is well-suited for simulation, but not for control design. For

this reason, alternative approaches leading to simpler models are discussed in the

following.
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The floating frame of reference approach

According to the floating frame of reference approach [DV76, SW83, MK91,

CG91, LHKB91, SM00, Nik03, SF03], the motion of a flexible body is subdivided

into a reference motion and a deformation. The former is formally identified with

the motion of a rigid floating frame attached to the body, which can be described

according to rigid multibody formalisms. The analysis of the deformation within

the floating frame is usually simplified assuming small displacements and rota-

tions, so that assumed-mode techniques can be exploited. Three major difficulties

are associated with the selection of the reference frame, the definition of the modal

shape functions, and the formulation of the coupled kinetic energy.

The floating frame approach was stimulated by simulation problems. How-

ever, Book [Boo84] developed a similar method for control design. Relying on a

recursive Lagrangian formulation, this method can be implemented numerically

or symbolically.

The motion of the reference frame and the deformations are highly coupled by

the kinetic energy, requiring a strongly coupled formulation. However, the influ-

ence of the deformations on the motion of the reference frame becomes negligible

for low-speed applications, so that a weakly coupled scheme can be developed in

a co-simulation configuration [VA99, Arn04]: the dynamics of the floating frame

is simulated in a software dedicated to rigid multibody systems, whereas the de-

formations are analyzed in a general purpose Finite Element code.

Lumped approaches

According to a lumped approach, a flexible body is described as a lumped

model composed of rigid bodies interconnected by springs and dampers. Several

methods have been proposed for simulation by Huston [Hus91] and Wittbrodt and

Wojciech [WW95], and for control design by Seto and co-workers, e.g. [SH04].

The dynamic analysis can follow any standard methodology for rigid multi-

body systems. However, the typical number of elements required to model a

deformable structure is high, so that the efficiency of the method becomes ques-

tionable for a complex three-dimensional mechanism.
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2.2 Simulation of multibody systems

The numerical simulation of a distributed system requires a space-time dis-

cretization of the partial differential equations.

In the previous section, the nonlinear Finite Element method was recom-

mended for the systematic spatial semi-discretization of a flexible multibody sys-

tem. The dynamics is then represented by a large but sparse set of index-3 DAEs1.

The time-discretization and the definition of integration formulae are the next

step in the development of a simulation method. Since linear structural dynamics

is a special case of flexible multibody dynamics, it is instructive to review the

numerical integration methods developed in this field.

2.2.1 Time-integration in linear structural dynamics

A Finite Element model of a dynamic structure is typically a large set of

ODEs. These equations accurately represent the low-frequency modes of the

physical system, but their high-frequency content is dominated by numerical phe-

nomena resulting from the Finite Element discretization. Due to those numerical

modes, the equations of motion are stiff 2.

At this level, it is necessary to distinguish explicit and implicit integration

schemes, as explained by Géradin and Rixen [GR97]. The stability of an explicit

integration scheme is only guaranteed if the time step is small enough with respect

to the natural frequencies of the system. On the other side, the commonly used

implicit algorithms are unconditionally stable (or A-stable), which means that

the numerical solution is stable whatever the frequency content of the mechanical

system. This is a desirable property for the reliable simulation of stiff equations of

motion, but the price to pay for an implicit method is an increased computational

complexity.

According to Hughes [Hug87], a time-integration scheme in structural dy-

namics should ideally combine the following properties: unconditional stability

1The index characterizes the algebraic structure of a set of DAEs. It is the minimum number

of times that all or part of the equations must be differentiated with respect to time in order to

obtain a set of ODEs [BCP96].
2The concept of stiff differential equations is defined and discussed in details by Hairer and

Wanner [HW91].
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for linear systems, no more than one set of implicit equations to be solved at

each step, second-order accuracy, controllable numerical dissipation in the higher

modes, and self-starting procedure.

One-step methods are attractive since they are self-starting and lead to sim-

ple code architecture. Among them, the Newmark family of implicit solvers have

been extensively applied in structural dynamics. From the original formulae pro-

posed by Newmark [New59], improved algorithms have been constructed, such as

the Hilber-Hughes-Taylor algorithm [HHT77], and the generalized-α method by

Chung and Hulbert [CH93], in order to combine high-frequency dissipation with

second-order accuracy. Since unconditional stability can be demonstrated, those

methods satisfy the specifications proposed by Hughes.

The Newmark schemes are well adapted for the second-order differential equa-

tions of a structural model. Alternatively, general purpose ODE-solvers have

been developed by mathematicians, such as the one-step, multistage Runge-Kutta

methods [Gea71, HNW87]. These solvers can reach a high-order of accuracy, with

guaranteed stability properties. Analysts from structural dynamics are sometimes

reluctant with respect to this approach, fearing the computational burden of a

multi-stage algorithm. However, Owren and Simonsen [OS95] have shown that a

class of Runge-Kutta methods could be implemented with an acceptable compu-

tational cost. They concluded that those algorithms are also good candidates for

the simulation of dynamic structures.

2.2.2 Time-integration in flexible multibody dynamics

An additional difficulty for the simulation of flexible mechanisms comes from

the DAE nature of the equations of motion. Brenan et al. [BCP96] analyze

the conditions under which standard ODEs solvers lead to acceptable solution

when applied to DAEs. They present the implementation of multistep backward

difference methods in DASSL, a general purpose code designed for index-0 and

index-1 DAEs. For higher index DAEs, several implementation difficulties are

reported, and the authors recommend a reformulation of the equations.

Following this advice, the index-3 equations of motion should be modified

according to a constraint elimination or an index reduction. The constraint elim-

ination [WH82, DJB94] is a projection of the initial DAEs on an underlying
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set of ODEs, whose solution computed with ODEs solvers naturally satisfies the

constraints. The index reduction involves the differentiation of the constraint

equations, in order to express them at the velocity level (index-2 formulation),

or at the acceleration level (index-1 formulation). Unfortunately, the numerical

solution of the reduced-index system does not fulfill the original constraints at the

displacement level and, due to error propagation, a drift-off from these constraints

occurs. To avoid this phenomenon, a stabilization technique [Bau72] should be

implemented, which usually brings artificial high-frequencies in the response.

Géradin and Cardona [Car89, CG89, GC01] analyzed the behavior of the

Newmark, Hilber-Hughes-Taylor and generalized-α algorithms when directly ap-

plied to the original equations of motion. The iterative nature of these implicit

algorithms allows to satisfy the algebraic constraints with a level of accuracy spec-

ified by the user. In the linear regime, they demonstrated that a weak instability

is expected in the Lagrange multipliers, which can be eliminated by adding a

small numerical dissipation over the high-frequencies. Those methods have been

implemented in the Samcef-Mecano commercial software [SAM99]. Even though

no stability proof is available in the nonlinear regime, this methodology turned out

to be very efficient and powerful for the wide range of applications encountered

by the users of Samcef-Mecano.

Recently, several authors developed a class of algorithms that naturally pre-

serve invariants of the dynamic system, such as energy and canonical momenta [STW92,

BBT03, LCG04]. If energy preservation does not necessary leads to the accuracy

of the solution, those algorithms usually perform remarkably well. In order to

solve efficiently stiff problems, Bauchau et al. [BBT03] introduced high-frequency

dissipation, leading to a so-called energy-decaying scheme, with guaranteed un-

conditional stability in the nonlinear regime. The construction of the integration

formulae relies on the Lagrangian structure of the mechanical system. In a mecha-

tronic framework, it is usually not possible to describe the control system with a

Lagrangian function, and unfortunately, those methods become irrelevant.

As a conclusion, among time-integration methods, improved Newmark algo-

rithms (Hilber-Hughes-Taylor and generalized-α methods) turn out to be good

candidates for the numerical simulation of mechatronic systems with flexible

mechanisms.
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2.3 Integrated simulation of mechatronic systems

The functional decomposition of a mechatronic system into simpler interact-

ing subsystems is of practical interest for design purpose. Modularity is also a

key issue for the integrated simulation of the mechatronic system. This section

addresses the comparison of existing modular simulation concepts based on three

fundamental questions:

1. how are the subsystems described?

2. how are the couplings between the subsystems defined?

3. how does the simulation algorithm deal with the coupled problem?

Before this comparison, let us analyze general properties of simulation methods.

Basic simulation concepts

In this work, we are especially interested in computational modeling tech-

niques, which have followed the exponential development of computer capabilities

over the last decades. Any high-level operation of the user is supported by nu-

merous modeling concepts and dedicated treatments implemented at the lower

levels. However, the high-level description should be sufficiently intuitive, so that

the underlying levels can be ”forgotten” in the modeling process. For example,

modern multibody dynamics software are equipped with powerful graphical user

interface, so that the user manipulates visually the idealized bodies and joints of

the model, intuitively associated with the actual system.

Hence, a modular simulation software for mechatronic systems requires a

user-friendly interface, associated with a consistent low-level implementation.

Most existing software are characterized by the standard architecture sketched

in Figure 2.1. This overview is certainly simplified, and a more detailed descrip-

tion would include other libraries, and highlight the deep connections between

them. The lower level is the programming language. The compiler, the operating

system and the computer hardware could have been mentioned below, but they

will not be considered here. At the kernel level, the concepts are built using the

syntax of the programming language, and are exploited to establish the element

and analysis libraries. The element library aims at describing every subsystem
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Figure 2.1: General structure of a modular simulation software.

and its contribution to the global equations of motion, whereas the analysis mod-

ule defines the treatments to solve those equations. At the top, the user interface

gives access to the element and analysis libraries in order to construct the simu-

lation model.

In the following, several modular simulation approaches are successively con-

sidered: the Finite Element method, physical modeling techniques (the bond

graph and the linear graph), variational principles, mathematical approaches (the

block diagram). We shall discuss their ability to represent the dynamics of a

flexible mechanism within the mechatronic system. A general comparison is sum-

marized in Tables 2.1 and 2.2: the answers to the three fundamental questions

(elementary description, coupling strategy and time-integration) are decomposed

according to the software architecture given in Figure 2.1. We encourage the

reader to refer to them during the presentation of the different methods.

The Finite Element method

The relevance of the Finite Element method for the mechanical modeling

of complex flexible multibody systems has been demonstrated earlier. Here the

method is presented in a more general framework as a modular modeling approach

for distributed systems.

Modularity comes from the geometric decomposition of the distributed sys-

tem into simple elements coupled by nodal dofs. The numerical assembly of

elementary contributions leads to the formulation of the coupled equations of mo-

tion. Several time-integration algorithms have been proposed in the literature for

the simulation of Finite Element models, see section 2.2.

The user interface specifies a high-level syntax for the geometric and physical

description of the elements, and for the definition of the nodes. The user is also
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able to select the time-integration algorithm and its numerical parameters. At a

lower level, each element is defined by its dofs and the algorithms to compute its

numerical contribution to the dynamic equilibrium. The integration schemes are

implemented at the analysis level, whereas the general concepts of element, dof

and node are defined at the kernel level.

Traditionally, the Finite Element method is applied for the simulation of

mechanical systems, but it can be naturally extended to represent non-mechanical

systems. For example, in a previous work [BG03, BDG03], the dynamics of a

controller has been considered in a Finite Element model in order to analyze the

active vibration control of a complex mechanical structure. The design of the

control system could thus be guided by the simulation results.

Physical modeling: Bond Graph / Linear Graph

In physical modeling, one assumes that each physical component exchanges

energy with its environment through localized ports. Hence, the interaction be-

tween subsystems is characterized by port variables, which are physical quantities

satisfying conservation laws at the system level (e.g. power, voltage, current,

flow, efforts...). For instance, the conservation equations of an electrical network

are the Kirchhoff equations, directly connected with the topology of the graph

describing the network. Those equations should be complemented by the consti-

tutive equations of each component (e.g. Ohm’s law of a resistor) to characterize

the dynamics of the system. By exploiting a graph analysis algorithm, it is pos-

sible to organize the equations in a compact form, thereby eliminating redundant

variables. This operation can be achieved symbolically, leading to an explicit

analytical expression of the minimal set of equations.

Additional information may be given by the user in order to help the graph

analysis algorithm. For bond graphs, this information consists in a causality as-

signment of the interactions, whereas for linear graphs, the user should specify

a topological tree. Since the conservation equations are implemented at the ker-

nel level, the development of a new element only requires the definition of its

constitutive equations, which is fairly simple.

Physical modeling methods are especially well-suited when the port variables

are scalar quantities. Among the numerous references in the literature, we may

cite [OE97, KMR00] for bond graphs and [KTKH67] for linear graphs. Recently,
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a significant effort has been spent for the standardization of multidisciplinary sim-

ulation techniques, leading to the development of the unifying modeling language

Modelica [EMO98, Til01], which is based on bond graph theory.

Several authors have extended the concept of bond graph and linear graph

for multibody systems, see [Kar97, Fav97] and [McP96, McP98, McP03, SM03a],

respectively. According to the comparison study by Sass [Sas04], the linear graph

is more appropriate in that case, and it is noticeable that the topological analysis

automatically solves the kinematic problem. The extension of the linear graph

method for flexible multibody systems was also presented in [SM00, SMH01],

relying on an a priori spatial discretization with assumed-modes. McPhee et

al. [SM03a, SM03b] demonstrated the relevance of the linear graph method in

electromechanics.

Methods based on variational principles

Several authors [HP95, MEFK97] applied the virtual work principle for the

modeling of electromechanical systems. Its scalar formulation is a definite advan-

tage to mix various contributions from electrical and mechanical subsystems. The

method relies on the selection of a minimum set of independent generalized coor-

dinates, able to describe the electromechanical configuration of the system. For

serial rigid mechanisms, this principle leads to the standard Newton-Euler equa-

tions in terms of independent joint coordinates. Hadwitch and Pfeiffer [HP95]

applied the virtual work principle to rigid multibody systems interacting with

electrical networks. From electrical and mechanical generalized coordinates, all

other redundant mechanical and electrical variables can be deduced using the

kinematic equations and the Kirchhoff laws, respectively.

Mathematical modeling: Block Diagram

In the aforementioned methods, the dynamic equations are formulated from

physical principles. However, the input/output behavior of a controller follows an

algorithm designed in an artificial way. This is probably the reason why control

engineers prefer the more general block diagram formalism, where the equations

of the subsystems are directly manipulated. The block diagram is a mathemat-

ical language for the modular description of dynamic systems in terms of input,
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output, and internal variables; it should not be associated with a particular sim-

ulation method. Depending on the coupling strategy, three different approaches

are considered below.

The weakly coupled strategy, available in several commercial software (Simulink,

Vissim, etc.) is often regarded as the standard approach for the simulation of

a block diagram model. Each individual subsystem is usually represented by

ODEs, but algebraic equations come from input/output interconnections. The

time-integration is conducted separately for each block in an asynchronous way,

and the coupling results from the exchange of input/output numerical values. The

sequence followed for the successive treatments of the blocks is obtained from a

causality analysis, itself relying on the input/output causality property of every

block. However, this causality analysis breaks down in case of algebraic loops3, so

that reliable algebraic loop detection and solver algorithms are essential for con-

sistent simulation results. As represented in Table 2.2, the ODE solver directly

deals with the individual blocks, so that the separation between the element and

analysis library is virtual. For this reason, the weak coupling strategy is not suit-

able for globally implicit integration schemes, and it is not recommended for stiff

problems.

Partitioned simulation methods can also be formulated mathematically in

terms of block diagrams. Each subsystem can hide a highly complex dynamics

(e.g. the mechanical or the electrical part of a mechatronic system), and a par-

titioned treatment intends to improve the computational efficiency and the mod-

ularity of the simulation. Among those methods, let us mention the multi-rate

integration strategies for ODEs suggested by Gear and Wells [GW84], their gener-

alization by Schiehlen and co-workers to DAEs with algebraic loops [RS98, KS00],

and the methods based on Gauss-Seidel iteration for systems coupled by alge-

braic constraints developed by Arnold et al. [Arn01, HAV03]. Co-simulation

techniques are also partitioned methods, where the subsystems are implemented

in different specialized software [VBSV99, VGVDS+99]. In this case, a master

linker module manages the task scheduling, and the calling procedures of the

other software.

Finally, the block diagram language leads to a strongly coupled simulation if

3An algebraic loop is a topological loop where all the blocks are direct-feedthrough, which

means that their outputs are instantaneously affected by their inputs.
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the coupling is imposed prior to the integration scheme: an assembly procedure

is necessary to build the coupled equations, which are treated by a monolithic

solver. Sass [Sas04] recently adopted this point of view to establish symbolically

the coupled dynamic equations of an electromechanical system composed of two

subsystems: a rigid mechanism and an electrical network. The strongly coupled

approach is also selected in this thesis, but the assembly is performed numerically,

as in the Finite Element method.

A few methodologies escape to the strict classification between weak and

strong coupling, such as the fastest-first approach evoked in [GW84], or the sub-

cycling technique proposed by Cardona [Car89] for the dynamic analysis of mech-

anisms with hydraulic actuators. In both cases, smaller time-steps are applied for

the fast subsystem according to a weakly coupled approach, but a strong coupling

is considered at every global time-step.

Approach selected in this work (Table 2.3)

Chapter 4 will be devoted to the simulation of mechatronic systems composed

of a complex flexible mechanism and a control system.

The nonlinear Finite Element method is appropriate to deal with the me-

chanical problem, whereas the block diagram approach seems especially suitable

for the modeling of the control system. Thus, we propose to integrate the block

diagram language into the Finite Element framework, so that the strongly coupled

equations are obtained using the standard Finite Element assembly procedure.

This choice offers the following advantages:

- the detailed, accurate and reliable dynamic representation of the flexible

mechanism,

- the generality of the block diagram formulation, which can be extended to

discontinuous and sampled systems,

- the modularity of the block diagram library, leading to an intuitive modeling

process,

- the formal equivalence with widespread block diagram software, such as

Simulink, so that the modeling concepts are very natural for the control

engineer, and the exchange of models is facilitated,
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Table 2.1: Comparison between modular simulation concepts.
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Table 2.2: Comparison between modular simulation concepts: block diagram

approaches. ”I/O” means ”Input/Output”.
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Table 2.3: Approach selected in this work.

- the reliability of the method, since the strongly coupled approach prevents

any difficulty due to algebraic loops.

Two important contributions of this thesis are the formulation of the block di-

agram concepts in a Finite Element framework, and the extension of the

generalized-α method for the time-integration of the coupled equations.

2.4 Model reduction techniques for control de-

sign

Modern formalisms in multibody dynamics allow a detailed and reliable rep-

resentation of complex mechanical systems. However, high levels of accuracy

and generality can only be reached at the price of more sophisticated mod-

els, which require increased computational resources. Therefore, Eberhard and

Schiehlen [ES98] advocated a hierarchical modeling approach, which suggests that

different models should be developed to meet the specific requirements at the dif-

ferent stages of a design procedure.

This work addresses the control design of flexible mechanisms. At this design

stage, it is commonly accepted that an ideal mechanical model should combine



2.4. MODEL REDUCTION TECHNIQUES FOR CONTROL DESIGN 25

the following properties:

1. accurate input/output representation in the domain of interest, which is

defined from the actuator bandwidth viewpoint and from the workspace

viewpoint,

2. low-order, since the order of the controller is often related with the order of

the model,

3. represented by ODEs (independent coordinates, no constraint equations),

4. available in closed-form - at least in a structured format, since the structure

of the model opens the range of control strategies that can be considered,

5. computationally efficient, since it might be implemented in real-time, or

involved in an optimization procedure,

6. obtained using a general and systematic formulation, which is especially

valuable for complex systems,

7. portable, in order to be available in software environments dedicated to

control design.

The objective of this section is to compare existing modeling techniques with

respect to those criteria.

For rigid mechanisms with serial topology, an appropriate inverse dynamic

model can be obtained using recursive methods. Due to the presence of algebraic

constraints, the efficient inverse dynamics of rigid mechanisms with complex par-

allel topology is still an open problem [BDG06].

In flexible multibody dynamics, the nonlinear Finite Element method and

the floating frame approach were pointed as relevant modeling techniques in sec-

tion 2.1.2. For complex mechanisms with linear elastic deformations and parallel

topologies, those approaches are compared in Table 2.4, according to the seven

aforementioned criteria.

Both methods lead to a sufficiently accurate model. However, the Finite Ele-

ment parameterization involves a large number of redundant coordinates, leading

to a high-order and computationally demanding model. As a numerical method, it

suffers from a poor portability, and its strongest advantage in this context follows
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Finite Element Assumed-mode

Accuracy yes yes

Order no ∼
ODEs no ∼

Structure ∼ yes

Computational efficiency no ∼
Generality yes yes

Systematic formulation yes no

Portability no yes

Table 2.4: The assumed-mode technique vs. the Finite Element method for flex-

ible mechanisms with complex topologies and linear elasticity.

from its systematic formulation. The floating frame of reference approach relies

on a more compact parameterization, with a separation between rigid and flexible

coordinates. The resulting model is more structured, which is an advantage for

the design of the control algorithm. Symbolic implementations of assumed-mode

methods lead to high portability and efficient computations. But in case of com-

plex parallel mechanisms, due to the large number of modes (several modes are

necessary for every flexible body), and due to the presence of nonlinear algebraic

constraints, the resulting model is still too complicated for control design. More-

over, the definition of the mode shapes cannot be realized in a truly systematic

way.

A possible breakthrough may come from reduction or approximation tech-

niques, whose developments in linear and nonlinear frameworks are discussed in

the following.

2.4.1 Reduced-order modeling of a linear system

A linear reduction technique transforms an original model into a lower-order

model, with a minimized loss in accuracy. The control system is expected to be

robust with respect to the omitted dynamics. Several methods were proposed

in both fields of linear system theory and linear structural dynamics. We shall

review them before considering the reduction of a nonlinear flexible multibody
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system.

Several state-space reduction methods have been proposed for linear time-

invariant systems. The reduction relies on two low-dimensional subspaces: the

former defines a coordinate transformation, and the second, a projection operator

for the state equations. The objective of a reduction technique is to select those

subspaces in order to minimize the accuracy loss. Some methods, well-suited

for large-scale problems, are based on Krylov subspaces [GVVD04], and others

rely on a truncated balanced realization, as presented by Gawronski [Gaw98]. In

order to preserve physical properties of the system, such as dissipativity, congru-

ence transformations4 may be advantageous, especially for passive RLC electrical

circuits and passive mechanical systems [PLS03].

In linear structural dynamics, dedicated reduction techniques exploit the

second-order and lightly damped nature of the equations of motion. Initially,

those methods were not developed for control applications, but for substructured

analysis of complex mechanical systems: the reduced contributions of each sub-

structure are established independently in a first step, in order to simplify the

analysis of the assembled structure in a second step. A congruence transforma-

tion is defined in the space of generalized coordinates as a mode shape matrix.

Hurty [Hur65], Craig and Bampton [CB68], Herting [Her79] and Craig [Cra87]

proposed various methods to select the truncated modal basis. They are usu-

ally denoted component-mode techniques, and a more detailed presentation will

be given in chapter 5. Interesting combinations of reduction methods in system

theory and in structural dynamics have been investigated by Gawronski [Gaw98]

and De Fonseca [DF00].

The component-mode synthesis leads to an optimal modal representation of

a flexible body, which can be exploited in a floating frame formulation, leading

to the concept of superelement [SW83, CG91, GC01]. But again, for a complex

flexible multibody system, the resulting model does not meet the requirements of

a control design procedure.

4In a congruence transformation, the subspaces for the coordinate transformation and for

the projection are identical.
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2.4.2 Approximated representation of a nonlinear model

A linear dynamic system can be represented using a few matrices (e.g. state-

space matrices or mass, damping and stiffness matrices), whereas a nonlinear

dynamic system may have a very complex structure, which can hardly be casted

in a generic format. Sometimes, a nonlinear system is represented explicitly by

analytical ODEs, which constitute an appropriate basis for control design. How-

ever, the model of a complex flexible mechanism is formulated implicitly in terms

of a costly and non-portable numerical procedure. Therefore, it is highly relevant

to seek for an approximated explicit formulation, i.e. to build a simplified meta-

model of the initial model. In the field of optimization, this concept has been

applied for response surface techniques [MM95], in order to reduce the number of

runs of a full model. In robotics, a nonlinear dynamic model can be pre-computed

offline and stored in a look-up table, as discussed by Raibert [Rai77]; this look-up

table can then be implemented online for computed-torque control. More general

approximation methods have been developed in the field of control, and a quick

overview is presented in the following.

Artificial neural networks are theoretically able to represent any kind of non-

linearity, and they offer an interesting solution for the approximation of dynamic

systems. During a training stage, the neural network learns an input/output be-

havior from a set of data collected on the initial model. The difficulties of this

general method are associated with the choice of the structure of the network, the

implementation of the training algorithm, and the black-box nature of the result-

ing model. The development of neural networks for the control of mechanisms

has been considered by Gutiérres et al. [GLL98].

Besides neural networks, other simpler approximation functions are possi-

ble, such as low-order polynomials, rational functions or kriging functions. In

every cases, the data necessary to build the model should be selected with great

care, and theories have been specifically developed for this design of experiment

problem [Mon97]. In particular, adaptive techniques, where the set of data is

constructed iteratively in order to minimize the approximation error, have a clear

superiority over regular gridding techniques.

In many practical situations, a dynamic system can be characterized by its

linearized behavior around specific operating points. For instance, around a con-
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figuration of a mechanism, the linearized equations of motion contain relevant

information about its dynamic behavior. Hence, a global model might be ob-

tained by appropriate combination of local models, according to the local model

network approach, also denoted the multiple model approach [TS85, Nel99, MS94,

Ang01, Sch01]. Takagi and Sugeno [TS85] proposed to build a smooth global

model using concepts from fuzzy sets theory, whereas other authors adopted in-

terpolation methods. Actually, a local model network can be interpreted as a

Linear Parameter Varying system, which belongs to the more general class of

Linear Time-Varying systems. The parametric dependence can be expressed in

several ways, leading for instance to Polytopic Linear Models analyzed by An-

gelis [Ang01], or models based on Linear Fractional Transformation considered

by Scherer [Sch01]. Control theories have been proposed exploiting these specific

structures; Caswara and Unbehauen [CU02] and Symens [Sym04] applied some

of them for the control of flexible manipulators. However, the combination of lo-

cal models established for different operating points may lead to a non-consistent

global model, especially if the dynamic coordinates (e.g. the state variables) do

not have a global physical interpretation.

2.4.3 Nonlinear reduction in flexible multibody dynamics

The model associated with an assembled flexible mechanism is nonlinear, but

around a given configuration, it can be locally characterized by a linear model,

complemented by a quadratic gyroscopic term.

An original nonlinear reduction technique is presented in chapter 5, which

extracts a low-order and simplified model from an initial Finite Element model.

The reduction relies on the assumption of a linear elastic behavior, and it proceeds

in two steps:

- The order reduction results from a Global Modal Parameterization, which is

inspired by the component-mode technique, with the conceptual differences

that the mode shapes are associated with the whole mechanism, and depend

on the mechanical configuration. The clear physical interpretation of the

modal coordinates guarantees the consistency of the reduced model in the

configuration space. The reduction procedure should be repeated for every

configuration changes, and as such, it can hardly be exploited for control
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design.

- The nonlinear variations of the reduced-order model in the configuration

space are approximated using a piecewise polynomial interpolation. This

strategy is based on an adaptive configuration space inspection algorithm,

which minimizes the computational resources to satisfy a specification on

the approximation error.

This systematic and general method leads to a highly compact dynamic rep-

resentation of complex flexible mechanisms. The resulting model is appropriate

for control design, but it can also be used to build a more structured model, e.g. a

polytopic linear model or a linear fractional model. As a special case, the method

is applicable to parallel rigid mechanisms [BDG06].

2.5 Control of flexible mechanisms

This section explores active techniques to reduce vibration problems of mech-

anisms. These methods are opposed to passive damping methods, which rely either

on the use of high damping materials, such as composites, or on the implementa-

tion of lumped passive dampers, tuned for specific operating conditions. In many

situations, the use of damping materials is excluded, and it may be difficult to

add lumped passive dampers to the system. Active damping is then an interesting

alternative, and the design of the control algorithm may lead to higher efficiency

for a broad range of operating conditions.

According to the classical design approach, a rigid mechanism is driven by

collocated joint actuators and sensors. A general assumption in this dissertation

is that the number of actuators equals the number of rigid modes; in other words,

the mechanism is assumed to be fully actuated. In this case, classical control

strategies, such as the computed torque technique [AS86], can be applied if an

inverse dynamic model is available in real-time. For mechanisms with complex

topologies, our original model reduction method can be advantageously exploited

for this purpose [BDG06].

When the rigidity assumption needs to be reconsidered, collocated pairs of

sensors and actuators may be added in order to achieve a direct vibration con-

trol [Mei90, Pre97, Gaw98]. This method is widely exploited for active damping
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of large space structures. Another solution is to avoid extra actuators, and use

the existing actuators for the simultaneous control of the large amplitude motion

and of the vibrations. This is the indirect vibration control strategy, which is

especially suitable for the control of robots and machine-tools. This approach is

cheaper and simpler from a mechanical point of view. However, if one is interested

in controlling the tip-position, the non-collocated configuration of the sensors and

the actuators complicates the design of the control law. This research focuses on

the indirect vibration control problem, which has received a major attention in

the literature.

The control methods reported here rely on a model resulting from spatial

discretization with a finite number of coordinates. Since a flexible system has,

in principle, an infinite number of dofs, the higher order dynamics is neglected,

but its interaction with the control system may cause spillover instability. Special

care is necessary to prevent the system from such undesirable phenomena.

Most control techniques rely on the structure of a mathematical model, hence,

we successively consider methods based on linear approaches, on quasi-linear ap-

proaches, and finally on nonlinear concepts; of course, each method is conditioned

by the availability of an appropriate model.

2.5.1 Methods based on Linear Time Invariant dynamics

The early experimental work realized by Cannon and Schmitz [CS84] focuses

on the end-point control of a single flexible beam rotating around its origin. The

dynamic equations of this mechanical system can be reasonably approximated by

a linear model, experimentally identified. The authors report that the transfer

function from the actuators to the tip position is non-minimum phase, which can

be explained by the non-collocated configuration of the joint actuator and the

tip position sensor. In the following, we shall insist on the consequences of this

property for the design of an open-loop or of a closed-loop control law.

A first control design problem is the command generation problem. For rigid-

body mechanisms, it is often accepted that bang-bang acceleration profiles (i.e.

piecewise constant acceleration profiles) lead to optimal trajectories. When deal-

ing with flexible mechanisms, the high-frequency content of such profiles may

excite the vibrations of the system. Bayo and Paden [BP87] recommended the
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use of smoother Gaussian velocity profiles. Further improvements can be obtained

using input shaping methods proposed by Singer and Seering [SS90], which consist

in pre-filtering the command signal in order to reduce the detrimental effect of

mechanical flexibility on the dynamic response. Designed for linear systems, the

efficiency of input shaping has been demonstrated in several cases for nonlinear

mechanisms [RV02], especially when combined with a nonlinearity compensation

feedback [KJT95]. The command generation problem can also be reformulated as

an inverse dynamics problem: find the torque function to be applied so that the

effector follows a specified trajectory in the time-domain. Solutions obtained by

feedforward pole/zero cancellation are not applicable because of the non-minimum

phase dynamics. Actually, the solution is necessarily non-causal, which means

that the torque should start before the tip motion, and continue after reaching

the final position. Bayo [Bay87] proposed an off-line frequency domain method,

later extended to multilink mechanisms [DB94], whereas Kwon and Book [KB94]

advocated a time-domain approach.

Input shaping and inverse dynamics are open-loop methods, which suffer

from model sensitivity, and poor disturbance rejection. Therefore, they should be

combined with a feedback control strategy. Usually, one is interested in controlling

the effector of the manipulator, which calls for a noncollocated end-point feed-

back design. Cannon and Schmitz [CS84] have successfully implemented an LQG

state-feedback controller, optimizing the tip response. However, they pointed a

high performance sensitivity with respect to variations of the dynamics, which is

attributed to the non-collocated configuration. Wang and Vidyasagar [WV91b]

argued that the regulation of the tip position can be improved using a reflected

tip position feedback, since the corresponding transfer function benefits from the

minimum-phase property.

The essential difficulties encountered for the control of linear slewing beams

also appear in the multi-link case. But more general approaches are necessary to

deal with the nonlinear dynamics caused by the configuration changes.

2.5.2 Quasi-linear control methods

Even though the dynamics of a multilink mechanism is nonlinear, the validity

of a linearized model about a particular operating point is sometimes acceptable,
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especially in case of small deformations and reasonable velocities. A pragmatic

approach consists in a linear control design, which is expected to be insensitive

to the nonlinearities. Oakley and Cannon [OC89] proposed an LQR controller for

a two-link mechanism, whose parameters are optimized for the nominal configu-

ration. For some applications, a satisfactory solution can be obtained combining

a gross-motion controller based on the rigidity assumption, with a linear vibra-

tion controller active close to the final position. When many final configurations

are possible, one vibration controller should be implemented for each linearized

local model, which may become cumbersome. Alternatively, De Fonseca [DF00]

has presented a linear H∞ robust controller for a 3-axis machine tool, where the

dependence of the dynamics with respect to the configuration of the machine

is treated as a model uncertainty. Stability is therefore guaranteed in the whole

workspace, but the author reports that this strategy leads to a rather conservative

design when compared to non-robust linear designs.

A better dynamic representation can be obtained using a linear time-varying

model (or even a nonlinear time-varying model), instead of a linear time-invariant

model. Assuming slow variations of the model parameters, an adaptive control

strategy [Lan79] can be developed: the basic idea is to construct a stable adapta-

tion procedure for the controller, based on real-time measurements. The variations

of the model are supposed to be unpredictable, and the adaptation is typically

slow. Hence, adaptive control is best suited to deal with uncertainty in the model,

in the payload or in the external forces. It has been applied for the control of

flexible manipulators by several authors [YBS89, GLL98, CU02, CYC02].

However, if the dependence of the linear model with respect to a few param-

eters is characterized a priori, and if the parameters are directly available from

measurements, it is more relevant to apply a gain scheduling control strategy.

For instance, the linear quadratic regulator theory can be extended for varying

systems, and this approach has been exploited by Meirovitch and Chen [MC95]

for the vibration control of flexible space robots. Scott [Sco95] developed a gain-

scheduling controller for reconfigurable structures: (i) a set of mechanical config-

urations is selected, (ii) for each of them a linear controller is designed from a lin-

earized model, (iii) the global controller follows from a smooth interpolation of the

local controllers in the configuration space. Of course, the global stability of this

strategy cannot be assessed theoretically. Symens [Sym04] investigated the active
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vibration control of a flexible beam with varying length, in particular, he devel-

oped a low-authority controller in order to bring local damping near the resonance

frequencies. Following the hierarchical HAC/LAC design [Pre97, VBS02], this

low-authority vibration controller (LAC) is complemented with a high-authority

motion controller (HAC), responsible for the attenuation of wide-band distur-

bances on the rigid motion. Among various scheduling techniques reviewed in

his work, Symens points out the necessary trade-off between theoretical stabil-

ity guarantees and practical performances, as well as the difficult elaboration of

a low-order model able to capture the configuration-dependent dynamics. We

believe that the systematic reduced-order modeling technique presented in this

report gives a positive answer to this last problem.

2.5.3 Nonlinear control techniques

There is no general method for the control of the nonlinear dynamics of a

flexible multilink mechanism. However, some tools have been proposed in the

literature in order to assist the control engineer in the design procedure.

Optimal control theory is a general framework for the construction of a con-

trol policy. The statement of a typical optimal control problem can be expressed

as follows: find a feasible control such that the system starting from the given

initial conditions transfers its state to the target, and minimizes a performance

index. Pontryagin’s Maximum Principle and Bellman’s Dynamic Programming

are two powerful tools for this class of variational problems. For linear systems,

standard solutions are available for quadratic performance indexes (i.e. the linear

quadratic regulator), and for indexes expressed by the H∞ norm of the trans-

fer function of the system. For a class of rigid mechanisms5, the minimum-time

motion is obtained with bang-bang commands. For more complex cases, the opti-

mal control problem can be solved numerically involving expensive computations.

Some general methodologies have been recently proposed for systems represented

by DAEs [SP01, SLP03], and for multibody systems [Str98, BCGF04, BC04].

The availability of a computationally efficient dynamic model is always a strong

advantage when applying such numerical methods.

5Fully actuated mechanisms, free from singularities, without frictional effects and without

disturbances.
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There exists a special class of systems, called differentially flat systems, for

which there is a one-to-one correspondence between trajectories of a set of ”flat

outputs” and full state and input trajectories [FLOR95, VNM98, FLMR99]. This

special invertibility property leads to an efficient trajectory planning tool: a tra-

jectory specified in output space can be lifted to the state and input space through

an algebraic mapping. Ollivier and Sedoglavic [OS01] exploited this tool for the

trajectory planning of a very flexible rod, and Thummel et al. [TOB01] for flexible

joint robots. Since this formalism requires the analytical structure of the dynamic

equations, its systematic implementation for complex flexible mechanisms seems

to be a difficult problem.

Feedback linearization is a geometric method to transform a nonlinear system

into a virtual linear system by a state transformation and a feedback transforma-

tion [SL91, Isi95]. Then, linear control theory can be applied for the virtual linear

system. For a rigid robot, this method is equivalent to the classical computed

torque technique. Sometimes, feedback linearization is classified among inverse

dynamics techniques, since it realizes a cancellation of the nonlinear part of the

dynamics. Feedback linearization typically requires a full state estimation, which

is not possible if part of the dynamics is not observable at the outputs. This unob-

servable dynamics is called the zero dynamics and it is interpreted as the system

dynamics when the outputs are forced to zero. By definition, a nonlinear system

is minimum-phase if its zero dynamics is asymptotically stable. Several authors,

such as Wang and Vidyasagar [WV91a], applied those advanced concepts to the

indirect vibration control of mechanisms with flexible links, and they concluded

that the full state dynamics cannot be linearized. The choice of the outputs has a

decisive influence on the stability of the zero dynamics: the collocated joint angles

lead to an oscillatory zero dynamics, whereas the noncollocated tip position leads

to an unstable behavior [WV91a, DLS93]. The output redefinition concept can

also be generalized from the linear case [MPK00]. Feedback linearization relies

on an analytical expression of the dynamic equations, so that this tool may be

hardly applied for complex parallel mechanisms. Moreover, some authors [SJK97]

described the pitfalls of the feedback linearization technique, in particular its lack

of robustness, since it may involve useless and expensive cancellation of stabilizing

nonlinearities, using their dangerous destabilizing counterpart.

Singular perturbation theory has also been investigated for the control of flex-
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ible multilink manipulators [SB88, MC95, GLL98, MPK00, GS00, SV01, CYC02].

This theory assumes the partitioning of the state variables into slow and fast vari-

ables, so that the dynamics can be represented by two reduced subsystems: the

slow subsystem obtained by neglecting the fast oscillatory motion, and the fast

subsystem obtained by freezing the slow variables. A composite control can then

be applied, combining control laws established separately for each subsytems. In

the context of flexible mechanisms, the elastic coordinates are naturally selected

as fast variables. The slow subsystem corresponds to a corrected rigid system

(e.g. including the static contribution of the flexible variables), whereas the fast

subsystem has a linear dynamics, parametrically depending on the configuration.

The slow controller can be designed on the basis of well-established joint tracking

schemes for rigid manipulators, and the fast subsystems can be stabilized using

standard methods for linear systems [SB88, GLL98, GS00, SV01] or for linear

parameter-varying systems [MC95, MPK00, CYC02]. This theory is extremely

appealing, but, as pointed out by Book [Boo93], the performances are limited by

the necessary time-scale separation between the rigid and the flexible controllers.

The Lyapunov method is a powerful tool for the stability analysis of nonlinear

systems. However, for closed-loop systems, the construction of the control algo-

rithm does not completely follow from this theory and involves engineer judgement

and intuition.

If the transfer function between the input and a chosen output is passive6,

Lyapunov-type control schemes can be more systematically developed with guar-

anteed stability. Usually, this method leads to simple and robust feedback strate-

gies. For a flexible mechanism, the passivity property of collocated transfer func-

tions can be easily assessed, leading to a classical joint controller. Defining a

passive output that includes deformation effects is a more difficult problem.

Considering plane mechanisms that are not influenced by gravity, Ge et al.

[GLZ96] proposed an energy-based feedback which includes deformation effects

and leads to a stable closed-loop system in the sense of Lyapunov. An attractive

property of this strategy comes from the independence of the control design with

respect to the system dynamics, so that no model is necessary. However, a draw-

back comes from its conservatism (i.e. its low performances), and no guideline is

available to optimize the parameters of the controller.

6An exact definition of passivity in system theory is given by Sepulchre et al. [SJK97].
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Specific nonlinear control design methods have been developed for systems

with a cascade structure, e.g. the states of one subsystem are the control variables

for the following. A step-by-step recursive design procedure can then be exploited,

such as backstepping or forwarding [SJK97]. Backstepping has been explicitly

applied for flexible joint robots [OL99]. Recursivity is also at the basis of the

inertial damping concept developed for the control of macro/micromanipulators.

In the macro/micro configuration, a small rigid robot is mounted at the tip of a

large and flexible manipulator. Several approaches have been proposed for the

control of such system, and an extended review is presented by George [Geo02].

Among them, the inertial damping method consists in controlling the motion of

the rigid robot in such a way that the inertia forces transmitted to the supporting

flexible manipulator have a damping effect on the vibration modes. This is a true

cascade system: the control of the micromanipulator motion allows the active

damping of the macromanipulator.

2.5.4 Control strategy selected in this work

After this review, the compromise between stability, performances and ro-

bustness appears more than ever critical when designing a control law for a flexi-

ble mechanism. In chapter 6, the control of an experimental manipulator will be

investigated on the basis of the two-time-scale approach: a slow joint-tracking con-

troller is complemented with a fast vibration controller. Related with HAC/LAC

control techniques and with approaches developed from singular perturbation the-

ory, this method has several advantages:

- a simple hardware and software implementation,

- an adjustable compromise between the joint tracking performances and the

vibration suppression,

- the absence of inversion or cancellation of the nonminimum phase dynamics,

so that the performances are less sensitive to modeling errors.

The fast vibration controller relies on an extension of the inertial damping

concept, which exploits the particular structure of the inertia forces in a low-order

mechanical model. Hence, the nonlinear model reduction technique developed in
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chapter 5 will be extremely valuable for the design and the implementation of the

control law.



III

The Finite Element Approach in

Multibody Dynamics

According to chapter 2, the Finite Element method is appropriate for the

modeling and the simulation of complex parallel mechanisms with significant flex-

ibility. This chapter briefly presents the approach developed by Géradin and Car-

dona [CG88, Car89, CG89, GC01], which is at the center of our developments.

The motion parameterization, the dynamics and the time-integration strategy are

successively discussed.

3.1 Motion parameterization

In the literature, several coordinate choices have been proposed for the kine-

matic description of a mechanism, such as:

- the minimal coordinates,

- the relative coordinates, also denoted Lagrangian coordinates or joint coor-

dinates,

- the Cartesian coordinates, or reference point coordinates,

- the Finite Element coordinates, also denoted natural coordinates, or abso-

lute coordinates,

- the mixed coordinates.
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(a) (b)

(c) (d)

Figure 3.1: (a) Minimal coordinates, (b) Relative coordinates, (c) Cartesian co-

ordinates, (d) Finite Element coordinates or natural coordinates.

We propose to illustrate these concepts for a simple planar mechanism; afterwards,

the representation of spatial rotations will be specifically addressed.

3.1.1 Kinematic description of a planar mechanism

The rigid four-bar mechanism represented in Figure 3.1 has one kinematic dof,

and its description in terms of minimal coordinates requires a single parameter:

the angle θ. However, in Figure 3.1(a), two configurations can be associated with

a single value of θ, so that this parameterization is only valid for a restricted

part of the configuration space. The strong advantage of the minimal coordinates

comes from their independence, i.e. the absence of algebraic constraint.

The relative coordinates (Figure 3.1(b)) allow a recursive description of the

mechanical configuration. They are especially suitable for mechanisms with a

tree-topology, since their independence is then guaranteed. For a parallel mecha-

nism, such as the four-bar example, the relative coordinates are dependent, and
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connected by loop-closure constraints.

The Cartesian coordinates (Figure 3.1(c)) are defined as the position and

orientation of the center of mass of each body. The connections between bodies

are defined a posteriori, using appropriate kinematic constraints. This allows a

simple and systematic formulation, which leads to a rather large but sparse system

of equations.

Those three types of coordinates are competing solutions for the kinematic

description of rigid multibody systems. However, in flexible multibody dynamics,

the deformations should be described with additional (modal) coordinates, leading

to a hybrid set of coordinates. The coupling between the flexible coordinates

and the other coordinates generally leads to a difficult formulation of the kinetic

energy. In this context, the Finite Element coordinates are more appropriate:

each body is characterized by a set of nodes, and each node is characterized by

its own set of coordinates, see Figure 3.1(d). Let us define l1, l2, l3 and l4 as the

respective lengths of the four bars between the nodes 1-2, 3-4, 5-6 and 1-6. The

Finite Element coordinates are redundant, and three types of constraints are to

be considered:

- boundary nodal constraints:

x1 = y1 = y6 = 0 and x6 = l4 (3.1)

- assembly nodal constraints, imposed by boolean identification:

x2 = x3, y2 = y3, x4 = x5, y4 = y5 (3.2)

- rigidity constraints, which may be expressed as a constant length require-

ment:

l2i = (x2i − x2i−1)2 + (y2i − y2i−1)2 i = 1, 2, 3 (3.3)

A mixed formulation may involve several types of coordinates. For instance,

despite our choice of absolute coordinates, it may be interesting to consider the

relative angle θ as an additional dof. Since the parameterization with absolute

coordinates is complete, θ is redundant, and connected to the absolute variables

by an algebraic constraint:

y2 cos θ − x2 sin θ = 0 (3.4)



42 THE FE APPROACH IN MULTIBODY DYNAMICS

Mixed coordinates will be extremely useful to develop our reduction technique,

which will be discussed later.

3.1.2 Description of spatial rotations

The definition of the Finite Element coordinates is straightforward for a sim-

ple planar mechanism, as seen in the previous section, but for a spatial mechanism,

the parameterization of the absolute nodal rotation is a challenging problem. Gen-

erally, a finite rotation can be represented using a proper unitary or orthonormal

3×3 rotation matrix. Such a matrix can be described by three independent param-

eters, and several choices have been proposed in the literature, such as the Euler

angles, the Bryant angles, the Cartesian rotation vector, the Rodrigues parame-

ters, the conformal rotation vector or the linear parameters. However, all those

parameterizations suffer from singularities. The four Euler parameters should also

be mentioned, which lead to a non-singular but redundant parameterization.

Due to the various advantages and drawbacks of each parameterization, the

optimal parameterization is problem-dependent. Following the conclusion of Car-

dona [Car89, page 65], the most relevant choices for a Finite Element formula-

tion in flexible multibody dynamics are the Cartesian rotation vector and the

conformal rotation vector. The former was at the basis of the Samcef-Mecano

software [SAM99]; both of them are combined for the current implementation

in the Oofelie software [CKG94], for reasons that are beyond the scope of this

dissertation.

3.2 Dynamics

The Finite Element coordinates are absolute coordinates, and the total mo-

tion (rigid-body motion and elastic deformation) is directly referred to an inertial

frame. Due to the large displacements and rotations of the mechanical elements

with respect to this frame, the linear theory of elasticity is not applicable, and a

three-dimensional nonlinear theory is necessary.

An updated Lagrangian point of view for the rotation parameters has been

recommended by Géradin and Cardona [GC01]. This means that the rotations

are described as increments with respect to a previous configuration, so that the
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singularities of the rotation parameterization are avoided, full symmetry of the

operators is obtained for the conservative loading case, and the time-integrator is

quite naturally extended to treat the rotational dofs.

The kinetic and potential energies K and V may be formulated using the

n× 1 vector of Finite Element coordinates q, and the equations of motion can be

derived from the Hamilton’s principle:

δ

∫ t2

t1

(L(q, q̇) +W) dt = 0 subject to Φ(q) = 0 (3.5)

where the Lagrangian L is defined by

L = K − V , (3.6)

W denotes the virtual work of external non-conservative loads Q:

δW = δqT Q (3.7)

and Φ are m scleronomic constraints. The formulation may also include non-

holonomic constraints, but we shall not insist on this point here.

The problem (3.5) can be replaced by the equivalent formulation:

δ

∫ t2

t1

(L(q, q̇) +W − λT Φ) dt = 0 (3.8)

where λ is the m×1 vector of Lagrange multipliers associated with the constraints.

Performing the variation and the integration by part, one obtains the Lagrange

equations:  d
dt

(
∂L
∂q̇

)
− ∂L

∂q
+ ΦT

q λ = Q

Φ(q) = 0
(3.9)

where Φq denotes the constraint gradient. Assuming that K can be expressed as

a quadratic form of generalized velocities with a symmetric mass matrix M(q):

K =
1

2
q̇T M(q) q̇ (3.10)

the equations of motion can be put in matrix form:{
M q̈ + ΦT

q λ = g(q, q̇)

Φ(q) = 0
(3.11)
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where the vector of apparent forces g(q, q̇) collects external forces, internal forces

and complementary inertia forces:

gk = Qk −
∂V
∂qk
−
∑
i

∑
j

(
∂Mki

∂qj
− 1

2

∂Mij

∂qk

)
q̇i q̇j (3.12)

This system of equations, and its linearized counterpart, can be directly used

for numerical analysis, e.g. in the time domain. Several enhanced formulations

have been proposed for more efficient numerical treatments. Among them, we

shall review the constraint elimination technique and the augmented Lagrangian

method.

3.2.1 The constraint elimination method

The constraint elimination method aims at replacing the initial problem by an

equivalent unconstrained problem. It relies on a partitioning of the n generalized

coordinates q into two subsets: the n−m independent coordinates θ, and the m

dependent coordinates q∗. Then, we seek for an explicit elimination formula:

q∗ = Φ∗(θ) (3.13)

Since the m algebraic constraints Φ are nonlinear and implicit, the expression of

Φ∗ cannot be constructed analytically. However, the Jacobian of the transforma-

tion can be computed by implicit differentiation:

∂q∗

∂θ
= −Φ−1q∗ Φθ ⇒ ∂q

∂θ
= qθ =

[
I

−Φ−1q∗ Φθ

]
(3.14)

Numerical treatments usually rely on Newton-Raphson iterations of the linearized

dynamic equations. At this level, the Jacobian qθ can be exploited to transform

the initial linearized problem in terms of the redundant variables q into a reduced

linearized problem in terms of the independent variables θ. This technique is

explained with more details by De Jalón and Bayo [DJB94].

3.2.2 The augmented Lagrangian method

The objective of the augmented Lagrangian method is to improve the numer-

ical conditioning of the Lagrange multiplier method by adding a penalty term of
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moderate amplitude. At the same time, appropriate constraint scaling is intro-

duced in order to generate system matrices of the same order of magnitudes. The

augmented functional of Hamilton’s principle (3.8) is

δ

∫ t2

t1

(L(q, q̇) +W − k λT Φ− p ΦT Φ) dt = 0 (3.15)

where k and p are the scaling and penalty factors. The dynamic equations follow:{
M q̈ + ΦT

q (p Φ + k λ) = g

k Φ(q) = 0
(3.16)

Since the penalty term vanishes at the solution point, it is easily observed that

the method provides the exact solution of the initial problem.

Since the time-integration procedure involves a Newton-Raphson procedure,

it is important to formulate the linearized equations for the corrections of the

displacements, velocities and accelerations:[
M 0

0 0

] [
∆q̈

∆λ̈

]
+

[
Ct 0

0 0

] [
∆q̇

∆λ̇

]
+

[
Kt kΦT

q

kΦq 0

] [
∆q

∆λ

]

=

[
−resq

−resΦ

]
+O(∆2)

(3.17)

where

- resq and resΦ denote the residual vectors of equilibrium and constraints,

with:

resq = −g + M q̈ + ΦT
q (p Φ + k λ) (3.18)

- Ct is a tangent damping matrix resulting from the variation of the gyroscopic

forces with respect to the velocities:

Ct = −∂g

∂q̇
(3.19)

- Kt is a tangent stiffness matrix resulting from variations with respect to the

displacements:

Kt = −∂g

∂q
+
∂(M q̈)

∂q
+
∂
(
ΦT

q (pΦ + kλ)
)

∂q
(3.20)

Usually, a good approximation is given by:

Kt ' −
∂g

∂q
+ pΦT

q Φq (3.21)
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The penalty term adds a positive definite contribution to the tangent stiff-

ness, which improves the numerical conditioning and the convergence of the

Newton-Raphson iterations.

3.3 Time-integration

In chapter 2, the relevance of the Newmark family of implicit algorithms for

the simulation of flexible mechanisms was highlighted. This section presents the

original Newmark scheme [New59] and its generalized-α extension by Chung and

Hulbert [CH93]. Theoretical results will also be detailed, related with the issues

of stability and convergence.

3.3.1 Newmark algorithm

The original Newmark integration formula are obtained from a Taylor series

expansion of the displacements and velocities, with respect to the time-step size h:

qn+1 = qn + h q̇n + h2 (1
2
− β) q̈n + h2 β q̈n+1

q̇n+1 = q̇n + h (1− γ) q̈n + h γ q̈n+1

(3.22)

where the constants β and γ are numerical parameters. It may be shown that the

optimal choice of the parameters corresponds to the average constant acceleration

formula, obtained with the particular values:

γ =
1

2
and β =

1

4
(3.23)

They give maximal second-order accuracy, and unconditional linear stability, as

will be demonstrated later. Numerical damping can be introduced in the Newmark

formula according to:

γ =
1

2
+ α and β =

1

4

(
γ +

1

2

)2

α > 0 (3.24)

where α is the numerical damping parameter. This choice allows to increase the

numerical damping in the system while remaining on the stability boundary of the

integration scheme. A more systematic presentation of the Newmark algorithm

in structural dynamics is described by Géradin and Rixen [GR97].

The numerical solution of the dynamic equations (3.16) follows an iterative

predictor-corrector scheme, exploiting the linearized equations (3.17). From given
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values of qn, q̇n, q̈n at time tn, an initial prediction at time tn+1 is obtained with

the zero acceleration assumption:

q̈0
n+1 = 0

q̇0
n+1 = q̇n + h (1− γ) q̈n

q0
n+1 = qn + h q̇n + h2 (1

2
− β) q̈n

(3.25)

and to satisfy the Newmark formulae (3.22), the iterative corrections should sat-

isfy:

4q̈n+1 = 1
β h2
4qn+1

4q̇n+1 = γ
β h
4qn+1

(3.26)

so that the linearized system (3.17) becomes:[
Sqq
t kΦT

q

kΦq 0

] [
∆q

∆λ

]
=

[
−resq

k

−resΦ
k

]
(3.27)

with the augmented tangent matrix:

Sqq
t = Kt +

γ

β h
Ct +

1

β h2
M (3.28)

The solution to the system (3.27) is the correction for the Newton-Raphson pro-

cedure. The complete integration algorithm is summarized in Figure 3.2.

3.3.2 Generalized-α method

Due to the Finite Element discretization and to the presence of algebraic

constraints, the dynamic equations are numerically stiff, and high-frequency nu-

merical damping is desirable. However, the stabilized Newmark scheme is only

first-order accurate. Several alternatives have been proposed in order to introduce

numerical damping at high-frequency without degrading the order of accuracy.

Among them, the generalized-α method described by Chung and Hulbert [CH93]

includes as particular cases the most important integration schemes in structural

dynamics, such as the Hilber-Hughes-Taylor algorithm [HHT77], and it is there-

fore a very general framework for theoretical investigations. It consists of keeping

the Newmark formulae (3.22), whereas the residual equations are modified by

averaging the different contributions between both time instants:{
(1− αm) (M q̈)n+1 + αm (M q̈)n + (1− αf ) g∗n+1 + αf g∗n = 0

(1− αf ) k Φn+1 + αf k Φn = 0
(3.29)
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Time incrementation

t = t+ h

Initial prediction

q0, q̇0, q̈0 (eqn (3.25))

Evaluation of residues

resq(q, q̇, q̈,λ), resΦ(q)

Check for convergence

‖resq‖ < ε, ‖resΦ‖ < η

Evaluation of corrections

4q, 4λ (eqn (3.27))

Incrementation

q, q̇, q̈,λ

?

?

?

?

?

�

yes

no

-

Figure 3.2: Newmark algorithm



3.3. TIME-INTEGRATION 49

where g∗ is a notation for ΦT
q (kλ + pΦ) − g, while αm and αf are numerical

parameters. The Hilber-Hughes-Taylor algorithm is obtained for αm = 0 and αf ∈
[0, 1/3]. The optimal parameters of the generalized-α method can be computed

from the desired spectral radius at infinity ρq
∞:

αm =
2 ρq
∞ − 1

ρq
∞ + 1

and αf =
ρq
∞

ρq
∞ + 1

(3.30)

Defining αfm = αf − αm, the Newmark parameters are now given by:

γ =
1

2
+ αfm and β =

1

4

(
γ +

1

2

)2

(3.31)

It will be demonstrated later that this scheme is second-order accurate even for

αfm > 0.

The numerical solution is obtained with a predictor-corrector strategy as for

the Newmark algorithm. At the correction step, the augmented tangent matrix

becomes:

Sqq
t = (1− αf ) Kt + (1− αf )

γ

β h
Ct + (1− αm)

1

β h2
M (3.32)

and the linearized equations:[
Sqq
t k (1− αf ) ΦT

q

k (1− αf ) Φq 0

] [
∆q

∆λ

]
=

[
−resq

k

−resΦ
k

]
(3.33)

where the residues are computed according to (3.29).

Remark 3.1 As a consequence of the modification of the residual equation in the

generalized-α method, the acceleration q̈n+1 is a poor first-order approximation for

the true acceleration q̈(tn+1) [EBB02]. Assuming that an order 2 approximation

is available for qn+1, q̇n+1 and λn+1, an order 2 approximation an+1 would satisfy

the original residual equation at time tn+1:

(M a)n+1 + g∗(qn+1, q̇n+1,λn+1) = 0 (3.34)

Using the first equation of (3.29) to eliminate g∗, an equivalent and useful con-

dition is obtained if the matrix M is constant and non-singular:

(1− αf ) an+1 + αf an = (1− αm) q̈n+1 + αm q̈n (3.35)
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3.3.3 Linear stability analysis

When dealing with stiff systems of equations, the stability of the integration

scheme is critical for a successful simulation. In flexible multibody dynamics, the

presence of algebraic constraints strongly affects the stability of the numerical

solution. For unconstrained problems, the stability of the generalized-α method

is analyzed by Chung and Hulbert [CH93] in the linear regime, and by Erlicher et

al. [EBB02] in the nonlinear regime. For constrained problems, linear stability

results are presented by Géradin and Cardona [GC01].

In this thesis, all stability analyses are realized for linear systems; as Géradin

and Cardona [GC01], we believe that these results are relevant indications of the

stability properties for nonlinear systems. This section presents a demonstration

of the unconditional stability of the generalized-α method inspired by the work

of Géradin and Cardona [GC01]; the unconstrained and constrained cases are

successively addressed. In chapter 4, those developments will be extended for the

stability analysis of our integrated simulation method.

Unconstrained system

The stability analysis of an integration scheme applied to a linear system of

equations:

M q̈ + K q = 0 (3.36)

is hereby conducted according to the developments of Chung and Hulbert [CH93].

The problem is simplified by invoking the diagonalization of the equations with

a linear transformation. It is straightforward that the numerical behavior will be

the same for the initial and the transformed systems. Since each modal equation

can be analyzed independently, it is sufficient to consider the stability of the

integrator applied to the scalar test equation

q̈ + ω2 q = 0 (3.37)

According to the generalized-α methodology, the time-discretized expression is

(1− αm) q̈n+1 + αm q̈n + (1− αf ) ω2 qn+1 + αf ω
2 qn = 0 (3.38)
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Complementing this equation with the Newmark formulae (3.22), we get the ma-

trix relation
(1− αf )ω2 0 (1− αm)

1 0 −βh2

0 1 −γh



q

q̇

q̈


n+1

+


αfω

2 0 αm

−1 −h −(1
2
− β)h2

0 −1 −(1− γ)h



q

q̇

q̈


n

= 0

(3.39)

and we seek its eigensolutions, characterized by a synchronous behavior:
q

q̇

q̈


n

= ϕn


q0

q̇0

q̈0

 with ϕn+1 = ζ ϕn (3.40)

ϕ is the amplitude, [q0 q̇0 q̈0]
T is the eigenvector, and ζ is the eigenvalue. If we

define the polynomials,

Pε(ζ) = (1− ε) ζ + ε ε = {αm, αf}
Pγ(ζ) = γ ζ + (1− γ)

Pβ(ζ) = β ζ + (1
2
− β)

P1(ζ) = ζ − 1

(3.41)

the characteristic equation is

P q
ωh(ζ) = det


Pαf (ζ)ω2 0 Pαm(ζ)

P1(ζ) −h −Pβ(ζ)h2

0 P1(ζ) −Pγ(ζ)h

 = 0 (3.42)

which is equivalent to:

P q
ωh(ζ) = Pαf (Pγ + P1 Pβ) (ωh)2 + P 2

1 Pαm = 0 (3.43)

The algorithm is stable if all the roots of P q
ωh(ζ) = 0 are inside the unit circle.

Unconditional stability requires this property to be satisfied whatever the value

of ωh. Therefore, an important property of the algorithm is the spectral radius

associated with the roots ζq
i of P q

ωh for ωh→∞:

ρq
∞ = max

i
|ζq
i | (3.44)

which should be less than one for unconditional stability. This spectral radius is

computed from the characteristic equation:

P q
∞ = Pαf (Pγ + P1 Pβ) = 0 (3.45)
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If we consider the optimal parameters β and γ given by (3.31), this equation has

one simple root and one double root:

ζq
1 =

−αf
1− αf

ζq
2,3 = −1− αfm

1 + αfm
(3.46)

ζq
1 is the so-called spurious root, and ζq

2,3 are the principal roots. A usual design

requirement is |ζq
1 | ≤ |ζ

q
2,3|. The condition |ζq

1 | = |ζ
q
2,3| = ρq

∞ leads to the optimal

formulae (3.30) proposed by Chung and Hulbert [CH93], and the linear stability

is then guaranteed by the design constraint ρq
∞ < 1. It is easy to verify that the

Hilber-Hughes-Taylor algorithm has a spectral radius less than one.

Constrained system

The linearized equations of an undamped system are:

M q̈ + K q + BT λ = 0

B q = 0
(3.47)

As pointed out by Géradin and Cardona [GC01], this system is not diagonalizable

due to the presence of the constraints. However, these authors demonstrated that

it could be transformed into a canonical form by a linear transformation:

Theorem 3.1 If K is symmetric positive semi-definite, M is symmetric positive

definite, and B has full rank, there exists a transformation matrix Tm such that

TT
m

[
K BT

B 0

]
Tm =


Ω2 0 0

0 0 Icc

0 Icc 0

 (3.48)

TT
m

[
M 0

0 0

]
Tm =


Irr 0 0

0 Icc 0

0 0 0

 (3.49)

where Ω2 is a (n − m) × (n − m) diagonal matrix, Icc is the identity matrix of

dimension m×m, Irr is the identity matrix of dimension (n−m)× (n−m), and

0 are null matrices with appropriate dimensions.
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This transformation matrix Tm leads to the definition of a new set of me-

chanical variables qr, qc, and qλ:

[
q

λ

]
= Tm


qr

qc

qλ

 =

[
Tqr Tqc 0

Tλr Tλc Tλλ

] 
qr

qc

qλ

 (3.50)

qc are m constrained dofs, qλ are m multipliers-like dofs, and qr are n − m

independent dofs. Actually, those names do not reflect the true complexity of the

transformation, since the Lagrange multipliers λ are also connected with qr and

qc.

After transformation, the set of dynamic equations becomes:

q̈r + Ω2 qr = 0

q̈c + qλ = 0

qc = 0

(3.51)

Following the procedure detailed for the unconstrained case, the characteristic

equation is the determinant of the following matrix:

Pαf Ω2 0 0 0 0 0 Pαm I 0 0

0 0 Pαf I 0 0 0 0 Pαm I 0

0 Pαf I 0 0 0 0 0 0 0

P1I 0 0 −h I 0 0 −Pβh2 I 0 0

0 P1I 0 0 −h I 0 0 −Pβh2 I 0

0 0 P1I 0 0 −h I 0 0 −Pβh2 I

0 0 0 P1I 0 0 −Pγh I 0 0

0 0 0 0 P1I 0 0 −Pγh I 0

0 0 0 0 0 P1I 0 0 −Pγh I


(3.52)

After lengthy but straightforward algebraic manipulations, and referring to the

characteristic polynomial P q
ωh associated with the unconstrained problem, one

finds that the characteristic equation is equivalent to:

(P q
∞(ζ))2m det

 Pαf (ζ) Ω2 0 Pαm(ζ) I

P1(ζ)I −h I −Pβ(ζ)h2 I

0 P1(ζ)I −Pγ(ζ)h I

 = 0 (3.53)
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The second factor can be interpreted as the characteristic equation when the

algorithm is applied to an unconstrained diagonal system, so that equation (3.53)

can be restated:

(P q
∞(ζ))2m

∏
i

P q
ωih

(ζ) = 0 (3.54)

where ωi are the diagonal terms of Ω. Any root of this equation is either a root

of the polynomial P q
ωih

obtained in the unconstrained case, or a root of the same

polynomial at infinite frequency. We conclude that if the generalized-α algorithm

leads to a stable integration of the unconstrained problem, and if the spectral

radius at infinity ρq
∞ is smaller than 1, the global stability is guaranteed. If ρq

∞ = 1,

it can be demonstrated that the numerical integration is weakly unstable [GC01].

3.3.4 Convergence analysis

This section investigates the second-order accuracy of the generalized-α al-

gorithm, and as for the linear stability, the analysis starts with the unconstrained

case.

Local truncation error: the unconstrained case

If the mass matrix is constant and non-singular, it is equivalent to study the

behavior of the algorithm applied to the system:

q̈ = f(q, q̇, t) (3.55)

According to the generalized-α algorithm, the discrete-time equation is

(1− αm) q̈n+1 + αm q̈n = (1− αf ) fn+1 + αf fn (3.56)

In this work, qn+1, q̇n+1, and q̈n+1 conventionally denote the numerical solutions,

whereas q(tn+1), q̇(tn+1), and q̈(tn+1) refer to the exact solutions. The numerical

solutions qn+1, q̇n+1 satisfy the Newmark formulae (3.22), and the differences with

the exact solutions q(tn+1), q̇(tn+1) are the local truncation errors:

en+1 = q(tn+1)− qn+1 (3.57)

e′n+1 = q̇(tn+1)− q̇n+1 (3.58)



3.3. TIME-INTEGRATION 55

The order 2 condition is:

en+1 = O(h3) (3.59)

e′n+1 = O(h3) (3.60)

In order to exploit the theory of linear multistep algorithms, it is useful to

note that the one-step generalized-α method hides a two-step linear formula for

the velocities, and a three-step linear formula for the displacements [EBB02].

Indeed, from the integration formulae (3.22) and (3.56) developed at time tn+1

and tn+2, the elimination of the accelerations q̈n, q̈n+1 and q̈n+2 leads to the

two-step formulae:

2∑
k=0

αk qn+k +
1∑

k=0

hµk q̇n+k =
2∑

k=0

h2 βk fn+k (3.61)

2∑
k=0

αk q̇n+k =
2∑

k=0

h γk fn+k (3.62)

with

α0 = −αm, α1 = −1 + 2αm, α2 = 1− αm,
µ0 = −αm, µ1 = −1 + αm,

β0 = (1/2− β)αf , β1 = 1/2− β − αf/2 + 2 β αf , β2 = β (1− αf ),
γ0 = (1− γ)αf , γ1 = 1− γ − αf + 2 γ αf , γ2 = γ (1− αf ).

(3.63)

and a further elimination of the velocities in the first equation would lead to a

three-step formula for the displacements. Equation (3.62) is a good basis for the

analysis of the local truncation error at the velocity level. Since it is a standard

multistep formula, the order 2 condition can be found in classical textbooks such

as Hairer et al. [HNW87]:

α0 + α1 + α2 = 0 (3.64)

α1 + 2α2 = γ0 + γ1 + γ2 (3.65)

α1 + 4α2 = 2 γ1 + 4 γ2 (3.66)

These relations come from the substitution of q̇ and f by their Taylor series expan-

sion in the expression of the local error. The first two equations are automatically

satisfied by the parameters given in (3.63), whereas the last equation yields

γ =
1

2
+ αf − αm (3.67)
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which is the order 2 condition for the generalized-α method (3.31).

A the displacement level, the order condition is obtained by a similar analysis

of the three-step formulation. For conciseness, the demonstration is not repro-

duced here; it has been developed by Erlicher et al. [EBB02].

Those results rely on the initial assumption of a constant mass matrix. In

flexible multibody dynamics, the mass matrix is actually varying between tn and

tn+1, so that the discretized equation becomes

(1− αm) Mn+1 q̈n+1 + αm Mn q̈n = (1− αf ) gn+1 + αf gn (3.68)

which is not equivalent to equation (3.56). However, a deeper analysis of the

updated Lagrangian formulation shows that the variation of the mass matrix over

one time-step is usually of order 2, leading to O(h2), O(h3) and O(h4) local

truncation error in q̈n+1, q̇n+1 and qn+1, respectively. Therefore, the order 2

condition is usually observed for the displacements and velocities.

Global convergence: the unconstrained case

The local truncation error analysis gives some information about the error

over one time-step. However, when a finite time-interval is considered, the prop-

agation of the errors may jeopardize the convergence of the numerical solution.

According to Hairer et al. [HNW87], a linear multistep algorithm is con-

vergent of order p if it is stable and if its local truncation error is of order p. In

particular, let us consider the nx dimensional first-order ODE:

ẋ = f(x, t) (3.69)

solved using a k-step stable method, whose local truncation error satisfies the

order p condition

‖x(tn+1)− xn+1‖ ≤M hp+1 (3.70)

We also define the (k nx)× 1 vectors collecting the coordinate vectors of the last

k steps:

XT
i = (xTi+k−1, ..., xTi ) (3.71)

X(ti)
T = (x(ti+k−1)

T , ..., x(ti)
T ) (3.72)
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The following bound on the global error after n time-steps is given by Hairer et

al. [HNW87]

‖X(tn)−Xn‖ ≤ ‖X(t0)−X0‖ enhL
∗

+
M hp

L∗
(
enhL

∗ − 1
)

(3.73)

where L∗ is a Lipschitz constant. An initial error in the initial conditions is at

most amplified by a coefficient depending exponentially on the length of the time

interval nh. Therefore, it is especially important to limit this phenomenon by the

definition of consistent initial conditions.

Since the generalized-α method hides a multistep algorithm, the error prop-

agation might be characterized by a similar property, and the consistency of the

initial conditions is of practical interest to guarantee the global convergence. For

a multistep method, the initial conditions are given as the vector X0 of the solu-

tion at the k first steps, which is necessary to initiate the integration algorithm.

However, in its pseudo-one-step formulation, the generalized-α algorithm starts

on the basis of the values q0, q̇0 and q̈0. For full consistency, q̈0 should satisfy:

(1− αm) q̈0 + αm q̈−1 = (1− αf ) f0 + αf f−1 (3.74)

In practice, this equation is helpless for the determination of q̈0, and it is usually

replaced by the simplified consistency condition:

q̈0 = f0 (3.75)

This expression satisfies (3.74) with an O(h) error. From a dimensional analysis,

this initial error at the acceleration level will contaminate the displacements and

velocities during the first steps with O(h3) and O(h2) errors, respectively. This er-

ror in the initial steps will be coupled, propagated and amplified by the integration

procedure, leading to a maximal global error of O(h2), so that second-order con-

vergence is still guaranteed. However, if the simplified consistency condition (3.75)

is not satisfied, the error in the initial values may drop one order, with disastrous

consequences on the global convergence of the results.

The constrained case

The previous convergence results can be extended for constrained systems.

In Figure 3.2, the time-integration algorithm developed for flexible multibody
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systems guarantees that the algebraic constraints:

Φ(q) = 0 (3.76)

are satisfied at each time-step, if they were satisfied by the initial conditions.

Hidden constraints should also be satisfied by the dynamic variables at all differ-

entiated levels, and in particular, at the velocity and acceleration levels:

Φ̇ = Φq q̇ = 0 (3.77)

Φ̈ = Φ̇q q̇ + Φq q̈ = 0 (3.78)

Those equations are, however, not considered in the algorithm, which might lead

to significant errors.

In the special case of linear constraints, Φq is constant, and the constraints

at the acceleration level become:

Φq q̈ = 0 (3.79)

After inspection of the predictor and corrector steps of the numerical algorithm,

the constraints at displacement, velocity and acceleration levels are satisfied at

tn+1 if they were initially satisfied at tn. Therefore, the local truncation error is

of order 2, as in the unconstrained case.

Since the constraints are satisfied at each time grid point, the constraint vi-

olation of the numerical solution is propagated at a very high frequency which

depends on the step size. In agreement with the stability analysis, the ampli-

fication factor of this phenomenon is associated with the spectral radius of the

integration algorithm at high frequencies. Therefore, the numerical damping is

responsible for the decay of this error.

In case of nonlinear but smooth constraints, if we do not consider nonlinear

amplification effects, the violation of the hidden constraints resulting from the

nonlinearity may be seen as a disturbance, which is filtered by the algorithm in

the same manner. In this sense, those errors do not accumulate throughout the

integration process, and the convergence results demonstrated for unconstrained

systems are still relevant.

From a practical perspective, the computation of consistent initial veloci-

ties and accelerations may rely on equations (3.77) and (3.78) (or its linearized

counterpart (3.79)).
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3.4 Implementation

The concepts presented in this chapter have been implemented in the Mecano

program of the Samcef software [SAM99]. In 2005, this program has reached

industrial maturity for several years, it is well documented and it contains a huge

library of finite elements and types of analysis, which is very convenient for the

user. Mecano has been extensively exploited for problems in aerospace, robotics,

automotive engineering and machine-tools.

However, for the developments realized in this research, the Oofelie multi-

physics platform [CKG94] has been selected for several reasons. Oofelie is an

acronym for Object Oriented Finite Element Led by Interactive Executor. It is

written in C++, and modern programming concepts are favourable for an open

architecture, well-suited for new developments. Its kernel has been developed

to deal with strongly coupled multiphysics problems, with great care about the

modularity and efficiency issues. Since the developments related with flexible

multibody dynamics only started a couple of years ago, a restricted library of the

most significant elements and algorithms is currently available in Oofelie. Nev-

ertheless, those capabilities are sufficient to demonstrate the relevance and the

efficiency of the innovative concepts developed in this research.
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IV

Integrated Simulation of Mechatronic

Systems

In the introduction, the motivation for an integrated simulation tool able to

predict the dynamic behavior of a mechatronic system was clearly demonstrated.

The analysis should account for all the technological components: the mechanism,

the control system, the actuators, the sensors, etc. We have also seen that the

Finite Element method is a general and reliable modeling approach able to deal

efficiently with complex flexible mechanisms.

This chapter presents some extensions of the Finite Element method for the

simulation of mechatronic systems. The description of non-mechanical elements

within a Finite Element context is not an innovative idea, and for instance, user-

elements are available in most industrial software for multibody systems. How-

ever, the implementation of a user-element is an intricate, time-consuming and

sometimes unreliable process, which motivates a more systematic and theoreti-

cally founded approach. Hence, we propose to integrate the block diagram lan-

guage within the Finite Element framework, as we have suggested in [BDG04b].

Relying on a nonlinear state-space description, this approach presents the advan-

tages of modularity, generality, with a language very familiar to control engineers.

The methodology developed here is illustrated in Figure 4.1. The mechani-

cal system is modeled using the Finite Element formalism for flexible multibody

systems presented in chapter 3, whereas the control system is described using the

block diagram language. The strongly coupled mechanical and state equations

are obtained by numerical assembly, and their time-domain simulation is based
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Mechanism
(Multibody formalism)

Control system

(Block diagram language)

Strongly coupled DAEs

Generalized-α solver

?

@@R ��	

Figure 4.1: Strongly coupled and modular simulation.

on an extension of the generalized-α method.

In a mechatronic system, discontinuous phenomena may occur, e.g. due

to the sampling effect in a digital electronic system or to the saturation of a

component. From a numerical point of view, a discontinuous transition requires

a computation restart procedure, which is also considered here.

The organization of the chapter is as follows. First, a state-space formalism

for the simulation of control systems is presented in section 4.1, with convergence

and stability results. Section 4.2 describes the integrated simulation method and

analyzes its stability properties. A specific treatment for systems with discon-

tinuous phenomena is developed in section 4.3. After the presentation of a few

implementation issues in section 4.4, three examples with increasing complex-

ity illustrate the method: a four-bar mechanism, a Scara robot, and a vehicle

semi-active suspension.

4.1 Simulation of control systems

Figure 4.2 illustrates the interactions between a mechanism and a continu-

ous control system. The control system includes all the non-mechanical elements,

such as the controller, the actuators and the sensors. Mathematically, the inter-

actions are represented by two vectors: the nm× 1 vector wm contains the sensor

measurements exploited by the control system and any other mechanical variables

that may influence its dynamic behavior, whereas the na× 1 vector ga represents

the generalized forces exerted by the actuators on the mechanism.

This section focuses on the description of the control system using the block
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Mechanism
ga wm

Control system �

-

Figure 4.2: Interactions between a mechanism and a control system.

diagram language, and on the simulation of the resulting state-space model. The

simulation of the coupled system will be considered later, in section 4.2.

4.1.1 State equations

The most general formalism for the description of the control system is cer-

tainly the descriptor state-space format:

f s∗(wm,x, ẋ, t) = 0

fo∗(wm,x,ga, t) = 0
(4.1)

where the nx×1 vector x represents the state variables, f s∗ are the nx differential

equations of the dynamic states, whereas fo∗ are the na algebraic output equations.

Control engineers are more familiar with the explicit state-space format, which is

a special case of the descriptor state-space format:

ẋ = f s(wm,x, t)

ga = fo(wm,x, t)
(4.2)

In general, the transformation from (4.1) to (4.2), is not always possible nor trivial.

Such a global input/output black box description is compact and efficient.

However, a functional decomposition into subsystems may lead to an advanta-

geous modular approach, as illustrated in Figure 4.3. At the subsystem level, the

explicit state-space equations can be formulated more easily, and we consider that

each element e is characterized by explicit state equations, with respect to its own

inputs u(e) and outputs y(e):

ẋ(e) = f s(e)(u(e),x(e), t)

y(e) = fo(e)(u(e),x(e), t)
(4.3)
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Mechanism
ga wm
-

System 1
y(1) u(1)

� �

�
System 2

y(2) u(2)

System 3u(3) y(3)
-

Figure 4.3: Modular approach for the description of the control system.

Hence, one defines the global input and output vectors:

u =


u(1)

...

u(ne)

 , y =


y(1)

...

y(ne)

 (4.4)

with the connectivity relations:

u = Lim wm + Lio y and ga = Lao y (4.5)

where Lim, Lio and Lao are boolean localization matrices.

The assembled equations of the block diagram model are summarized by:

ẋ = f s(u,x, t) (4.6)

y = fo(u,x, t) (4.7)

u = Lim wm + Lio y (4.8)

with the actuator outputs:

ga = Lao y (4.9)

u and ga are explicitly defined by boolean equations; in the numerical code, they

are not implemented as independent variables. However, they appear in the formal

presentation for notational convenience.

Those equations are equivalent to the descriptor state-space equations (4.1),

and we observe that the transformation to the explicit form (4.2) would require the
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elimination of u and y, using an algebraic transformation. This means that even

though we restrict the subsystems description to the ODEs (4.3), the assembled

equations are DAEs, where the algebraic equations come from the input/output

connections between subsystems. The theoretical results of the time-integration

scheme will rely on an additional technical assumption on the algebraic structure

of those DAEs, which is presented hereafter.

4.1.2 Semi-explicit index-1 assumption

In the general theory of DAEs [BCP96], a semi-explicit index-1 system is

written as nx state equations and nz constraint equations:

ẋ = f(x, z, t) (4.10)

0 = g(x, z, t) (4.11)

with the property that the nz × nz Jacobian gz exists and is invertible in the

neighborhood of the exact solution. From the implicit function theorem, g can

thus be solved for the algebraic variables z in terms of x and t (i.e., the function

z = g̃(x, t) can be defined locally). Hence, a very natural implementation of

a time-integration scheme is to require the constraint (4.11) to be satisfied by

the algebraic variables z at each time-step, while applying a standard multistep

formula to (4.10) for the time-integration of the dynamic variables x. Indeed, the

algorithm behaves as if it were applied to the equivalent ODE:

ẋ = f(x, g̃(x, t), t) (4.12)

A multistep integrator applied to semi-explicit index-1 DAEs in this manner is

thus stable and convergent to the same order of accuracy as if it were applied to

standard stiff ODEs.

In our case, the input and output variables are the algebraic variables, and

the block diagram model (4.6), (4.7) and (4.8) is a semi-explicit index-1 system if

the Jacobian satisfies the following regularity condition.

Assumption 4.1

det

[
I −fou

−Lio I

]
6= 0 (4.13)
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System
u y
-

Figure 4.4: A trivial system.

In this case, the implicit function theorem can be invoked to solve (4.7) and (4.8)

for the inputs and outputs:

y = f̃o(wm,x, t) (4.14)

u = f̃u(wm,x, t) (4.15)

and the numerical algorithm behaves as if it were applied to the equivalent ODE:

ẋ = f̃ s(wm,x, t) (4.16)

with f̃ s(wm,x, t) = f s(f̃u(wm,x, t),x, t).

Assumption 4.1 is not satisfied if the block diagram model hides algebraic

constraints for the states x and/or for the mechanical inputs wm. This patho-

logical situation can be illustrated with the trivial system described by the scalar

linear equations (Figure 4.1.2):

ẋ = a x+ b u

y = c x+ u

u = y

(4.17)

The input/output equations hide the constraint x = 0, so that the output variable

y = u plays the role of a Lagrange multiplier in the dynamic equation. The block

diagram formalism presented here is not really appropriate for such a higher-

index DAE. In the following, Assumption 4.1 is supposed to be satisfied, so that

an efficient strategy can be developed with guaranteed reliability.

4.1.3 Time-integration algorithm

This section presents a methodology for the simulation of a block diagram

model isolated from the mechanical system. Therefore, we consider that the mea-

surements are known functions of time wm = wm(t).
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A simple and interesting integrator for first-order ODEs is the trapezoidal

rule:

xn+1 = xn +
h

2
(ẋn + ẋn+1) (4.18)

This formula is second-order accurate and A-stable, but it is not appropriate

for stiff problems, due to the absence of numerical filtering at high frequen-

cies [HW91]. An alternative, stabilized scheme is given by

xn+1 = xn + h (1− θ) ẋn + h θ ẋn+1 θ ∈ [1/2, 1] (4.19)

with only first-order accuracy for θ 6= 1
2
.

In order to introduce high-frequency numerical damping without tremendous

accuracy loss, improved integration formula are necessary, such as multistep or

Runge-Kutta methods [HW91]. The default of the one-step formula (4.19) is

similar to the default of the original Newmark formulae. Introducing the modified

residual equation, Hilber, Hughes and Taylor [HHT77], followed by Chung and

Hulbert [CH93], proposed an elegant generalization of the Newmark scheme as

a three-step method, with an implementation very close to a one-step method.

The resulting generalized-α method was presented in section 3.3.2. Jansen et

al. [JWH00] proposed an extension of this method for first-order differential

equations in fluid dynamics.

We propose to apply a similar strategy here, which suggests the modified

residual equation

(1− δm) ẋn+1 + δm ẋn − (1− δf ) f sn+1 − δf f sn = 0 (4.20)

(1− δf ) (yn+1 − fon+1) + δf (yn − fon) = 0 (4.21)

where δm and δf are numerical parameters of the method. The modification of

the output equation does not alter the local error on the output variables. A

perfect analogy can be observed between the treatment of the state variables

in this method and the treatment of the velocities in the generalized-α method.

Defining δfm = δf − δm, we immediately conclude that second-order accuracy is

obtained for

θ =
1

2
+ δfm (4.22)

According to section 3.3.4, consistent initial conditions should satisfy:

ẋ0 = f s0 (4.23)

y0 = fo0 (4.24)
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leading to the propagation of an O(h2) initial error on the states.

The integration scheme follows a predictor-corrector procedure. The predic-

tion formula is obtained with the zero state rates assumption:

ẋ0
n+1 = 0

x0
n+1 = xn + (1− θ) h ẋn

y0
n+1 = yn

(4.25)

and the correction of the state rates follows:

4ẋn+1 =
1

θ h
4xn+1 (4.26)

The linearized form of the discretized state equations (4.20), combined with

the linearized input/output relations are:

(1− δm) ∆ẋ− (1− δf ) f sx ∆x− (1− δf ) f su ∆u = −ressk (4.27)

(1− δf ) (∆y − fox ∆x− fou ∆u) = −resok (4.28)

∆u = Lio ∆y (4.29)

which can be put in matrix form using (4.26), after elimination of ∆u and ∆ẋ:(
(1− δm)

1

θ h

[
I 0

0 0

]
+ (1− δf )

[
−f sx −f su Lio

−fox I− fou Lio

] )[
∆x

∆y

]
=

[
−ressk

−resok

]
(4.30)

In chapter 3, the linear stability analysis of the generalized-α method was in-

vestigated for second-order undamped equations. We may reproduce this analysis

for first-order equations.

4.1.4 Linear stability analysis

In order to assess the stability properties of the algorithm in the linear regime,

let us consider the linearized equations, obtained as in the previous paragraph:[
I 0

0 0

] [
ẋ

ẏ

]
+

[
−f sx −f su Lio

−fox I− fou Lio

] [
x

y

]
= 0 (4.31)

Using Assumption 4.1, this DAE system is equivalent to an ODE system supple-

mented with an algebraic output equation. Indeed, since I−fou Lio is not singular,

it is possible to extract explicitly the algebraic outputs:

y + C x = 0 with C = −
(
I− fou Lio

)−1
fox (4.32)
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t = t+ h
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Check for convergence
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Figure 4.5: Integration scheme for a control system.
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and introducing this result in the first equation, we obtain the ODE system:

ẋ + A x = 0 with A = −f sx − f su Lio
(
I− fou Lio

)−1
fox (4.33)

Independent modal equations can be derived by a further linear transfor-

mation. Assuming that the state matrix A is diagonalized by the matrix of

eigenvectors Tx, we define the modal coordinates x∗ and y∗:[
x

y

]
=

[
Tx 0

−C Tx I

] [
x∗

y∗

]
(4.34)

so that (4.31) is equivalent to:[
I 0

0 0

] [
ẋ∗

ẏ∗

]
+

[
Σ 0

0 I

] [
x∗

y∗

]
= 0 (4.35)

where Σ is the diagonal matrix of the eigenvalues of A. It is sufficient to study

the stability of the algorithm for each independent scalar equation.

We begin with the equation of a dynamic state:

ẋ∗ + σ x∗ = 0 (4.36)

which is discretized according to the modified residual equation (4.20)

(1− δm) ẋ∗n+1 + δm ẋ∗n + (1− δf ) σ x∗n+1 + δf σ x
∗
n = 0 (4.37)

Combining this equation with the integration formula (4.19), we get the matrix

relation[
(1− δf )σ (1− δm)

1 −θh

][
x∗

ẋ∗

]
n+1

+

[
δf σ δm

−1 −(1− θ)h

] [
x∗

ẋ∗

]
n

= 0 (4.38)

and we seek its eigensolutions, characterized by a synchronous behavior:[
x∗

ẋ∗

]
n

= ϕn

[
x∗0

ẋ∗0

]
with ϕn+1 = ζ ϕn (4.39)

ϕ is the amplitude, [x∗0 ẋ∗0]
T is the eigenvector, and ζ is the eigenvalue. The

characteristic equation is

P x
σh = det

[
Pδf (ζ)σ Pδm(ζ)

P1(ζ) −Pθ(ζ)h

]
= 0 (4.40)
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with the polynomials:

Pε(ζ) = (1− ε) ζ + ε ε = {δm, δf}
Pθ(ζ) = θ ζ + (1− θ)
P1(ζ) = ζ − 1

(4.41)

Developing the determinant, we obtain:

P x
σh = Pδf Pθ σh+ P1 Pδm = 0 (4.42)

The absolute stability is characterized by the spectral radius when σh→∞:

P x
∞ = Pδf Pθ = 0 (4.43)

This equation has two simple roots:

ζx
1 =

−δf
1− δf

ζx
2 = −1− θ

θ
(4.44)

where ζx
1 is the spurious root (equivalent to the spurious root ζq

1 associated with

the simulation of a mechanical system), and ζx
2 is the principal root. With the

optimal parameters for second-order accuracy θ = 1/2 + δfm, we get

ζx
2 = −1− 2 δfm

1 + 2 δfm
(4.45)

Finally, in the system (4.35), the algebraic equation associated with an output

y∗ = 0 (4.46)

is discretized according to equation (4.21)

(1− δf ) y∗n+1 + δf y
∗
n = 0 (4.47)

The single eigenvalue of the amplification matrix is the spurious root ζx
1 .

As a conclusion, |ζx
1 | < 1 requires δf < 1/2, and |ζx

2 | < 1 requires δfm > 0,

so that the stability is guaranteed for:

δm < δf <
1

2
(4.48)

Equivalent results were obtained by Jansen et al. [JWH00]. It is easily demon-

strated that the optimal condition |ζx
1 | = |ζx

2 | = ρx
∞ leads to

δm =
1

2

(
3 ρx
∞ − 1

ρx
∞ + 1

)
and δf =

ρx
∞

ρx
∞ + 1

(4.49)

These formulae are different from the optimal formulae (3.30) obtained for the

simulation of a purely mechanical system.
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4.2 Integrated simulation of mechatronic systems

The formalisms developed for the analysis of flexible mechanisms (chapter 3)

and for the analysis of control systems (previous section) can be combined for the

analysis of mechatronic systems.

4.2.1 Coupled equations of motion

In a mechatronic system, the input/output variables of the control system

are directly connected with the mechanical dofs and their derivatives. The sensor

measurements wm are associated with the displacements, velocities and accelera-

tions:

wm = Lmq q + Lmq̇ q̇ + Lmq̈ q̈ (4.50)

where Lmq, Lmq̇, Lmq̈ are sensor localization matrices. The expression of the

input variables follow from (4.8)

u = Liq q + Liq̇ q̇ + Liq̈ q̈ + Lio y (4.51)

with Liq = Lim Lmq, Liq̇ = Lim Lmq̇, and Liq̈ = Lim Lmq̈. The generalized forces

of the actuators ga produce the mechanical virtual work

δW a = (Lqa ga)T δq = (Lqa Lao y)T δq = (Lqo y)T δq (4.52)

where Lqa and Lqo = Lqa Lao are the actuator and output localization matrices.

The whole set of coupled equations is then:

M q̈ + ΦT
q (kλ+ pΦ)− g(q, q̇, t)− Lqo y = 0 (4.53)

kΦ(q) = 0 (4.54)

ẋ− f s(u,x, t) = 0 (4.55)

y − fo(u,x, t) = 0 (4.56)

u− Liq q− Liq̇ q̇− Liq̈ q̈− Lio y = 0 (4.57)

Equation (4.53) represents the dynamics of the mechanical system, equation (4.54),

the kinematic constraints, equation (4.55), the state dynamics, equations (4.56)

the algebraic output equations, and (4.57) the input localizations.
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4.2.2 Time-integration algorithm

A usual method to simulate such a coupled system of equations is to re-

formulate the second-order DAEs of the mechanism as first-order DAEs, by the

introduction of the mechanical state vector xmech =
[
qT q̇T

]T
. Any DAE inte-

gration scheme can then be exploited, such as multistep or Runge-Kutta meth-

ods [BCP96], provided that the algebraic content of the coupled equations leads

to a ”reasonable” index. This algebraic content comes from the kinematic con-

straints (4.54), and from the input/output equations (4.56),(4.57). Considering

an unconstrained mechanical system, under a few technical assumptions, the cou-

pled system is equivalent to a semi-explicit index-1 system, so that the simulation

can be done with the same convergence and stability properties as if the integrator

were applied to stiff ODEs. In the presence of kinematic constraints formulated

at the position level, the system has an index-3 structure, and standard integra-

tion methods may lead to unreliable results [BCP96]. Therefore, the index of

the system should be reduced, either using a constraint elimination technique,

or a constraint differentiation technique. In the literature, numerous methods

have been proposed for this difficult problem, which is still the object of intensive

research.

We have seen that the generalized-α method, known in structural dynamics,

can be considered for the simulation of constrained flexible multibody systems.

Theoretical convergence and stability results are available, and the method ap-

pears to be quite efficient in practice. Moreover, the generalized-α method is also

applicable for state-space models, as shown in section 4.1.

Hence, we shall demonstrate that the generalized-α method leads to a unified

framework for the simulation of mechatronic systems. Many convergence and

stability properties of the original scheme developed for mechanical systems are

inherited thanks to this approach, as well as the systematic treatment of the

kinematic constraints. The numerical algorithm is presented and analyzed in the

following.

Combining the discretized mechanical equations (section 3.3) and the dis-

cretized state equations (section 4.1), we obtain the following coupled set of equa-
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tions:
(1− αm) (M q̈)n+1 + αm (M q̈)n + (1− αf ) g∗n+1 + αf g∗n = 0

(1− αf ) k Φn+1 + αf k Φn = 0

qn+1 = qn + h q̇n + h2 (1
2
− β) q̈n + h2 β q̈n+1

q̇n+1 = q̇n + h (1− γ) q̈n + h γ q̈n+1


(1− δm) ẋn+1 + δm ẋn− (1− δf ) f sn+1 − δf f sn = 0

(1− δf ) (yn+1 − fon+1) + δf (yn − fon) = 0

xn+1 = xn + h (1− θ) ẋn + h θ ẋn+1

(4.58)

with the discretized inputs:

un+1 = Liq qn+1 + Liq̇ q̇n+1 + Liq̈ q̈n+1 + Lio yn+1 (4.59)

where g∗ is a notation for ΦT
q (kλ + pΦ) − g(q, q̇) − Lqo y. The first set of

equations contains the discretized dynamic equations associated with the me-

chanical dofs and the Newmark formulae. The second contains the discretized

state equations and their time-integration formula. At this level, two remarks

may be formulated, which suggest a reformulation of those equations.

Remark 4.1 In order to uniformize the treatment of the state and displacement

variables, the dummy dynamic variables z are introduced:

z(t) =

∫ t

0

x(τ) dτ (4.60)

The value of z is only meaningful at the velocity level (ż = x) and at the accelera-

tion level (z̈ = ẋ); nevertheless, an artificial displacement-like Newmark formula

is added for z. Moreover, we impose a constraint on the choice of the algorithmic

parameters

δm = αm, δf = αf , θ = γ (4.61)

Remark 4.2 According to Remark 3.1, q̈n+1 is a poor approximation for q̈(tn+1).

Therefore, we exclude the acceleration term from the input equation,

u = Liq q + Liq̇ q̇ + Lio y (4.62)

and we define an observer equation for each acceleration measurement q̈i:

ya = q̈i (4.63)
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This equation is discretized according to

(1− αf ) yan+1 + αf y
a
n = (1− αm) q̈in+1 + αm q̈in (4.64)

so that yan+1 is an order 2 approximation for q̈i(tn+1), which can be safely connected

to any input port. The global output equation becomes

y = fo(u,x, t) + Loq̈ q̈ (4.65)

The discretized equations of motion are then restated,

(1− αm) (M q̈)n+1 + αm (M q̈)n + (1− αf ) g∗n+1 + αf g∗n = 0

(1− αf ) k Φn+1 + αf k Φn = 0

(1− αm) z̈n+1 + αm z̈n − (1− αf ) f sn+1 − αf f sn = 0

−(1− αm) Loq̈ q̈n+1 − αm Loq̈ q̈n

+ (1− αf ) (yn+1 − fon+1) + αf (yn − fon) = 0

qn+1 = qn + h q̇n + h2 (1
2
− β) q̈n + h2 β q̈n+1

zn+1 = zn + h żn + h2 (1
2
− β) z̈n + h2 β z̈n+1

q̇n+1 = q̇n + h (1− γ) q̈n + h γ q̈n+1

żn+1 = żn + h (1− γ) z̈n + h γ z̈n+1

(4.66)

The advantage of this equivalent expression comes from the observation that q and

z receive exactly the same treatment. Hence, the formulation, the implementation

and the theoretical analysis of the algorithm are highly simplified.

The prediction for qn+1, zn+1, q̇n+1, żn+1 follows from the standard Newmark

formulae with the zero acceleration assumption q̈0
n+1 = 0, z̈0

n+1 = 0. Using the

linearized form of the input equation (4.62):

∆u =

(
Liq +

γ

βh
Liq̇

)
4q + Lio ∆y (4.67)

the correction equation follows:

St


4q

4λ
4z

4y

 =


−resq

k

−resΦ
k

−ressk

−resok

 (4.68)
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where

St = (1− αf ) Kt + (1− αf )
γ

βh
Ct + (1− αm)

1

βh2
Mt (4.69)

Kt, Ct, Mt are respectively given by
Kt kΦT

q 0 −Lqo

kΦq 0 0 0

−f su Liq 0 0 −f su Lio

−fou Liq 0 0 I− fou Lio

 ,


Ct 0 0 0

0 0 0 0

−f su Liq̇ 0 −f sx 0

−fou Liq̇ 0 −fox 0

 ,


M 0 0 0

0 0 0 0

0 0 I 0

−Loq̈ 0 0 0


(4.70)

The correction equation involves non-symmetric matrices. Thanks to the

penalization term, Kt is positive definite and it is possible to apply a direct

solver without pivoting strategy. Good performances were observed with a non-

symmetric direct solver optimized for sparse matrices. This choice is reasonable

since a mechatronic system usually involves no more than a few hundreds dofs. For

systems with much more dofs, iterative solvers could be advantageously applied.

The time-integration algorithm is described in Figure 4.6. In order to analyze

its stability and convergence properties, it is equivalent to analyze the dynamic

system after elimination of the input and output variables from the state equa-

tions. Under Assumption 4.1, the input and output variables defined by (4.62)

and (4.65) can be formulated in explicit format (4.14), (4.15), and replaced in the

dynamic equations (4.53), (4.55):

M q̈− g(q, q̇, t) + ΦT
q (kλ+ pΦ)− Lqo f̃o(x,q, q̇, q̈, t) = 0 (4.71)

k Φ(q) = 0 (4.72)

ẋ− f̃ s(x,q, q̇, q̈, t) = 0 (4.73)

where f̃ s(x,q, q̇, q̈, t) = f s(f̃u(x,q, q̇, q̈, t),x, t).

4.2.3 Linear stability analysis: the unconstrained case

For a purely mechanical system, the linear stability of the generalized-α

method has been analyzed under the assumption of a negligible damping matrix.

In case of a mechatronic system, the dynamics of the state variables is described

by first-order differential equations, and this assumption is no more relevant. For

this reason, an extended linear stability analysis is necessary, which is realized

here for the unconstrained case, and in the next section for the constrained case.
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Time incrementation

t = t+ h

Initial prediction

q0, q̇0, q̈0,x0, ẋ0 (eqn (3.25), (4.25))

Evaluation of residues

resq, resΦ, ress, reso

Check for convergence

‖resa‖ < εa, a = {q,Φ, s, o}

Evaluation of corrections

4q,4λ,4x,4y (eqn (3.27), (4.30))

Incrementation

q, q̇, q̈,λ,x, ẋ,y

?

?

?

?

?

�

yes

no

-

Figure 4.6: Time-integration algorithm for mechatronic systems
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In order to investigate the stability of the algorithm when the mechanical

system is unconstrained, the linearized form of equations (4.71) and (4.73) is

considered:

M̃ q̈ + C q̇ + K q + G x = 0

ẋ + A x + P q + D q̇ + F q̈ = 0
(4.74)

The matrices M̃, C and K include the possible contributions of the direct feedback

control actions f̃oq̈, f̃oq̇ and f̃oq, respectively (e.g. M̃ 6= M). Hence, M̃, C and K

are not necessarily symmetric positive definite, which is an important difference

compared to the mass, damping, and stiffness matrices of a passive mechanical

system.

The velocity term C q̇ may come from the internal damping of the material,

or from a direct feedback action. It is expected that this latter contribution has a

stabilizing effect, otherwise, the whole dynamic system may get unstable as well

as the numerical simulation. Therefore, the case C = 0 can be seen as the worst

case situation, where stability in the simulation results is desirable; the damping

matrix C is thus omitted in this analysis.

The difficulty may be reduced by diagonalization of matrices
(
M̃−1 K

)
and

A:

Ω2 = T−1q M̃−1 K Tq and Σ = T−1x A Tx (4.75)

where Ω and Σ are diagonal matrices, Tq and Tx are transformation matrices.

Defining the modal coordinates q∗ and x∗:

q = Tq q∗ and x = Tx x∗ (4.76)

and the coupling matrices:

Γ = T−1q G Tx, Π = T−1x P Tq, ∆ = T−1x D Tq, Υ = T−1x F Tq (4.77)

we obtain the equivalent system:

q̈∗ + Ω2 q∗ + Γ x∗ = 0

ẋ∗ + Σ x∗ + Π q∗ + ∆ q̇∗ + Υ q̈∗ = 0
(4.78)

where the coupling matrices Γ, Π, ∆ and Υ have no specific structure, that could

be exploited for a component-wise analysis.
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Those equations are discretized according to (4.58):

(1− αf ) Ω2 0 (1− αm) I (1− αf ) Γ 0

I 0 −βh2 I 0 0

0 I −γh I 0 0

(1− αf ) Π (1− αf ) ∆ (1− αm) Υ (1− αf ) Σ (1− αm) I

0 0 0 I −γh I





q∗

q̇∗

q̈∗

x∗

ẋ∗


n+1

+



αf Ω2 0 αm I αf Γ 0

−I −h I −(1
2
− β)h2 I 0 0

0 −I −(1− γ)h I 0 0

αf Π αf ∆ αm Υ αf Σ αm I

0 0 0 I −(1− γ)h I





q∗

q̇∗

q̈∗

x∗

ẋ∗


n

= 0

(4.79)

where I and 0 still denote identity and null matrices of appropriate dimensions.

We seek the eigensolutions of this difference equation, characterized by a

synchronous behavior:

q∗

q̇∗

q̈∗

x∗

ẋ∗


n

= ϕn



q∗0

q̇∗0

q̈∗0

x∗0

ẋ∗0


with ϕn+1 = ζ ϕn (4.80)

so that the characteristic equation is

det



Pαf (ζ) Ω2 0 Pαm(ζ) I Pαf (ζ) Γ 0

P1(ζ)I −h I −Pβ(ζ)h2 I 0 0

0 P1(ζ)I −Pγ(ζ)h I 0 0

Pαf (ζ) Π Pαf (ζ) ∆ Pαm(ζ) Υ Pαf (ζ) Σ Pαm(ζ) I

0 0 0 P1(ζ)I −Pγ(ζ)h I


= 0 (4.81)

with the polynomials Pαm , Pαf , Pβ, Pγ, P1 defined in equation (3.41).

If Γ = 0 or Π = ∆ = Υ = 0, a block triangular structure appears, and the

characteristic equation may be splitted into one equation for each block of the

diagonal, indicating an uncoupling in the time-integration of both subsystems. In

this case, the stability of the global integration scheme follows from the stability
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of the scheme applied to the independent subsystems, which has been analyzed

before.

In any other situation, the analysis cannot be pursued without further as-

sumption. As proposed by Gear and Wells in a similar context [GW84], let us

consider the scalar case (one mechanical dof q and one state variable x). Then,

the characteristic equation becomes:

det



Pαf (ζ)ω2 0 Pαm(ζ) Pαf (ζ) g 0

P1(ζ) −h −Pβ(ζ)h2 0 0

0 P1(ζ) −Pγ(ζ)h 0 0

Pαf (ζ) p Pαf (ζ) d Pαm(ζ) f Pαf (ζ)σ Pαm(ζ)

0 0 0 P1(ζ) −Pγ(ζ)h


= 0 (4.82)

In order to analyze the stability in the presence of stiff dynamics in the mechanical

systems and/or in the control system, the characteristic equation is developed in

three subcases:

1. ωh→∞:

Pαf (ζ)ω2 det


−h −Pβ(ζ)h2 0 0

P1(ζ) −Pγ(ζ)h 0 0

Pαf (ζ) d Pαm(ζ) f Pαf (ζ)σ Pαm(ζ)

0 0 P1(ζ) −Pγ(ζ)h

 = 0 (4.83)

which is equivalent to P q
∞(ζ) P x

σh(ζ) = 0.

2. σh→∞:

Pαf (ζ)σ det


Pαf (ζ)ω2 0 Pαm(ζ) 0

P1(ζ) −h −Pβ(ζ)h2 0

0 P1(ζ) −Pγ(ζ)h 0

0 0 0 −Pγ(ζ)h

 = 0 (4.84)

which is equivalent to P q
ωh(ζ) P x

∞(ζ) = 0.



4.2. INTEGRATED SIMULATION OF MECHATRONIC SYSTEMS 81

3. ωh→∞ and σh→∞:

Pαf (ζ)ω2 det


−h −Pβ(ζ)h2 0 0

P1(ζ) −Pγ(ζ)h 0 0

Pαf (ζ) d Pαm(ζ) f Pαf (ζ)σ Pαm(ζ)

0 0 P1(ζ) −Pγ(ζ)h



+Pαm(ζ) det


P1(ζ) −h 0 0

0 P1(ζ) 0 0

Pαf (ζ) p Pαf (ζ) d Pαf (ζ)σ Pαm(ζ)

0 0 P1(ζ) −Pγ(ζ)h

 = 0

(4.85)

which is equivalent to P q
ωh(ζ) P x

σh(ζ) = 0.

As a conclusion, the linear stability of the integrator applied to the indepen-

dent subsystems is a sufficient condition for the linear stability of the integrator

applied to the unconstrained mechatronic system. We assume that this result,

established for a scalar system (1 mechanical dof and 1 state), is a relevant indi-

cation for the stability of the algorithm in a more general context.

4.2.4 Linear stability analysis: the constrained case

The linearized equations of a constrained system are:

M̃ q̈ + K q + BT λ+ G x = 0

B q = 0

ẋ + A x + P q + D q̇ + F q̈ = 0

(4.86)

As in the previous section, the damping term is neglected.

Inspired by section 3.3.3, it would be convenient to apply Theorem 3.1 page 52

in order to obtain a canonical form of the mechanical equations. This would be

possible if the stiffness matrix K were real symmetric positive semi-definite, and

the mass matrix M̃, real symmetric positive definite. Therefore, the developments

of this section assume that K and M̃ satisfy those conditions, as in the passive

case. This is always the case if no direct acceleration or displacement feedback is

present.

Using the notations of sections 3.3.3 and 4.2.3, we define

Γr = TT
qr G Tx, Πr = T−1x P Tqr, ∆r = T−1x D Tqr Υr = T−1x F Tqr

Γc = TT
qc G Tx, Πc = T−1x P Tqc, ∆c = T−1x D Tqc Υc = T−1x F Tqc

(4.87)
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We obtain the following set of equations:

q̈r + Ω2 qr + Γr x∗ = 0

q̈c + qλ + Γc x∗ = 0

qc = 0

ẋ∗ + Σ x∗ + Πr qr + Πc qc + ∆r q̇r + ∆c q̇c + Υr q̈r + Υc q̈c = 0

(4.88)

The characteristic equation is the determinant of the following matrix:

Pαf Ω2 0 0 0 0 0 Pαm I 0 0 Pαf Γr 0

0 0 Pαf I 0 0 0 0 Pαm I 0 Pαf Γc 0

0 Pαf I 0 0 0 0 0 0 0 0 0

P1I 0 0 −h I 0 0 −Pβh2 I 0 0 0 0

0 P1I 0 0 −h I 0 0 −Pβh2 I 0 0 0

0 0 P1I 0 0 −h I 0 0 −Pβh2 I 0 0

0 0 0 P1I 0 0 −Pγh I 0 0 0 0

0 0 0 0 P1I 0 0 −Pγh I 0 0 0

0 0 0 0 0 P1I 0 0 −Pγh I 0 0

Pαf Πr Pαf Πc 0 Pαf ∆r Pαf ∆c 0 Pαm Υr Pαm Υc 0 Pαf Σ Pαm I

0 0 0 0 0 0 0 0 0 P1I −Pγh I


(4.89)

and after lengthy but straightforward algebraic manipulations, one finds the equiv-

alent form:

(P q
∞(ζ))2m det


Pαf (ζ) Ω2 0 Pαm(ζ) I Pαf (ζ) Γr 0

P1(ζ)I −h I −Pβ(ζ)h2 I 0 0

0 P1(ζ)I −Pγ(ζ)h I 0 0

Pαf (ζ) Πr Pαf (ζ) ∆r Pαm(ζ) Υr Pαf (ζ) Σ Pαm(ζ) I

0 0 0 P1(ζ)I −Pγ(ζ)h I

 = 0

(4.90)

The determinant in (4.90) is strictly equivalent to the characteristic equation

obtained in the unconstrained case (4.81). In this sense, the presence of algebraic

constraints has a similar impact on the stability of the mechatronic integration

scheme than in the purely mechanical case.

4.2.5 Convergence analysis

After elimination of the input and output variables, the equivalent dynamic

equations can be formulated with the vector of dummy variables z (ż = x):

M q̈− g(q, q̇, t) + ΦT
q (kλ+ pΦ)− Lqo f̃o(ż,q, q̇, q̈, t) = 0 (4.91)

k Φ(q) = 0 (4.92)

z̈− f̃ s(ż,q, q̇, q̈, t) = 0 (4.93)
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For a purely mechanical system, the convergence of the generalized-α method

has been assessed from the assumption of a constant mass matrix (section 3.3.4).

Considering a mechatronic system, due to possible acceleration measurements, the

functions f̃ s and f̃o depend on q̈. If this dependence is strongly nonlinear, we may

not be able to guarantee a good convergence for the generalized-α method. As we

shall see, the generalized-α method behaves in a reliable way if the dependence of

f̃ s and f̃o with respect to the acceleration is linear, which motivates the following

technical assumption:

Assumption 4.2 The functions f̃ s(x,q, q̇, q̈, t) and f̃o(x,q, q̇, q̈, t) are linear in q̈:

f̃ s = f̃ s
∗
(ż,q, q̇, t) + f̃ sq̈ q̈ (4.94)

f̃o = f̃o
∗
(ż,q, q̇, t) + f̃oq̈ q̈ (4.95)

where f̃oq̈ and f̃oq̈ are constant. Moreover, the matrix M̃ = M − Lqo f̃oq̈ is not

singular.

The dynamic equations can then be restated:[
M̃ 0

−f̃ sq̈ I

] [
q̈

z̈

]
+

[
ΦT

q (kλ+ pΦ)− g − Lqo f̃o
∗

−f̃ s
∗

]
=

[
0

0

]
(4.96)

Φ(q) = 0 (4.97)

These equations have the same structure than the equations of a purely mechanical

system. Hence, the same convergence properties are observed, and we immediately

conclude that the local truncation error is still of order 2.

Remark 4.3 Assumption 4.2 is satisfied for any linear control system and any

control system without acceleration measurement, and those categories cover many

practical situations.

Remark 4.4 If the functions f̃ s and f̃o are not linear but only affine with respect

to q̈ ( i.e., in equations (4.94) and (4.95), f̃ sq̈ and f̃oq̈ are not constant), the argu-

ments described in section 3.3.4 about the consequences of a non-constant mass

matrix convince us that the local truncation error might increase by one order.

For instance, such a situation arises when acceleration signals wma are obtained

from a 3-axis accelerometer fixed on a moving body. The measurements are the
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absolute accelerations in body axes, and they are related to the accelerations in

inertial axes q̈ by the rotation matrix of the body R:

wma = RT q̈ (4.98)

In case of very fast motion, the variations of R may not be negligible over each

time-step, leading to a small loss in accuracy.

Remark 4.5 Control systems involving non-affine acceleration feedbacks are quite

unusual for control practitioners, so that we should not be afraid about the restric-

tions involved by Assumption 4.2.

4.2.6 Optimal choice for the algorithmic parameters

The previous results prove that the time-integration algorithm for mecha-

tronic systems inherits many properties from the purely ”mechanical” and ”state-

space” cases. The condition

γ =
1

2
+ αfm (4.99)

leads to second-order accuracy for the coupled system. For given values of αf and

αm, the spurious roots of both subsystems are equal:

ζq
1 = ζx

1 = ζ1 =
−αf

1− αf
(4.100)

whereas the principal roots are different (Figure 4.7):

ζq
2,3 = −1− αfm

1 + αfm
6= ζx

2 = −1− 2αfm
1 + 2αfm

(4.101)

This explains why the optimal choices of αf and αm are different for a mechanical

model and a state-space model (compare formulae (3.30) and (4.49)).

According to Chung and Hulbert [CH93], the optimal parameters for the

simulation of the mechanical equations are obtained when |ζ1| = |ζq
2,3|. From

Figure 4.7, we then conclude

|ζx
2 | < |ζ1| = ρq

∞ = ρx
∞ (4.102)

for αfm <
√
2
2

. Since the modulus of the principle root |ζx
2 | is lower than the

modulus of the spurious root, this design is non-optimal for the state variables.
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Figure 4.7: Evolution of the roots with respect to the parameter αfm.

Conversely, according to Jansen et al. [JWH00], the optimal parameters for

the state equations are obtained when |ζ1| = |ζx
2 |. From Figure 4.7, we conclude

|ζq
2,3| = ρq

∞ > |ζ1| = ρx
∞ (4.103)

for αfm <
√
2
2

. This design is not optimal for the mechanical variables. In partic-

ular, the spectral radius associated with the mechanical variables is higher than

the spectral radius selected for the state variables.

The Hilber-Hughes-Taylor algorithm [HHT77] is obtained for αm = 0, and a

positive value for αf . The spurious root should satisfy the condition:

|ζx
2 | > |ζ1| and |ζq

2,3| > |ζ1| (4.104)

which imposes the design constraint αf <
1
4
. In this case, the spectral radius

associated with the mechanical variables, is always higher than the spectral radius

associated with the state variables: ρq
∞ > ρx

∞.

Hence, the optimal choice of the algorithmic parameters for the coupled set

of equations is not trivial; in the numerical applications presented in this chapter,

the Hilber-Hughes-Taylor method is systematically applied.



86 CHAPTER 4. INTEGRATED SIMULATION OF MECHATRONIC SYSTEMS

4.3 Systems with discontinuous dynamics

A hybrid system involves both continuous dynamic variables and discrete

events. After a discrete event, it is well-known that a restart procedure is neces-

sary to carry on the simulation. In this section, a restart procedure is developed

for the mechatronic simulation algorithm.

In this work, we have in mind two types of discontinuous behavior:

- the discrete time behavior of a micro-controller or a micro-processor, where

explicit jumps are observed at the output fo(t+n+1) 6= fo(t−n+1),

- the saturation effect of a software control law or a hardware component,

which is mathematically formulated as a change in the dynamic behavior

f s(u,x, t+n+1) 6= f s(u,x, t−n+1) or fo(u,x, t+n+1) 6= fo(u,x, t−n+1).

Those discontinuities may produce discontinuities in the generalized forces.

According to Newton’s second law of motion, the discontinuities are thereby trans-

mitted to the accelerations q̈, and to the reaction forces represented by the La-

grange multipliers λ [BDG02, BDG03]. The state rates ẋ and the algebraic vari-

ables y are also directly affected:

q̈−n+1 6= q̈+
n+1, λ−n+1 6= λ+

n+1, ẋ−n+1 6= ẋ+
n+1, y−n+1 6= y+

n+1 (4.105)

Temporarily, we exclude impulse phenomena, so that the energy is continuous, as

well as q, q̇ and x:

q−n+1 = q+
n+1, q̇−n+1 = q̇+

n+1, x−n+1 = x+
n+1 (4.106)

The integration scheme developed in the previous section was able to predict

efficiently the values at time t−n+1. Since the integration formulae rely on a Taylor

expansion of the dynamic variables, they are not applicable over the discontinuous

transition from t−n+1 to t+n+1, and the correction for q̈, λ, ẋ and y should be

performed independently of q, q̇ and x, which are kept constant.

This correction can be seen as an integration restart procedure, and we know

from earlier convergence results (see section 3.3.4) that the initial conditions at
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time t+n+1 should satisfy the residual equations:

M q̈+
n+1 + ΦT

q (kλ+
n+1 + pΦ)− g(q+

n+1, q̇
+
n+1, t)− Lqo y+

n+1 = 0 (4.107)

kΦ(q+
n+1) = 0 (4.108)

ẋ+
n+1 − f s(u+

n+1,x
+
n+1, t

+
n+1) = 0 (4.109)

y+
n+1 − fo(u+

n+1,x
+
n+1, t

+
n+1) = 0 (4.110)

u+
n+1 − Liq q+

n+1 − Liq̇ q̇+
n+1 − Liq̈ q̈+

n+1 − Lio y+
n+1 = 0 (4.111)

otherwise, the order of convergence would be deeply affected. q+
n+1, q̇+

n+1 and x+
n+1

are imposed by (4.106), and these equations can be seen as nonlinear algebraic

equations for q̈+
n+1, λ

+
n+1, ẋ+

n+1, y+
n+1. They can be solved using a Newton-Raphson

procedure with the initial values given at time t−n+1. However, since the constraint

equation does not involve any of these unknowns, the system is ill-defined. In order

to overcome this problem, the constraints should be formulated at the acceleration

level:

k Φ̈ = k Φ̇q q̇ + kΦq q̈ = 0 (4.112)

with Φ̇q = Φ̇q(q, q̇) and Φq = Φq(q). If this hidden constraint is satisfied at

time t−n+1, it implies:

kΦq (q̈+
n+1 − q̈−n+1) = 0 (4.113)

which may replace equation (4.108) in order to obtain a nonsingular system1. The

linearized equations follow:
M kΦT

q 0 −Lqo

kΦq 0 0 0

0 0 I −f su Lio

−Loq̈ 0 0 I− fou Lio



4q̈

4λ
4ẋ

4y

 =


−resq

k

−resΦ
k

−ressk

−resok

 (4.114)

A summary of the integration algorithm is given in Figure 4.8. It is assumed

that the discrete transitions occur at the nodes of the time grid. If the discontinu-

ities are caused by a sampled system, and if a fixed time-step strategy is adopted,

this means that the sampling period T s should be a multiple of the time-step h:

h =
T s

p
(4.115)

1The mechanical equations are linear in q̈, λ and y, thus, if the control system is also linear,

one Newton iteration yields convergence.
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Time incrementation
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?

?

?

?

?

�

yes

no

Discontinuity ?

-

�yes

t−

no

Update

x, fs, fo

Evaluation of residues

resq, resΦ, ress, reso

Check for convergence

‖resa‖ < εa, a = {q,Φ, s, o}

Evaluation of corrections

4q̈,4λ,4ẋ,4y
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Figure 4.8: Integration algorithm for hybrid systems.

where p is an integer. In a more general context, a variable step-size time-

integration strategy should be combined with an event detection algorithm in

order to catch exactly the instant of the transition.

4.3.1 Impulse phenomena

In the previous development, the case of impulsive mechanical loading has

been excluded. However, a slight adaptation of the algorithm is sufficient to cover

this case, as described in the following. Since discontinuities now appear at the

velocity level:

q̇−n+1 6= q̇+
n+1 (4.116)

the values of q̇ should simply be updated when the impulse is detected, afterwards

the correction algorithm presented in Figure 4.8 is applicable. Therefore, the

critical point is to compute q̇+
n+1.

If ge denotes the generalized impact forces, their integral effect pe is defined
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by

pe =

∫ t+

t−
ge dt (4.117)

The generalized velocities satisfy the classical impact equations, as described by

De Jalón and Bayo [DJB94]:[
M ΦT

q

Φq 0

] [
q̇+
n+1 − q̇−n+1

λp

]
=

[
pe

0

]
(4.118)

where λp are Lagrange multipliers that are related to the internal impact forces

(impact reactions). The first equation represents the conservation of momen-

tum, and the second equation states that the velocity increment has to fulfill the

homogeneous velocity constraint equations.

The computation of q̇+
n+1 requires the knowledge of pe, which is not always

a trivial problem. If the impulse forces result from an impact between bodies,

pe can be estimated using a physical model of their contact (e.g. an elastic or a

plastic model).

4.4 Implementation issues

The simulation concepts hereby developed for mechatronic systems have been

implemented in the Oofelie C++ Finite Element software [CKG94]. The reason is

that the object oriented technology is very suitable to build a modular, reusable

and efficient code. Let us briefly discuss the implementation at the level of the

kernel and of the element library.

At the kernel level, the dof concept is naturally extended to represent in-

put, state and output variables, and the element concept to represent a generic

block of a block diagram model. All block diagram elements inherit from a few

abstract classes, such as System, ContinuousSystem and DiscontinuousSystem,

themselves inheriting from the standard Element class (see Figure 4.9). Those

abstract classes define

- the generic interface of the blocks,

- the concepts of input, output and state variables,

- the concepts of output and state equations, and their connection with the

Finite Element assembly procedure.



90 CHAPTER 4. INTEGRATED SIMULATION OF MECHATRONIC SYSTEMS

LTISampledSystem UserSampledSystem
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4
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Elements

Figure 4.9: Element library: class diagram. LTI is an acronym for Linear Time

Invariant.

A simplified view of the library of control elements appears in Figure 4.9. The

developments realized in the kernel make the programming effort for an element

minimal, since only the functions f s and fo, and their sensitivity matrices have to

be defined (the implementation of the sensitivities can be avoided using a finite

difference algorithm).

One may not be surprised to find the SaturatedIntegrator among the dis-

continuous elements, and the Saturation among continuous elements:

- the SaturatedIntegrator is characterized by one state variable x which

integrates the output until the saturation value xmax:

ẋ = u, while x < xmax (4.119)

At the saturation the state equation becomes:

ẋ = 0, x = xmax, while u > 0 (4.120)

The discontinuity of ẋ requires a restart procedure,
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- the Saturation element is characterized by one output variable, which is

equal to the input variable until the saturation value ymax:

y = u, while u < ymax (4.121)

After saturation, the output equation becomes:

y = ymax, while u > ymax (4.122)

and y is continuous.

4.5 Applications

Three examples with increasing complexity are considered: a rigid four-bar

mechanism, a Scara robot, and a vehicle with semi-active suspensions.

4.5.1 Rigid four-bar mechanism

Let us consider the rigid four-bar mechanism illustrated in Figure 4.10. It is

subject to external loads gext, the lower left hinge is actuated, and the value of

the torque τ is defined by a proportional integral derivative (PID) control law2

(see Figure 4.11). An analog and a digital implementation of the PID law will be

analyzed.

The analog PID controller is represented by the scalar state equations:

ẋ = θ − θref (4.123)

y = −P (θ − θref )−D θ̇ − I x (4.124)

The digital PID controller generates a piecewise constant output

y = yk ∀ t ∈ [tk, tk+1] (4.125)

with the update equation

xk+1 = xk + T s (θk+1 − θrefk+1) (4.126)

yk+1 = −P (θk+1 − θrefk+1)−D θ̇k+1 − I xk+1 (4.127)

2We consider here a regulation problem, so that the derivative action is simply established

from the measurement rate θ̇, and not from the error rate ė.
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Figure 4.10: Four-bar mechanism.

PID

θref -

Mechanism-
τ

-θ

θ̇
-

-

Figure 4.11: PID control of a four-bar mechanism.

with the sampling period T s = 0.01 s. The discrete state xk is not treated as a dof

in the simulation, it is simply updated at every sampling period. The maximal

value of the time-step is equal to the sampling period: h(max) = T s.

In this example, the mechanism is initially at rest (q0 = qinit, q̇0 = 0),

and the time variation of the external loads and reference inputs is plotted in

Figure 4.12. We may notice that the initial values q̈ = 0 and ẋ = 0 (for the

analog control) are consistent with those initial conditions.

The concise and high level textual model definition in Oofelie is illustrated

in Figure 4.13. For the digital case, the syntax is similar, the user should simply

further specify the sampling period.

Simulation results

A small numerical damping is necessary to avoid high frequency oscillations

due to the mechanical algebraic constraints, and we have selected αf = 0.05,

αm = 0 (Hilber-Hughes-Taylor algorithm).

A first simulation is realized with a time-step h(1) = h(max) = 0.01 s, and the
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Figure 4.12: Four-bar mechanism with PID control: external loads and reference

input. h(max) = 0.01 s.

ElemSet.define(PID,ContinuousLTISystem_E,3,1,1);

ElemSet[PID].addInput(ThetaRefNode,GenDisp);

ElemSet[PID].addInput(HingeAngleNode,GenDisp);

ElemSet[PID].addInput(HingeAngleNode,GenVel);

ElemSet[PID].addOutput(TorqueNode);

ElemSet[PID].setStateSpaceMatrices(A,B,C,D);

Figure 4.13: Oofelie input data file - description of an analog PID controller

(3 inputs, 1 state and 1 output). PID is the element number; ThetaRefNode,

HingeAngleNode, TorqueNode are node numbers; GenDisp, GenVel mean ”gen-

eralized displacement” and ”generalized velocity” respectively; and A,B,C,D are

the state-space matrices associated with equations (4.123) and (4.124).
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Figure 4.14: Simulation of a four-bar mechanism with PID control.

results are presented in Figure 4.14. A noticeable difference is observed whether

the system is controlled by an analog or a digital controller. For the digital con-

trol case, a simplified integration scheme has also been tested, where the specific

correction step after discontinuities is omitted. We observe that the error in the

simplified algorithm and the sampling effect have the same order of magnitude,

and we conclude that the correction step is essential for the accurate representa-

tion of the sampling effect.

In order to analyze the influence of a time-step reduction, five different values

have been considered:

h(p) =
h(max)

2p−1
p = {1, ..., 5} (4.128)

In Figure 4.15, the results obtained with h(1) and h(5) are very close to each other

for both the analog and the digital controller. However, for the digital controller,

the simplified algorithm without discontinuity correction leads to important er-

rors, especially for h(1).

Assuming that the results obtained with h(5) are close to the exact solution,

we define the error for a dynamic variable as the deviation:

σ(h(p)) =

√
1

n

∑
n

(q
(p)
n − q(5)n )2 p = {1, ..., 4} (4.129)

where q
(p)
n is the value of the dynamic variable predicted with a time-step h(p) at

time tn. The evolution of σ with respect to the time-step is plotted in Figure 4.16.
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Figure 4.15: Four-bar mechanism with PID control - influence of the time-step

(h(1) = 10ms, h(5) = 0.625ms).

The expected second-order convergence is observed in all cases, excepted for the

simplified algorithm which exhibits a poor first-order convergence. Therefore, the

simplified algorithm is definitely not acceptable for the simulation of a mechatronic

system with a digital controller. For the corrected algorithm, we conclude that the

order of convergence predicted by the theory is verified.

4.5.2 Scara robot

In order to further validate our approach, let us consider a benchmark pro-

posed in the Eurosim framework in order to compare the capabilities of various

software [For98, Sch98, Eck99, Sas04]. The system under consideration is a Scara

robot (see Figure 4.17), and the model accounts for the dynamics of the joint

DC motors, and for their PD control law. The first two joints are revolute with

vertical axes, and a third prismatic joint yields motion in the vertical direction.

The electrical current in each motor is controlled independently according to a

collocated PD law. Figure 4.18 presents a block diagram model for the control

law and the actuator associated with one joint. The PD control law computes the

reference voltage U ref , and the applied voltage Ua is limited to maximal values:

Ua = U ref ∀ |Ua| ≤ Umax (4.130)
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Figure 4.16: Four-bar mechanism with PID control - convergence analysis. On

the left, the error for the hinge angle and the controller state (analog PID). On

the right, the error for the hinge angle (digital PID).

Figure 4.17: Scara robot.
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Figure 4.18: Scara robot - Controller and motor associated with one joint.

The electrical current satisfies the following equation

L
di

dt
= Ua − U em −R i ∀ |i| ≤ imax (4.131)

The electrical current is also limited to a maximal value, and U em is the electro-

motive voltage proportional to the joint velocity:

U em = kem θ̇ (4.132)

The electromechanical equation defines the relation between the torque and the

current intensity:

T = kt i (4.133)

kem and kt are two parameters of the electrical motor.

The behavior of the system is simulated when a step reference command is

applied at t = 0 s (Figure 4.19):

Initial position Target position

θ1 = 0 rad θ1 = 2 rad

θ2 = 0 rad θ2 = 2 rad

θ3 = 0 m θ3 = 0.3 m

(4.134)

The results of the simulation obtained for a time-step h = 0.001 s are pre-

sented in Figures 4.19 and 4.20, and are fully equivalent to the results obtained

by other researchers [For98, Sch98, Eck99, Sas04]. Even though the mechanical

motion is rather smooth, the electrical current is subject to significant transient

phenomena at the beginning and at the end of the motion. In particular, the

simulation predicts saturation effects.

A digital implementation of the control law has also been simulated with a

sampling period T s = 5 ms, leading to the results in Figure 4.21. In motor 1,
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Figure 4.19: Scara robot, joint references (step signal) and joint coordinates.
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Figure 4.20: Scara robot - electrical currents. The picture on the right is a zoom.
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Figure 4.21: Scara robot with sampled controller - electrical current in motor 1.

The picture on the right is a zoom centered on t = 1s.

a high-frequency electromechanical pole involving the electromotive voltage is

excited at the end of the motion. According to a linearized analysis, if Jeq denotes

the equivalent inertia associated with the motion of joint 1, the pulsation of this

pole is:

ω =

√
kem kt

Jeq L
(4.135)

The resulting order of magnitude is in agreement with the simulation results.

Actually, due to the resistor, this pole is also affected by a damping effect. Again,

the simplified simulation method, without discontinuity correction does not lead

to accurate results.

From this example, we conclude that our simulation method is able to deal sys-

tematically and reliably with the coupled electromechanical equations of a mecha-

tronic system. The block diagram model is modular and convenient for the dy-

namic description of the controller and the actuators. Most methods presented

by other authors were based on an adaptive time-stepping method, which is a

strong advantage over our current fixed time-step implementation. It is therefore

hopeless to attempt any comparison with respect to the computational efficiency,

and this weakness of our software should be addressed in future investigations.

However, the decisive advantage of our approach certainly comes from its gen-

erality, in particular its ability to deal efficiently and accurately with complex

parallel topologies and mechanical deformations; those potentialities are not re-

ally highlighted in this simple example. The objective of the next section is to
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demonstrate the relevance of the integrated simulation method for a mechanism

with a far more complex topology, subject to the action of a strongly nonlinear

control system.

4.5.3 Vehicle semi-active suspension

The design of a modern car involves an increasing number of active compo-

nents, e.g. active suspension, anti-lock brake system (ABS), or electronic stability

program (ESP). Therefore, in order to predict the car performances, the dynamics

of those active components has to be considered in the design.

The dynamic simulation of a car equipped with a semi-active suspension is

considered here. This benchmark has been identified in the framework of the Bel-

gian Inter-University Attraction Pole on Advanced Mechatronic Systems (AMS-

IAP5/06)3. The objective of the semi-active suspension demonstrator is to de-

velop new concepts related with the modeling, control and optimization of mecha-

tronic systems. Our personal contribution to this project concerns the integrated

simulation of the full car including the actuators and controller dynamics, using

the methodology developed in this work. The various components that have been

considered in the multidisciplinary model of the car are described in the following

sections. We believe that the resulting simulation model is a relevant basis for

the numerical optimization of the suspension, which will be addressed in future

research.

Principle of a semi-active suspension

A passive suspension has fixed stiffness and damping characteristics deter-

mined by their design. Depending on the road conditions, an adaptation of those

characteristics is desirable to optimize the comfort and the road handling, which is

possible if the passive shock absorber is replaced by an active or semi-active actu-

ator. Active suspensions lead to highly controllable systems, but they require an

external power source (e.g. a hydraulic pump), which makes them costly, complex

and less reliable. Using a semi-active actuator in parallel with a passive spring, a

3Website of the AMS-IAP5/06: http://www.mech.kuleuven.ac.be/pma/project/ams

This project is sponsored by the Belgian state, Prime Minister’s office, Science Policy Program-

ming.
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Figure 4.22: Mechatronic model of the car equipped with a semi-active suspension.

ab is the vector of car-body accelerations, lr is the vector of rattle extensions,

vr = l̇r is the vector of rattle velocities, iv is the vector of electrical currents, and

ga is the vector of damper forces.

Figure 4.23: Audi A6. On the right, instrumentation with corner accelerometers.

control action is obtained by varying the restriction in current controlled valves,

or by changing the viscosity of a magneto-rheological fluid. Therefore, no external

power is introduced in the system, which makes the design less complicated and

safer.

In our case, semi-active hydraulic actuators with current controlled valves are

considered. The model of the mechatronic system is composed of a mechanical

model, a model of the actuators, and a model of the controller, as illustrated in

Figure 4.22.

Mechanical model

The car is an Audi A6 (see Figure 4.23), and its rigid-body model includes

the following components, illustrated in Figure 4.24:
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Figure 4.24: Mechanical model of the car.

- the car-body,

- the suspension mechanisms (including the passive springs),

- the slider-crank direction mechanism for the front wheels,

- the wheel model for the lateral force, the vertical force and the yaw torque.

The current model involves about 600 mechanical dofs, and it could be extended

to include the stiffness of the suspension bushings, the flexibility of the chassis,

and a longitudinal model for the wheels. However, the current model is sufficient

to demonstrate the potentialities of the integrated simulation tool.

Actuator model

A systematic description of the actuator model and of the controller is pre-

sented by Lauwerys et al. [LSS04].

Figure 4.25 compares a passive and a semi-active shock absorber. The passive

absorber contains two passive valves, restricting the oil flow from one chamber to

the other. Due to the motion of the rod in and out of the cylinder, the variation

of the total volume vtot available for the oil is:

v̇tot = v̇reb + v̇comp (4.136)

where vreb and vcomp are the volumes of the rebound and compression chambers.

The role of the accumulator is to compensate for the variation of vtot.
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Figure 4.25: Passive and semi-active damper. Quasi-static valve flows during

compression and extension sequences. The proportions on the drawings are not

realistic and, for information, typical values for the chamber diameter and the rod

diameter are 32 mm and 22 mm, respectively.

In the active shock absorber, the passive valves are replaced by check valves,

and a current controlled CVSA valve4 connects the extreme chambers. When

the rod moves up, the piston check-valve closes and the oil moves out of the

rebound chamber through the CVSA valve. When the rod moves down, the base

check-valve closes and the oil flows to the accumulator through the CVSA valve.

Therefore, both motions are affected by the controlled restriction at the CVSA

valve.

The flow variations reported in Figure 4.25 are related with a quasi-static

motion, where the pressures are in equilibrium at every instant, the fluid is not

compressible, and the accumulator is ideal. Actually, the dynamic behavior is

more complex, and a nonlinear model has been calibrated by the manufacturer of

the shock-absorber. This model can be presented in nonlinear state-space format,

4CVSA: continually variable semi-active.
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defining the inputs, states and output:

u(damp) = [lr l̇r iv]T x(damp) = [preb pcomp]T y(damp) = [ga]T (4.137)

with lr, the rattle extension, iv, the electrical current in the CVSA valve, preb and

pcomp the pressures in the rebound and compression chambers, and ga the force

exerted by the damper. The state equations are:

ẋ(damp) = f s(damp)(u(damp),x(damp))

y(damp) = fo(damp)(u(damp),x(damp))
(4.138)

The functions f s(damp) and fo(damp) are given by the manufacturer as C-functions,

which are linked with Oofelie and called in a user-element inheriting from the

class ContinuousSystem (see Figure 4.9). The sensitivities of those functions are

obtained using a finite difference procedure.

Controller model

The control law of the active suspension has been developed by Lauwerys,

Swevers, and Sas [LSS04]. As illustrated in Figure 4.26, it consists of three stages:

a feedback linearization (inverse actuator models), a transformation into modal

space (coupling and decoupling operations), and a linear integral control.

The car and the dampers are represented as a black box, whose inputs are

the four CVSA electrical currents iv, and whose outputs are the rattle velocities

vr = l̇r, and the accelerations measured at the four corners of the car ab (see

Figure 4.23).

The feedback linearization technique seeks for virtual inputs which have the

property to influence the outputs in a linear way. If one accepts that the non-

linearity of the mechanism is weak, the main source of nonlinearity lies in the

actuator. According to Lauwerys et al., an efficient feedback linearization law is

obtained by inversion of a simplified quasi-static model of the actuators. From

equation (4.138), it is possible to formulate the quasi-static damper force with

respect to the CVSA electrical current, and the rattle velocity:

ga = ga(iv, vr) (4.139)

This relation can be inverted for vr 6= 0:

iv = (ga)−1 (gvirt, vr) (4.140)
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Figure 4.26: Controller of the semi-active suspension. ”vr” stands for the rattle

velocities, ”ab” for the car-body accelerations, and ”iv” for the valve currents.
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where gvirt is the new virtual input, which can be interpreted as a virtual damper

force. For vr = 0, the controllability is defective, and the singularity of (ga)−1 is

avoided thanks to a regularization strategy. If this inverse model is able to cancel

the nonlinearity of the actuator, the virtual input gvirt is actually proportional to

the damper force. Therefore, besides the advantage of a good linearity between

gvirt and the output, a force control strategy can be established on this basis.

Since the motion of the car simultaneously involves the forces applied on the

four wheels, the definition of the virtual control forces gvirt for the four shock-

absorbers is a linear but coupled multi-input/multi-output problem. This problem

can be simplified by a transformation into a modal space defined by the heave

(pumping), roll and pitch of the car-body. In this modal space, the system is

represented by three uncoupled single-input/single-output subsystems, for which

three independent integral controllers are designed.

The several stages of the controller are easily described using the block dia-

gram language. The inverse actuator model is implemented as a specific element,

which directly invokes the C-function implemented in the actual controller, and

the sensitivities are obtained by analytical differentiation. All other blocks are

modeled using the element library mentioned in Figure 4.9.

Simulation results

The simulation of a lane change maneuver has been realized, and the target

trajectory, represented in Figure 4.27, corresponds to a standard qualification test.

The car has a 10 m/s initial velocity, and a driver applies an open-loop steering

command, without any real-time correction (blind driver assumption). The motor

and the brakes do not produce any torque on the wheels. The time-step for the

simulation is 0.01 s, and the algorithmic parameters are αf = 0.05 and αm = 0.

Figure 4.28 illustrates the motion of the slider-crank mechanism actuated by

the driver, and the horizontal trajectory of the car.

Figure 4.29 represents the global motion of the car-body. The yaw, pitch

and roll angles of the car-body are plotted as well as the radius of gyration and

the vertical displacements. The radius of gyration becomes infinite when the car

follows a straight line.

The dynamic behavior of the semi-active shock absorbers is illustrated in Fig-

ure 4.30. It is interesting to observe the pressures in the rebound and compression
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Figure 4.27: Lane change maneuver. The dimensions presented here correspond

to a standard qualification test.
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Figure 4.30: Car semi-active dampers - extension, hydraulic pressure (rear right),

electrical current and damper force.

chambers, depending on the sign of the rattle velocity: during the compression,

the valve between those chambers is open, and the pressure in the compression

chamber is slightly higher, but during the extension, the valve is blocked, and

the pressure in the rebound chamber can be much higher than in the compres-

sion chamber (see Figure 4.25). The saturation effect dominates the behavior of

the electrical current in the CVSA valves. The static contribution of the forces

produced by the actuators is not zero, due to non-equilibrated pressures in the

different chambers when the piston rod is at rest.

In this application, the integrated simulation method was able to predict the

behavior of a complex mechatronic system. The model consists of a full model

of the car and its suspension mechanisms, a nonlinear dynamic model of the hy-
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draulic actuator, and the nonlinear control algorithm. The modularity of the

formulation leads to a systematic and convenient description of the mechatronic

model. In particular, the block diagram language allows a direct definition of the

controller model using the algorithm implemented in real-time, and vice versa.

The simulation is carried out within a reasonable computational time (several

minutes on a desk computer). From our experience with the simulation of purely

mechanical systems using the Finite Element method, we believe that this perfor-

mance could benefit from implementation optimization and from the development

of an adaptive time-stepping strategy.

4.6 Summary and concluding remarks

In this chapter, well-defined concepts from multibody dynamics, structural

dynamics and system theory have been integrated in a unified formulation for

the simulation of mechatronic systems. In particular, our personal theoretical

contributions concern:

- the adaptation of the block diagram concept for the modular representation

of first-order state equations within a Finite Element formulation,

- the extension of the generalized-α method for the strongly coupled simula-

tion of a mechatronic system represented by a mechanical Finite Element

model and a block diagram model, with stability and convergence analyses,

- the development of a specific methodology to deal with possible discontin-

uous effects in some subsystems (e.g. sampled systems).

Three examples with increasing complexity have been successfully treated

with this methodology: a four-bar mechanism, a Scara-robot, and a car semi-

active suspension. All these examples involve rigid-body mechanisms. A fourth

mechatronic system involving a flexible mechanism will be analyzed in chapter 6.

This systematic approach yields reliable results and it relieves the user from

intricate, time-consuming and dubious implementation of user-elements for the

dynamic description of a control system.



V

Nonlinear Model Reduction in Flexible

Multibody Dynamics

In the state-of-the-art, section 2.4, new modeling concepts appeared to be

necessary when designing a controller for a flexible multibody system with par-

allel topology. Indeed, a Finite Element model or an assumed-mode model are

represented by a relatively high-order set of nonlinear DAEs, which is not con-

venient for this design problem. In this chapter, an original model reduction

method is proposed leading to a suitable compromise between accuracy, order,

structure, computational efficiency, systematic formulation and portability. The

reduced model is obtained from an initial nonlinear Finite Element model, but

since the theory assumes linear elasticity, a large part of the developments would

still be valid if another initial formulation had been selected. The Finite Element

method is preferred because of its systematic implementation, especially valuable

when dealing with complex mechanisms.

Before starting the detailed presentation of the reduction method, an overview

is first presented in order to draw the reader’s attention to the key steps and fea-

tures of the approach.

5.1 Introduction

The reduction method is an extension of the component-mode technique es-

tablished in structural dynamics, which accounts for the nonlinear kinematics of

the mechanism. Basically, the reduction procedure proceeds in two steps:
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- an order reduction of the initial Finite Element model, which can be realized

locally for any given configuration,

- an approximation of the reduced-order model in the configuration space.

Let us further develop both steps.

The order reduction comes from a reduced kinematic description with modal

coordinates associated with the motion of the whole mechanism, including all

bodies and joints. The mode shapes are therefore configuration-dependent : for

every configuration, their definition according to a component-mode synthesis is

based on the linearized dynamic equations. Since those modes are not associated

with a particular component of the mechanism, and since they are defined locally

for small motions around a configuration, we refer to them as local modes rather

than component-modes. The local mode shapes characterize a local coordinate

transformation between the initial Finite Element coordinates q and the modal

coordinates η. The reduced-order model is obtained after introduction of this

coordinate transformation into the initial model.

This local reduction procedure, which should be repeated for every config-

uration change, is computationally expensive. A more suitable model can be

constructed by approximation of the reduced-order model in the configuration

space [BDG04c].

An implementation of this approach is illustrated in Figure 5.1: a number

of reference kinematic configurations θ(i), (i = 1, ..., r) are selected in the config-

uration space, the Finite Element model is built and reduced for each of them,

afterwards an approximation algorithm leads to a closed-form model.

The validity and the consistency of this approach is questionable for two

reasons:

- the modal coordinates defined in one configuration may not be naturally

associated with the modal coordinates in another configuration, so that

non-physical discontinuous transitions may appear in the reduced model,

- the modal parameterization is intrinsically nonlinear, and the standard

model reduction procedure defined in linear structural dynamics has to be

reconsidered.
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Figure 5.1: Simple approach for the model reduction of a flexible mechanism, and

illustration with a four-bar mechanism.
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In order to guarantee the consistency of the model, we assess the reduction

method on a well-defined nonlinear reduced parameterization, valid in the whole

configuration space, and consistent with the local modes. This parameterization

relies on separated descriptions of the large amplitude rigid motion, and of the

small amplitude flexible motion [BDG04a]. Since it is related with mode shapes

of the global mechanism, defined in the global configuration space, it is denoted

the Global Modal Parameterization. The formal definition of this concept is an

important contribution of this dissertation.

A second contribution is associated with the numerical reduction procedure,

which accounts for the nonlinear nature of the Global Modal Parameterization.

Actually, it will be demonstrated that the curvature of the coordinate transfor-

mation leads to a contribution to the reduced inertia forces.

The development of a piecewise approximation strategy in the configuration

space is the third original contribution of this chapter. The method follows an

adaptive configuration space inspection algorithm, which minimizes the compu-

tational resources to satisfy a user-defined tolerance on the approximation error.

The reduced model satisfies the following specifications:

- accuracy in the bandwidth of the actuators and within the limits of the

workspace,

- low-order and free from kinematic constraints, which follows from the Global

Modal Parameterization,

- physical interpretation of the modal coordinates in terms of rigid and flexible

modes, and interpretation of the model parameters in terms of mass matrix,

stiffness matrix, and gyroscopic tensor,

- available in closed-form, involving inexpensive computations,

- formulated systematically from high-level information,

- defined in a simple standard format, easily exported to other software for

control design.

This model can be exploited for different purposes, such as:

- the online implementation of a feedback controller,
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- the offline optimization of a control policy,

- the construction of a more structured model, in order to fit well-established

control theories.

After this preliminary description, section 5.2 presents component-mode tech-

niques developed in linear structural dynamics. Section 5.3 is devoted to the

characterization of the nonlinear kinematics of parallel mechanisms. The Global

Modal Parameterization and the local reduction procedure are respectively de-

scribed in sections 5.4 and 5.5. The approximation strategy is presented in sec-

tion 5.6. After a summary of the overall algorithm in section 5.7, two applications

are treated in section 5.8: a flexible four-bar mechanism, and a rigid parallel-

kinematic machine-tool (a third example is left for chapter 6). The chapter ends

with a few concluding remarks.

5.2 Linear component-mode synthesis

A linear mechanical system is represented by the equations of motion:

M q̈ + K q = g (5.1)

with q, the n × 1 vector of generalized coordinates, M, the mass matrix, K,

the stiffness matrix, and g, the vector of applied force. A reduced-order model

offers obvious advantages associated with the simplified treatments required for

its analysis.

In structural dynamics [GR97], the development of model reduction tech-

niques has also been motivated by substructuring applications, where the analy-

sis of a complex dynamic structure exploits a decomposition into several simpler

parts. A reduced-order model is then constructed to represent concisely the dy-

namics of each substructure, and it will later be used to reconstruct the global

model. This approach allows a detailed modeling of components with complex

geometry, while keeping a relatively simple global dynamic model. It also leads to

an increased modularity and reusability in the modeling process. In our context,

the mechanical system can be seen as a ”substructure” of the mechatronic system,

for which a reduced-order model is desirable.
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5.2.1 Principle of a linear reduction method

A reduction method relies on the construction of a change of variables from

initial coordinates to modal coordinates according to

q = Ψ η (5.2)

where η is the n × 1 vector of modal coordinates, and Ψ is the n × n matrix of

component-modes. The reduction comes from

n < n (5.3)

The variations of q are thus restricted to the subspace spanned by the component-

modes, and the accuracy of the reduced model depends on the ability of the

component-modes to describe the actual motion of the system.

In order to formulate the reduced equations of motion, the coordinate trans-

formation is introduced into the expressions of the kinetic and potential energies,

and of the virtual work of the external forces. Initially, we have:

K =
1

2
q̇T M q̇ (5.4)

V =
1

2
qT K q (5.5)

δW = gT δq (5.6)

and the transformation into modal coordinates leads to

K =
1

2
η̇T M η̇ (5.7)

V =
1

2
ηT K η (5.8)

δW = gT δη (5.9)

with the reduced mass matrix, stiffness matrix, and equivalent force vector:

M = ΨT M Ψ, K = ΨT K Ψ, g = ΨT g (5.10)

The equations of motion of the reduced system follow:

M η̈ + K η = g (5.11)

A similar procedure can be applied for a system with m linear constraints:

Φq q = 0 (5.12)
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Following an augmented Lagrangian approach, an m× 1 vector of Lagrange mul-

tipliers λ is introduced, and the vector of augmented generalized coordinates is

defined:

u =

[
q

λ

]
(5.13)

as well as the matrices and vector:

Muu =

[
M 0

0 0

]
, Kuu =

[
K + pΦT

qΦq kΦT
q

kΦq 0

]
, gu =

[
g

0

]
(5.14)

where k and p are the scaling and penalty factors. The constrained equations of

motion are restated:

Muu ü + Kuu u = gu (5.15)

and the component-mode technique can be applied as in the unconstrained case:

u = Ψuη η (5.16)

5.2.2 Component-mode selection

The objective of the component-mode synthesis is to define the mode shapes

Ψ, leading to a minimized loss in accuracy. Let us consider a partitioning of the

generalized coordinates:

u =


qr

qg

ui

 (5.17)

where qr are s rigid dofs strictly able to characterize the rigid modes, qg are ng

constraint dofs where external loads are applied1, and ui are the ni remaining

internal dofs which are not loaded and are condensed by the reduction procedure.

The set of internal dofs includes the Lagrange multipliers.

On this basis, Hurty [Hur65] proposed three subsets of modes: the rigid-

body modes, the constraint modes, and the internal modes. This choice leads to

an exact representation of the static response of the structure, which is critical

for the consistent assembly of the reduced model with other substructures. In a

1In a substructuring framework, qg also includes interface dofs between substructures, sub-

ject to internal forces.
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mechatronic framework, the static response of a structure should also be accu-

rately represented since it influences the zeros of the mechanical transfer functions,

as discussed by Preumont [Pre97]. This technique was improved by Craig and

Bampton [CB68] who suggested to treat all boundary degrees of freedom (qr

and qg) alike. It can be demonstrated that the modes proposed by Hurty and

by Craig-Bampton span the same subspace, so that the accuracy of the reduced

model is equivalent for both methods. The Craig-Bampton method offers sev-

eral advantages, such as a simplified partitioning, a greater efficiency, and the

explicit conservation of all boundary dofs in the reduced model. This is probably

the reason why it is so popular and available in most commercial Finite Element

software. However, the rigid modes do not appear explicitly among the boundary

modes, which is a precluding drawback for us: our nonlinear reduction method

entirely relies on the separation between the rigid and the flexible motion.

For this reason, the component-modes defined by Hurty [Hur65] are exploited

here, but this choice is not restrictive. Many other component-modes have been

defined in the literature, see Craig [Cra87] and De Fonseca [DF00] for detailed

reviews, and our nonlinear reduction method could involve any of them, provided

that the rigid-body modes are isolated from the flexible modes.

The s rigid-body modes Ψuθ are defined with respect to the rigid dofs qr,

and they satisfy the equilibrium of internal forces:
Krr Krg Kri

Kgr Kgg Kgi

Kir Kig Kii




Irθ

Ψgθ

Ψiθ

 = 0, Ψuθ =


Irθ

Ψgθ

Ψiθ

 (5.18)

Irθ is the s× s identity matrix.

The ng constraint modes Ψuγ are the static deformations obtained when the

rigid dofs qr are fixed and unit displacements are imposed on the constrained dofs

qg: [
Kgg Kgi

Kig Kii

] [
Igγ

Ψiγ

]
=

[
gg

0

]
, Ψuγ =


0rγ

Igγ

Ψiγ

 (5.19)

Igγ is the ng × ng identity matrix.

The nι internal modes Ψuι are a few eigenmodes when rigid and constraint
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dofs are fixed (nι < ni).

(
Kii − ω2 Mii

)
Ψiι = 0, Ψuι =


0rι

0gι

Ψiι

 (5.20)

The full transformation matrix follows:
qr

qg

ui

 =
[

Ψuθ Ψuγ Ψuι
] 

θ

ηγ

ηι

 =


Irθ 0 0

Ψgθ Igγ 0

Ψiθ Ψiγ Ψiι



θ

ηγ

ηι

 (5.21)

where θ, ηγ and ηι denote the modal amplitudes. By construction, the amplitudes

of the rigid modes θ are identified with the rigid dofs qr:

qr = θ (5.22)

This property does not hold for the constraint modes: qg 6= ηγ. If the modal

masses of the internal modes are normalized, the reduced matrices and forces

have the following structure:

K =


0 0 0

0 K
γγ

0

0 0 Ω2

 , M =


M
θθ

M
θγ

M
θι

M
γθ

M
γγ

M
γι

M
ιθ

M
ιγ

Iιι

 ,


gθ

gγ

gι

 =


gr + ΨgθT gg

gg

0


(5.23)

where Ω = diag(ωi) is the diagonal matrix of internal eigenvalues.

Géradin and Rixen [GR97] interpreted a class of component-mode methods as

a truncation in the modal expansion of the mechanical impedance. In this sense,

the component-modes suggested by Hurty and Craig-Bampton are optimal.

In multibody dynamics, the linear component-mode technique is usually ex-

ploited for the compact kinematic description of an isolated flexible body with

respect to a floating frame of reference, see section 2.1.2. In order to obtain a

more drastic reduction, we apply the modal parameterization to the whole mech-

anism, which is seen as a ”component” of the mechatronic system. Therefore,

the concept of component-mode is replaced by the concept of local mode defined

around a configuration. The description of the configuration of a mechanism with

a suitable parameterization is addressed in the next section.
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5.3 Parameterization of the rigid kinematics

The parameterization of the motion of a mechanism has been considered in

section 3.1. Several sets of parameters were described, such as the minimal coor-

dinates, the relative coordinates, the Cartesian coordinates, the absolute coordi-

nates, and the mixed coordinates. The strong advantage of minimal coordinates

comes from their independence, but we mentioned that a minimal parameteriza-

tion is only possible in a restricted part of the configuration space. Thus, depen-

dent coordinates were preferred for the formulation of general analysis methods.

However, for control design, we will demonstrate that the minimal coordinates

can be exploited with great benefits. Our objective is to formulate the dynamics

of flexible mechanisms in terms of minimal coordinates, i.e. free from kinematic

constraints.

Under the assumption of small deformations, the flexible motion can be de-

scribed in the neighborhood of the motion of the undeformed mechanism. A first

problem is then to parameterize the rigid kinematics associated with the flexible

mechanism, using independent coordinates. This section specifically addresses

this problem.

As for linear reduction methods, the approach is based on a coordinate trans-

formation. Here, we rely on an initial parameterization in terms of dependent co-

ordinates q (e.g. Finite Element coordinates), and we seek for a transformation

into independent coordinates θ. Therefore, two problems are encountered:

- the definition of the independent parameters θ,

- the characterization of the nonlinear coordinate transformation q = ρ(θ)

and its Jacobian ρθ.

The formulation of the second problem is substantially different whether the initial

parameters q account or not for the deformations. For this reason, we successively

consider the case of rigid mechanisms and the case of flexible mechanisms.

5.3.1 Rigid mechanisms

The motion of a rigid mechanism can be described with a vector of dependent

coordinates q ∈ Rn, satisfying m holonomic constraint equations:

Φ(q) = 0 (5.24)
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Figure 5.2: Coordinate transformation between dependent and independent pa-

rameters.

The configuration space Ωrt
q is defined as the set of kinematically admissible con-

figurations which satisfy the kinematic constraints:

Ωrt
q = {q ∈ Rn | Φ(q) = 0} (5.25)

The superscript r stands for ”rigid”, and t for the ”total” configuration space.

Assuming independent constraints, the number of kinematic modes s satisfies:

s = n−m (5.26)

We seek for a s × 1 vector of minimal parameters θ, which are related to q

by a coordinate transformation, represented by an invertible mapping ρ = ϕ−1:

ρ : Ωrt
θ → Ωrt

q , θ 7→ q = ρ(θ) (5.27)

ϕ : Ωrt
q → Ωrt

θ , q 7→ θ = ϕ(q) (5.28)

where Ωrt
θ is the set of possible variations of the parameters θ. We also refer

to Ωrt
θ as the configuration space, whenever no confusion is possible. Figure 5.2

illustrates those definitions.

In general, the existence of a global parameterization with independent coor-

dinates is not possible in the total configuration space Ωrt
q , and some restrictions

are necessary to define a pragmatic solution.
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We propose to define the minimal coordinates θ as the actuated dofs, i.e. the

dofs associated with the generalized forces exerted by the actuators. For instance,

for a motorized hinge, the actuated dof is the angle between the connected links,

whereas for a linear actuator, it is the relative distance between the connected

bodies. As a consequence of this choice, the actuator dofs will appear explicitly

in the reduced model, which is extremely valuable for the design of the control

system. An implicit assumption is that the number of actuators is equal to s.

This does not imply that the reduction method is only applicable to fully actu-

ated mechanisms, it only means that in any other situation, the definition of the

independent parameters is left to the user.

The actuated dofs θ are usually relative coordinates, in contrast with the

absolute coordinates q used in our Finite Element formulation. A systematic

implementation of the relation θ = ϕ(q) can be defined using mixed coordinates.

This means that the actuator coordinates θ appear explicitly among the set of n

mixed coordinates q:

q =

[
θ

q∗

]
(5.29)

q∗ are the n− s non-actuated dofs. Since m = n− s, the number of non-actuated

dofs equals the number of kinematic constraints of the mixed formulation.

The mapping ϕ is directly characterized:

θ = ϕ(q) = [I 0] q (5.30)

where I is the s× s identity matrix and 0 is the s× (n− s) null matrix.

The formulation of the inverse mapping ρ requires a deeper investigation.

Mathematically, the n equations: {
ϕ(q) = θ

Φ(q) = 0
(5.31)

can be interpreted as an implicit definition for q = ρ(θ). According to the implicit

function theorem, the existence of ρ is guaranteed locally, if the Jacobian of the

nonlinear system (5.31) is non-singular. In other words, the gradient ϕq, and the

constraint gradient Φq should be linearly independent. Configurations for which

this condition is not satisfied are either configuration space singularities or actua-

tor singularities [PK99, ZBG01, LLL03]. At a configuration space singularity, the
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constraint gradient Φq becomes defective, and the number of kinematic modes in-

creases suddenly. Those singularities are intrinsic properties of the configuration

space, independent of the parameterization problem. In contrast, the location

of an actuator singularity (or parameterization singularity) is conditioned by the

choice of the actuated dofs. At an actuator singularity, the mechanism can move

even though all actuators are blocked, which is usually undesirable from a control

point of view.

The regularity of the Jacobian is not sufficient to guarantee that the actuator

dofs θ are able to parameterize the whole configuration space. A well-defined

parameterization is globally one-to-one: for each given actuator configuration θ,

there exists only one kinematically admissible configuration q (i.e. one solution

to equations (5.31)). This condition is quite difficult to verify; however, in many

practical cases, actuator singularities separate parts of the configuration space

where ϕ is one-to-one, so that the actuator parameterization is valid in a sub-

set Ωr
q ⊂ Ωrt

q bounded by the singular configurations. All those concepts are

illustrated in Figure 5.3.

In this restricted part of the configuration space, the inverse map ρ is well-

defined:

ρ : Ωr
θ → Ωr

q, θ 7→ q = ρ(θ) (5.32)

where Ωr
θ ⊂ Ωrt

θ ⊂ Rs is the set of possible variations of the actuated dofs θ, away

from the singularities. For usual control applications, actuator singularities and

configuration space singularities are carefully avoided, and the limitation of the

analysis to Ωr
q is not restrictive.

Jacobian of the transformation

In the space of dependent coordinates q, a relation exists between the con-

straint gradient and the Jacobian of ρ. Indeed, we have:

Φ(ρ(θ)) = 0, ∀ θ ∈ Ωr
θ (5.33)

so that, after differentiation:

Φq ρθ = 0 (5.34)

ρθ is the Jacobian of the coordinate transformation, which naturally spans the

tangent space of the configuration manifold TpΩ
r
q at point p. According to (5.34),
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Figure 5.3: Rigid four bar mechanism, with an actuator at the bottom left hinge.

The configuration space is a 1-dimensional manifold, whose projection in the plane

of the coordinates ze and θ is also represented. Configuration (b) is an actuator

singularity; it separates two sub-domains of the configuration space for which

q = ϕ(θ) is one-to-one. ϕ is not one-to-one in the total configuration space Ωrt
q ,

since configurations (a) and (c) are possible for the same angle θ.
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Figure 5.4: Tangent space and constraint gradient of a rigid mechanism.

ρθ is orthogonal to the columns of the constraint gradient ΦT
q , as represented in

Figure 5.4.

To conclude this discussion, it is worth noticing that the definition of inde-

pendent parameters θ among the generalized coordinates q is formally equivalent

to the constraint elimination technique described in section 3.2.1. Hence, for a

rigid mechanism, the constraint elimination technique can be exploited for model

reduction, as proposed in a previous work [BDG06]. In this dissertation, we focus

on the more general case of flexible mechanisms; but the methodology can still be

reinterpreted as a constraint elimination technique if the mechanism is actually

rigid.

5.3.2 Flexible mechanisms

In the previous section, the analysis was based on a set of dependent pa-

rameters subject to kinematic constraints. For a flexible mechanism, additional

constraints of non-deformation are required for the rigid kinematic analysis.

The n coordinates q still have to satisfy m kinematic constraints:

Φ(q) = 0 (5.35)

The flexible manifold Ωft
q is defined as the set of kinematically admissible config-



126 CHAPTER 5. NONLINEAR MODEL REDUCTION

urations which satisfy the kinematic constraints:

Ωft
q = {q ∈ Rn | Φ(q) = 0} (5.36)

Moreover, the configuration space Ωrt
q ⊂ Ωft

q is defined as the set of unde-

formed configurations. The dimension2 s of Ωrt
q is smaller than the dimension

n−m of Ωft
q :

s < n−m (5.37)

As for rigid mechanisms, the actuated dofs θ lead to a parameterization of a

restricted part of the configuration space Ωr
q ⊂ Ωrt

q . According to the mixed coor-

dinate formulation, those dofs are included among the generalized coordinates q.

The parameterization of the rigid kinematics requires the definition of the

relation between θ and q (or q∗) for the undeformed mechanism. The non-

deformation condition is formulated using the elastic potential energy V(q) of the

mechanism. An undeformed configuration satisfies the combined conditions:{
∂V
∂q

= 0

Φ(q) = 0
(5.38)

This problem can be analyzed numerically using the zero-strain approach. Accord-

ingly, any equilibrium configuration achieves a minimum of the elastic potential

energy, so that the kinematic problem becomes:

Given θ, find q∗:

min
q∗
V (5.39)

subject to

Φ(θ,q∗) = 0 (5.40)

According to the augmented Lagrangian method, the following equivalent uncon-

strained problem is considered:

min
q∗,λ
V + k λT Φ + p ΦT Φ (5.41)

where λ is the m× 1 vector of Lagrange multipliers, k and p are the scaling and

penalty factors, respectively. The stationarity condition leads to n+m nonlinear

equations: {
∂V
∂q∗ + ΦT

q∗ (k λ+ p Φ) = 0

k Φ(q) = 0
(5.42)

2The dimension here refers to the intrinsic dimension of the manifolds, as opposed to the

dimension n of the ambient space.
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Equations (5.42) contains as many equations as unknowns (q∗,λ), and can be

solved using standard methods.

The initial problem was to establish q (or q∗) from θ; it is equivalent to

construct the relation between u (or u∗) and θ, with:

u =


θ

q∗

λ

 =

[
θ

u∗

]
(5.43)

In the space of augmented coordinates u, the total configuration space is denoted

Ωrt
u . Equation (5.42) gives a condition for static equilibrium which is a necessary

but not sufficient condition for an undeformed configuration: some solutions u

of (5.42) might not satisfy (5.38), and be out of Ωrt
u . Typically, those solutions

are associated with pre-stressed configurations (λ 6= 0 or ∂V
∂θ
6= 0), which are not

considered in this research.

If the Jacobian of the system (5.42) is not singular, the implicit function

theorem guarantees the local existence of a function ρ such that u = ρ(θ). As

in the rigid case, the global validity of the actuator parameterization can only be

guaranteed in a restricted part of the configuration space Ωr
u ⊂ Ωrt

u , where the

singularities are avoided. The parameterization mapping is defined by:

ρ : Ωr
θ → Ωr

u, θ 7→ u = ρ(θ) (5.44)

where Ωr
θ ⊂ Ωrt

θ ⊂ Rs is the set of authorized variations of the actuated dofs θ.

Two important problems are associated with the practical computation of

u = ρ(θ) and its Jacobian for a given θ.

Numerical computation of the kinematic mapping

For a given actuator configuration θ, the kinematic problem consists in de-

termining the configuration u = ρ(θ). Starting from a known configuration

uref = ρ(θref ), equations (5.42) can be solved for q∗ and λ according to a stan-

dard Newton-Raphson procedure. As in section 3.2.2, the linearized equations are

formulated: [
Kq∗q∗

t k ΦT
q∗

k Φq∗ 0

] [
∆q∗

∆λ

]
=

[
0

0

]
(5.45)
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where Kq∗q∗

t is a submatrix of the tangent stiffness Kt:

Kt =
∂2V
∂q2

+
∂
(
ΦT

q (k λ+ p Φ)
)

∂q
(5.46)

=
∂2V
∂q2

+ p ΦT
q Φq + k

∂
(
ΦT

q λ
)

∂q
+ p

m∑
i=1

Φi
∂2Φi

∂q2
(5.47)

Usually, a good approximation is obtained by neglecting the second-order deriva-

tives of the constraints:

Kt '
∂2V
∂q2

+ p ΦT
q Φq (5.48)

This approximation is exact at an undeformed configuration, since Φ = 0 and

λ = 0.

The converged solution might be out of Ωr
u. This problem is avoided if the

reference and the target configurations are sufficiently close to each other: the

algorithm naturally converges to the unique solution in Ωr
u, since it is also the

unique solution in the neighborhood of the reference configuration. However, the

danger is important nearby an actuator singularity, where different solution sets

to the kinematic problem intersect with each other.

If the reference configuration θref is far from the target θ, the Newton-

Raphson procedure is likely to diverge, or to converge to a solution outside Ωr
u.

Therefore, a linear homotopy path θp : R → Rs can be defined from θref to θ:

θp(τ) = (1− τ) θref + τ θ τ ∈ [0, 1] (5.49)

The algorithm progresses from τ = 0 to τ = 1 through intermediate configu-

rations. If a failure occurs, additional intermediate configurations are selected

according to a bisection strategy, in order to obtain convergence. The procedure

may not succeed if Ωr
θ is non-convex; this rather unusual situation will not be

detailed here, even though it could be handled by slight customization of the

configuration space inspection algorithm described later in section 5.6.3.

Jacobian of the transformation

This section demonstrates the interpretation of the Jacobian ρθ as a set of

rigid-body modes.

Any undeformed configuration satisfies the global static equilibrium:{
∂V
∂q

+ ΦT
q (k λ+ p Φ) = 0

k Φ(q) = 0
(5.50)
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This set of n+m nonlinear equations can be recasted as

F(u) = 0 (5.51)

which is verified by any undeformed configuration:

F(ρ(θ)) = 0, ∀ θ ∈ Ωr
θ (5.52)

After differentiation, we have

Fu ρθ = 0 (5.53)

which can be developed:[
Kt k ΦT

q

k Φq 0

] [
I

ρ∗θ

]
=

[
0

0

]
(5.54)

This expression is equivalent to the definition of the rigid-body modes given

by (5.18) for a linear structure. As a conclusion, the Jacobian ρθ is the set

of rigid-body modes of the linearized static equilibrium.

5.4 The Global Modal Parameterization (GMP)

The concepts defined for the reduced-order parameterization of a deformable

structure and for the minimal parameterization of the rigid kinematics are now

combined for the reduced parameterization of a flexible mechanism. The Global

Modal Parameterization results from the construction of a nonlinear coordinate

transformation:

u = χ(η) (5.55)

where the n reduced coordinates η are defined in an open set Ωf
η ⊂ Rn, and

u =
[
qT λT

]T
belongs to a submanifold of the flexible manifold: Ω

f

u ⊂ Ωf
u. The

coordinate transformation is thus an invertible mapping:

χ : Ωf
η → Ω

f

u, η 7→ u = χ(η) (5.56)

and the reduction comes from

dim Ω
f

u = n < dim Ωf
u = n−m (5.57)

The construction of the coordinate transformation χ is based on a partitioned

description of the rigid and of the flexible motion.
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5.4.1 Partitioned coordinate transformation

Among the reduced coordinates η, we dissociate a subset of s coordinates θ

for the description of the rigid kinematics, and a subset of nδ = n− s coordinates

ηδ for the description of the deformations:

η =

[
θ

ηδ

]
(5.58)

θ is the set of actuator dofs, able to parameterize the configuration space Ωr
u.

Under the assumption of small deformations, the reduction formula (5.55) is affine

in ηδ:

u = ρ(θ) + Ψuδ(θ) ηδ (5.59)

ρ is the rigid kinematic mapping defined in section 5.3.2, and Ψuδ is a matrix of

deformation modes which is still to be constructed, and which may depend on the

configuration θ. The possible variations of the reduced coordinates are restricted

to:

θ ∈ Ωr
θ ⊂ Rs and ηδ ∈ Ωf

δ (θ) ⊂ Rnδ (5.60)

where Ωr
θ has been defined earlier and Ωf

δ is a neighborhood of the origin.

Equation (5.59) can be differentiated:

δu = χη δη =

(
ρθ +

∂(Ψuδ ηδ)

∂θ

)
δθ + Ψuδ δηδ (5.61)

so that for an undeformed configuration (ηδ = 0):

χη =
[
ρθ Ψuδ

]
= Ψuη =

[
Ψuθ Ψuδ

]
(5.62)

This notation emphasizes the interpretation of the Jacobian ρθ as a set of rigid-

body modes. For consistency, the Jacobian χη should belong to the tangent space

of the flexible manifold TpΩ
f
u; this property is important for the construction of

the coordinate transformation, as discussed in the next section.

The reduced parameterization χ of the flexible manifold involves the kine-

matic parameterization ρ, which has been analyzed previously, and configuration-

dependent flexible mode shapes Ψuδ. In order to exploit component-mode tech-

niques, the definition of this global parameterization starts with a local definition

of mode shapes around an undeformed configuration. The connection of this local

definition with the global parameterization will be demonstrated afterwards.
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5.4.2 Definition of the local modes

For a given configuration, the construction of the mode shapes is based on

the linearized dynamic equations. As for the linear component-mode technique,

a partitioning of the initial dofs u is considered

u =


θ

qg

ui

 (5.63)

where θ are the actuator dofs, qg are the constraint dofs, and ui are the internal

dofs, including the Lagrange multipliers.

The mode shapes are selected as an optimal basis to describe the linearized

motion around an undeformed configuration, with zero velocities :[
M 0

0 0

] [
∆q̈

∆λ̈

]
+

[
Kt kΦT

q

kΦq 0

] [
∆q

∆λ

]
=

[
0

0

]
(5.64)

The approximated expression of the tangent stiffness (5.48) is thus exact and can

be safely exploited.

As in the linear case, three subsets of modes are defined:

Ψuη =
[
Ψuθ Ψuγ Ψuι

]
(5.65)

The rigid modes Ψuθ are defined from the static equilibrium (5.18); they are also

the Jacobian of the rigid kinematics: Ψuθ = ρθ. The constraint modes Ψuγ are

the solutions to the static problem (5.19), where the rigid dofs are fixed, and the in-

ternal modes Ψuι are defined according to the internal eigenvalue problem (5.20),

where the rigid and constraint dofs are fixed.

For local consistency, those modes should belong to the tangent space of the

flexible manifold at point p: TpΩ
f
u. Indeed, using (5.18), (5.19), (5.20) and the

structure of the tangent stiffness matrix, it is easy to verify that

Φu Ψuη = 0 (5.66)

where Φu = [Φq 0].

Figures 5.5, 5.6 and 5.7 illustrate the definition of the local modes for a few

simple situations.
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Figure 5.5: Local modes of an unconstrained mechanism : 2 rigid modes and one

flexible mode.

Figure 5.6: Local modes of an unconstrained mechanism: one rigid mode and two

flexible modes.
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Figure 5.7: Local modes of a constrained mechanism: one rigid mode, and one

flexible mode.

5.4.3 From local to global modes

The local definition of the flexible modes can be reproduced for any configura-

tion, leading to configuration-dependent mode shapes. A priori, nothing prevents

spurious discontinuous variations of those mode shapes, and it is necessary to

verify that the Global Modal Parameterization χ(η) is well-defined, i.e.

- it is globally one-to-one,

- it is continuously differentiable,

- its rank is maximal (i.e. the Jacobian χη is of rank n),

From the previous developments, χ(η) involves two contributions:

- the kinematic mapping ρ(θ), which is well-defined in the configuration space

of interest, as demonstrated in section 5.3; in particular, it is continuous and

differentiable,

- the flexible modes Ψuδ(θ) have only received a local definition at a given

configuration; their variations in the configuration space deserve a careful

analysis.

The following analysis demonstrates that the three consistency criteria are satis-

fied by the Global Modal Parameterization.
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One-to-one criterion

The flexible submanifold Ω
f

u is defined as the image of Ωf
η mapped by the

transformation χ. By construction, for all u ∈ Ω
f

u, there exists a vector η such

that u = χ(η). Our purpose is to demonstrate the uniqueness of such a vector η

in Ωf
η.

Suppose that another solution η′ also satisfies u = χ(η′). Since the actuator

dofs θ appear among the mixed coordinates, we necessarily have θ′ = θ, and the

flexible coordinates satisfy

ρ(θ) + Ψuδ(θ) ηδ = ρ(θ) + Ψuδ(θ) ηδ
′ ⇒ Ψuδ (ηδ − ηδ ′) = 0 (5.67)

From the linear independence of the flexible modes, we deduce that ηδ−ηδ ′ = 0,

which completes the proof.

Continuity of the constraint modes

The constraint modes Ψuγ are defined from the linear static analysis when

the rigid dofs are fixed, see equation (5.19), and we have

Ψiγ(θ) = −
(
Kii(θ)

)−1
Kig(θ) (5.68)

Since Kii is invertible3, and since all the stiffness coefficients are continuous and

differentiable, so are the constraint modes.

Continuity of the internal modes

The internal modes Ψiι are obtained after three steps:

1. the eigenvalue problem is solved:(
Kii(θ)− ω2 Mii(θ)

)
Ψiι∗(θ) = 0 (5.69)

2. the resulting nι∗ eigenmodes are sorted according to their eigenvalue, and

the first nι < nι∗ modes are selected,

3. the modes are normalized with respect to the mass matrix so that:

ΨiιT Mii Ψiι = Iιι (5.70)

3Otherwise, additional rigid modes should be defined.
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For one selected eigenvalue ωk and the associated internal mode ψk, it is

instructive to differentiate (5.69) with respect to a coordinate θl:(
∂Kii

∂θl
− ω2

k

∂Mii

∂θl
− ∂ω2

k

∂θl
Mii

)
ψk +

(
Kii − ω2

k Mii
) ∂ψk

∂θl
= 0 (5.71)

A pre-multiplication by ψT
k leads to the extraction of

∂ω2
k

∂θl
:

∂ω2
k

∂θl
=

1

µk
ψT
k

(
∂Kii

∂θl
− ω2

k

∂Mii

∂θl

)
ψk (5.72)

with the modal mass µk = ψT
k Mii ψk > 0. Therefore, each eigenvalue ωk exhibits

smooth variations with respect to the coordinate θl.

From the continuity of ωk, and of the mass and stiffness matrices, the first

term in (5.71) is continuous, and so is the second one. However, the derivatives of

the eigenmodes ∂ψk
∂θl

can take arbitrary large values in the kernel of Kii− ω2
k Mii.

If ωk has a multiplicity κ = 1, ψk is the single vector in this kernel, which

means that the arbitrary variations are parallel to the initial vector. Those vari-

ations are forbidden due to the normalization condition (5.70), and we conclude

that ∂ψk
∂θl

is continuous.

This property is no more guaranteed for a multiplicity κ > 1. In this case, the

kernel of Kii−ω2
k Mii can be a multi-dimensional subspace, where the eigenvectors

can take arbitrary variations.

An example is given in Figure 5.8. In the one-dimensional configuration

space, there is one configuration θ1 = θb for which ω1 = ω2 and κ = 2. For θ1 < θb

or for θ1 > θb, ψ1 and ψ2 are thus continuous. By inspection of equation (5.69),

and considering that the eigenvalues are continuous across θb, an eigenmode found

on one side of the boundary θb is still a valid eigenmode on the other side. For

this reason, it is possible to impose ∆ψ1 = 0 and ∆ψ2 = 0 from one side of θb to

the other, leading to a continuous parameterization.

This analysis is naturally extended for a s-dimensional configuration space.

The domains such that κ > 1 are b-dimensional manifold Mb, with b < s (the

less usual case where b = s deserves a specific treatment, which is not considered

here). It is still possible to impose ∆ψk = 0 across the boundary Mb, which

motivates the implementation of a mode tracking strategy at the step 2 of the

construction of the internal modes.
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Figure 5.8: Variations of the eigenfrequencies in the configuration space.

Similar mode-tracking problems arise in topological optimization problems;

for instance, Kim and Kim [KK00] have proposed a method based on the Modal

Assurance Criterion (MAC value) defined in structural identification. The MAC

number is a measure from 0 to 1 of the correlation between two modes, a unitary

value meaning perfect correlation. Our method relies on a correlation of the

nι∗ eigenmodes computed at the current configuration, with nι eigenmodes Ψiι
ref

associated with a reference configuration. A mode matching algorithm defines the

eigenmodes Ψiι in order to obtain MAC numbers as close as possible to 1. More

precisely, the MAC matrix, which is filled by the MAC numbers of all pairs of

modes, is rendered as close as possible to the identity.

Ideally, all diagonal terms of the resulting MAC matrix are above 0.95, and

the consistency of the internal modes is guaranteed. If the reference configuration

is far from the current configuration, lower MAC values may be obtained, so that

the internal modes Ψiι cannot be validated. Then, the algorithm should restart

the procedure with a closer reference configuration. Therefore, the mode-tracking

problem is partly handled by the configuration space inspection algorithm, which

will be explained in section 5.6.3.

Rank of the Jacobian

The last criterion for a well-defined parameterization is that the Jacobian

χη has full rank. At an undeformed configuration, the columns of χη are the

local modes, see equation (5.62). By construction, their linear independence is

guaranteed, and the rank condition is satisfied. At a deformed configuration, the

expression of the Jacobian is slightly affected (5.61), but under the assumption of

small deformations, the full-rank requirement is still verified.
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From this analysis, we conclude that the Global Modal Parameterization is

well-defined, provided that a mode-tracking strategy is implemented. Hence, it is

a reliable basis for the formulation of a reduced-order model.

5.5 Reduced-order model

From the definition of the Global Modal Parameterization, we shall now for-

mulate the equations of motion in terms of the modal parameters. The Lagrange

equations involve contributions from the elastic potential energy (elastic forces),

the kinetic energy (inertia forces), and the work produced by external forces.

5.5.1 Elastic forces

The elastic potential energy is a strongly nonlinear function V(q), and we

seek for an approximation in terms of the reduced coordinates η. From the dis-

sociation between rigid and flexible coordinates, a smoother behavior is expected

for V(θ,ηδ). Around an undeformed configuration p characterized by θ = θ0 and

ηδ = 0, let us consider the order 2 Taylor series expansion:

V(η) = Vp +

(
∂V
∂η

)T
p

∆η +
1

2
∆ηT

(
∂2V
∂η2

)
p

∆η (5.73)

with

∆η =

[
θ − θ0
ηδ

]
(5.74)

At the undeformed configuration, the elastic potential energy is zero Vp = 0, and

the generalized elastic forces vanish
(
∂V
∂η

)
p

= 0.

The second order derivatives of V is an equivalent stiffness

K
ηη

=
∂2V
∂η2

(5.75)

so that

V =
1

2
∆ηT

(
K
ηη
)
p

∆η (5.76)

The objective is to establish a connection between the reduced stiffness (K
ηη

)p

and the initial Finite Element formulation. All the following developments are re-
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alized at the undeformed configuration p. Let us analyze the second-order deriva-

tive of the augmented functional V∗ = V + kλT Φ + pΦT Φ:

∂2V∗

∂η2
= ΨuηT ∂2V∗

∂u2
Ψuη (5.77)

=
[

ΨqηT ΨληT
] [ Kt kΦT

q

kΦq 0

][
Ψqη

Ψλη

]
(5.78)

= ΨqηT Kt Ψqη (5.79)

The property Φq Ψqη = 0 has been used. Since Kt = ∂2V
∂q2 + pΦT

q Φq, we have:

ΨqηT Kt Ψqη = ΨqηT ∂2V
∂q2

Ψqη =
∂2V
∂η2

(5.80)

and we conclude:

K
ηη

= ΨqηT Kt Ψqη (5.81)

Since by construction of the rigid modes Kt Ψqθ = 0, the equivalent stiffness

has the structure

K
ηη

=

[
0 0

0 K
δδ

]
(5.82)

with

K
δδ

= ΨqδT Kt Ψqδ (5.83)

This last formula can be directly exploited in the Finite Element code to compute

the equivalent stiffness. Finally, the potential energy is represented by a quadratic

form in the flexible coordinates:

V(θ,ηδ) =
1

2
ηδT K

δδ
(θ) ηδ (5.84)

The generalized elastic forces are:

∂V
∂ηδ

= K
δδ

(θ) ηδ (5.85)

The contribution ∂V
∂θ

is quadratic in the amplitude of deformation; it is neglected

under the small deformation assumption.

5.5.2 Inertia forces

In the initial model, the kinetic energy is a quadratic form of the velocities

K =
1

2
q̇T M q̇ (5.86)
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Considering the coordinate transformation at the velocity level

q̇ = χη η̇ (5.87)

we obtain:

K =
1

2
η̇T M

ηη
η̇ with M

ηη
= χTη M χη (5.88)

The generalized inertia forces are defined by:

giner =
d

dt

(
∂K
∂η̇

)
− ∂K
∂η

(5.89)

A simplified expression is possible if the variations of the reduced mass matrix

M
ηη

are neglected:

giner = M
ηη
η̈ (5.90)

For a more thorough analysis, let us consider a partitioning of the generalized

coordinates into translation and rotation dofs:

q =

[
x

ψ

]
=

[
χx(η)

χψ(η)

]
(5.91)

In the formulation proposed by Géradin and Cardona [GC01], their contributions

to the kinetic energy are uncoupled:

K = Kx +Kψ =
1

2
ẋT Mxx ẋ +

1

2
ψ̇
T

Mψψ ψ̇ (5.92)

Mxx is constant, but Mψψ is subject to variations due to the updated Lagrangian

point of view adopted for the rotation parameters.

Inertia forces associated with the translation kinetic energy

The contribution of the translation kinetic energy to the generalized inertia

forces is:

gtransiner =
d

dt

(
∂Kx

∂η̇

)
− ∂Kx

∂η
(5.93)

=

(
∂ẋ

∂η̇

)T
Mxx ẍ +

[
d

dt

(
∂ẋ

∂η̇

)
−
(
∂ẋ

∂η

)]T
Mxx ẋ (5.94)

We also have

ẋ = χx
η η̇ and ẍ = χ̇x

η η̇ + χx
η η̈ (5.95)
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so that

gtransiner = χx
η
T Mxx χx

η η̈+χx
η
T Mxx χ̇x

η η̇+

[
χ̇x
η −

∂(χx
η η̇)

∂η

]T
Mxx χx

η η̇ (5.96)

Using the index summation convention, we develop:(
χ̇x
η

)
ij

=
d

dt

(
∂χx

i

∂ηj

)
=

∂2χx
i

∂ηk∂ηj
η̇k (5.97)(

∂(χx
η η̇)

∂η

)
ij

=
∂
(
χ̇x
η η̇
)
i

∂ηj
=

∂

∂ηj

(
∂χx

i

∂ηk
η̇k

)
=

∂2χx
i

∂ηj∂ηk
η̇k (5.98)

Thus, the last term in (5.96) vanishes. It is convenient to define the third order

curvature tensor Γχ
x
:

Γχ
x

ijk =
∂2χx

i

∂ηj ∂ηk
with Γχ

x

ijk = Γχ
x

ikj (5.99)

so that (
χ̇x
η

)
ij

= Γχ
x

ijk η̇k =
(
Γχ

x

. η̇
)
ij

(5.100)

where the ”.” operator is defined as a product of a third order tensor by a vector.

Hence, the translation inertia forces are concisely formulated

gtransiner = χx
η
T Mxx χx

η η̈ + χx
η
T Mxx

(
Γχ

x

. η̇
)
η̇ (5.101)

This expression is composed of two terms:

- the inertia forces obtained when the variations of the reduced mass matrix

are quasi-static,

- the equivalent forces associated with the curvature (or the nonlinearity) of

the coordinate reduction formula.

Inertia forces associated with the rotation kinetic energy of a rigid body

The rotation kinetic energy of an isolated rigid body A is expressed by:

Kψ,A =
1

2
ΩT J Ω (5.102)

where Ω is the 3 × 1 vector of material angular velocities, and J is the inertia

tensor. According to Géradin and Cardona [GC01], Ω is connected to the orien-

tation parameters α of the body by the 3× 3 tangent operator T of the rotation

parameterization:

Ω = T(α) α̇ (5.103)
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In the Finite Element formulation, an updated Lagrangian point of view is adopted,

and the reduction procedure is considered at an updated configuration α = 0. If

the rotations are parameterized using the Cartesian rotation vector or the confor-

mal rotation vector, we have the useful properties:

Tij(0) = δij and
∂Tij
∂αk

(0) =
1

2
εijk (5.104)

where δij is the Kronecker symbol, and εijk is the alternating symbol, defined by

εijk =


1 if (ijk) is a cyclic permutation of (123),

−1 if (ijk) is an anticyclic permutation of (123),

0 otherwise.

(5.105)

The parameters α are a subset of the orientation parameters ψ. If we define

χα = Lαψ χψ, where Lαψ is a localization matrix, we have:

α = χα(η) and α̇ = χαη η̇ (5.106)

Introducing the operator χΩη:

χΩη = T χαη (5.107)

we have

Ω = χΩη η̇ (5.108)

and the developments realized for the translation kinetic energy can be repro-

duced:

grot,Ainer = χΩηT J χΩη η̈+χΩηT J χ̇Ωη η̇+

[
χ̇Ωη − ∂(χΩη η̇)

∂η

]T
J χΩη η̇ (5.109)

χΩη is not a Jacobian, and the last term does not vanish in this case. Let us

develop:

(
χ̇Ωη

)
ij

=

(
∂Tiq
∂ηk

∂χαq
∂ηj

+ Tiq
∂2χαq
∂ηj ∂ηk

)
η̇k (5.110)

∂

∂ηj

(
χΩη η̇

)
i

=

(
∂Tiq
∂ηj

∂χαq
∂ηk

+ Tiq
∂2χαq
∂ηj ∂ηk

)
η̇k (5.111)

where
∂Tiq
∂ηk

=
∂Tiq
∂αl

∂αl
∂ηk

=
1

2
εiql

∂χαl
∂ηk

(5.112)
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Introducing the antisymmetric third-order tensor ΓΩ:

ΓΩ
ijk =

1

2
εiql

∂χαq
∂ηj

∂χαl
∂ηk

with ΓΩ
ijk = −ΓΩ

ikj (5.113)

we obtain (
χ̇Ωη

)
ij

=
(

ΓΩ
ijk + Γχ

α

ijk

)
η̇k (5.114)

∂

∂ηj

(
χΩη η̇

)
i

=
(

ΓΩ
ikj + Γχ

α

ijk

)
η̇k (5.115)

Those expressions can be introduced in (5.109). Using the antisymmetry of ΓΩ,

and observing that ΓΩ
ljk η̇k η̇j = 0, we get:(

grot,Ainer

)
i

= (J χαη )li (χαη η̈)l +
[
(J χαη )li Γχ

α

ljk + 2 ΓΩ
lik (J χαη )lj

]
η̇k η̇j (5.116)

and in matrix form:

grot,Ainer = χαTη J χαη η̈ + χαTη J
(
Γχ

α

. η̇
)
η̇ + 2

(
ΓΩ. η̇

)T
J χαη η̇ (5.117)

The gyroscopic tensor of the rigid body hΩ is defined by:

hΩ
ijk = Jjl εlik (5.118)

After developments, the inertia forces can be restated:

grot,Ainer = χαTη J χαη η̈ + χαTη J
(
Γχ

α

. η̇
)
η̇ + χαTη

[
hΩ. (χαη η̇)

]
(χαη η̇) (5.119)

This expression is composed of three terms:

- the inertia forces obtained when the variations of the reduced mass matrix

are quasi-static,

- the equivalent forces associated with the curvature (or the nonlinearity) of

the coordinate reduction formula,

- the third term is a gyroscopic force:

ggyr,Ainer = χαTη
[
hΩ. α̇

]
α̇ = χαTη ggyr,Ainer (5.120)

which is interpreted as the projected gyroscopic forces of the initial model.
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This generalized formulation for the inertia forces of an isolated rigid body

is also valid in the particular case where no coordinate transformation is applied:

η = α, χαη = I, Γχ
α

= 0 (5.121)

Let us demonstrate the connection of equations (5.119) with the classic Euler

equations in this case. For a rigid body described by a diagonal inertia tensor

J =


J1 0 0

0 J2 0

0 0 J3

 (5.122)

the non-zero components of the gyroscopic tensor hΩ are:

hΩ
123 = −J2, hΩ

132 = J3,

hΩ
213 = J1, hΩ

231 = −J3,
hΩ
312 = −J1, hΩ

321 = J2

(5.123)

Using η = α, equation (5.119) leads to

grot,Ainer =


J1 α̈1 + (J3 − J2) α̇3 α̇2

J2 α̈2 + (J1 − J3) α̇1 α̇3

J3 α̈3 + (J2 − J1) α̇2 α̇1

 (5.124)

The conclusion comes from the observation that α̇ = Ω and α̈ = Ω̇ for an updated

configuration. Indeed, we have:

Ṫij α̇j =
1

2
εijk α̇k α̇j = 0 ⇒ Ω̇ = T α̈+ Ṫ α̇ = α̈ (5.125)

Inertia forces associated with the global rotation kinetic energy

The inertia forces associated with the rotation dofs ψ involve the contribu-

tions of all rigid-bodies of the mechanism (see previous section), as well as the

slightly more complex contributions of the flexible bodies. However, it is easily

verified that the global forces can still be decomposed into three terms:

- a force proportional to the modal accelerations:

χψTη Mψψ χψη η̈ (5.126)
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- an equivalent force associated with the curvature tensor of the coordinate

transformation:

χψTη Mψψ
(
Γχ

ψ

. η̇
)
η̇ (5.127)

- the projected gyroscopic forces

χψTη
[
hgyr. (χψη η̇)

]
(χψη η̇) = χψTη

(
hgyr. ψ̇

)
ψ̇ (5.128)

where hgyr is the gyroscopic tensor of the initial model.

Assembled inertia forces

As a conclusion of the previous developments, the assembled inertia forces

have the form

giner = M η̈ +
(
h . η̇

)
η̇ (5.129)

with

M = χTη M χη (5.130)

h = h
χ

+ h
gyr

(5.131)

The expression of the reduced mass matrix is classical, and two different third-

order tensors are responsible for quadratic forces in the modal rates.

(i) The tensor h
χ

is associated with the curvature Γχ of the reduced param-

eterization:

h
χ

ijk =
(
χTη M

)
il

Γχljk (5.132)

Γχ can be estimated by differentiation of the Jacobian χη using a finite difference

approach.

(ii) The tensor h
gyr

satisfies

(h
gyr
. η̇) η̇ = χψTη

[
hgyr. (χψη η̇)

]
(χψη η̇) = χψTη ggyr (5.133)

and it could be computed from hgyr, according to a tensor projection. However,

in the Finite Element code, manipulations of third-order tensors are avoided and

hgyr is not available. For this reason, we propose to proceed by inspection from

a computation of the gyroscopic force vector ggyr. A unit velocity is imposed to

each pair of variables (η̇i, η̇j), and we deduce the rates of the Finite Element coor-

dinates q̇ = χη η̇. Then, the gyroscopic forces ggyr(q, q̇) are obtained using stan-

dard Finite Element routines. This vector is projected to obtain the equivalent
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gyroscopic forces ggyr = χTη ggyr, which allows a component-wise identification of

the gyroscopic tensor h
gyr

.

Simplification of the inertia forces

Theoretically, the mass matrix and the gyroscopic tensor formulated above

depend on the whole set of reduced parameters η. However, in the following, the

dependence with respect to the flexible coordinates ηδ is neglected, so that we

have

giner = M(θ) η̈ +
(
h(θ). η̇

)
η̇ (5.134)

The mass matrix and the gyroscopic tensor are only evaluated at undeformed

configurations.

The curvature tensor is required for the construction of h. From the ex-

pression of the Jacobian (5.61), it has an interesting structure at an undeformed

configuration:

∂2χi
∂θj∂θk

=
∂2ρi
∂θj∂θk

=
∂Ψuθ

ij

∂θk
(5.135)

∂2χi
∂θj∂ηδk

=
∂Ψuδ

ik

∂θj
(5.136)

∂2χi
∂ηδk∂η

δ
j

= 0 (5.137)

It is associated with the sensitivities of the rigid and flexible modes, which are

easily estimated by finite difference.

5.5.3 Reduced equations of motion

After the development of the elastic and inertia forces, the equivalent external

loads are estimated from a virtual work expression:

δW = gText δq = gText Ψqη δη = gText δη, with gext = ΨqηT gext (5.138)

The reduced equations of motion follow

M(θ) η̈ +
(
h(θ). η̇

)
η̇ + K(θ) η = gext (5.139)
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with the structure:

M =


M
θθ

M
θγ

M
θι

M
γθ

M
γγ

M
γι

M
ιθ

M
ιγ

I

 , K =


0 0 0

0 K
γγ

0

0 0 Ω2

 , gext =


gaext + ΨgθT ggext

ggext

0


(5.140)

gaext denotes the actuator forces, and ggext the forces applied to the constraint dofs.

This model is fully described by M, K, h and Ψgθ, which smoothly depend on θ.

5.5.4 Algorithm for local model reduction

Assuming that a reference model is available at a configuration θref (with

local modes Ψref ), the construction of the reduced-order model for a configuration

θ involves the following steps:

1. kinematic analysis (from θref to θ),

2. local mode synthesis (Ψuη),

3. mode matching (Ψ−Ψref ),

4. model reduction (M, K, h and Ψgθ).

An overview of the local order reduction algorithm is given in Figure 5.9. This

local analysis is combined with a configuration space approximation algorithm,

presented in the next section. Hence, a database is exploited to store and reuse the

local models. As mentioned earlier, the mode matching may fail if the reference

configuration θref is too far from θ, leading to a non-valid model.

5.6 Approximation in the configuration space

The local construction of the reduced-order model involves a computationally

demanding numerical procedure. However, the variations of the model in the con-

figuration space can be described by a simplified and approximated metamodel, or

model of the model. If all relevant coefficients associated with M, K, h and Ψgθ

are collected in a single t× 1 output vector f , the numerical reduction procedure
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Search in database

find θ ?

Kinematic analysis

u = ρ(θ)

Local mode synthesis

Ψuη

Check validity

Valid model?

Mode matching

MAC(Ψuι,Ψuι
ref )

Model reduction

M, K, h

?

?

?

?

?

yes

?

-�no yes

-no

yes

no

Non-valid model

Valid model

Figure 5.9: Construction of the reduced model in the neighborhood of a configu-

ration θ.
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is a smooth black box function f(θ), and the metamodel is an approximation f̂(θ)

for this function:

f = f(θ) ⇒ f ' f̂(θ) ∀ θ ∈ Ωr
θ (5.141)

Obviously, there is a trade-off between the accuracy of the approximation and the

complexity of the metamodel.

This standard approximation problem received a major interest in the litera-

ture. In particular, a strong connection can be established with response surface

methods proposed in optimization [MM95], which take advantage of an approxi-

mated model to reduce the number of runs of a full model.

In the state of the art (section 2.4.2), several approximation techniques were

reported, such as neural networks, polynomial approximations, rational approxi-

mations, kriging functions and the local model network approach. In general, the

metamodel is elaborated according to the following procedure:

1. select a set of inputs θ(1), ...,θ(r);

2. run the local reduction algorithm for each input and get back f (1)...f (r);

3. define a generic approximated function f̂(W,θ), where W is a matrix of

free parameters;

4. select W to fit f̂ on the data obtained in step 2.

Step 1 is also referred to as the experimental design problem. Step 2 was the

subject of our previous developments. In step 3, many choices are possible, and

we restrict the study to linear approximations:

f̂i(θ) =
nv∑
j=1

Wij vj(θ) (5.142)

where vj (j = 1, ..., nv) are fixed basis functions, and Wij are the free weights

which allow to fit the model. The linearity is with respect to the weights, and

not to the input variables. Step 4 is then a linear regression problem which can

be solved in the least-square sense using standard methods.

Radial basis functions are an interesting candidate for the basis functions:

vj = vj(‖θ − θ(j)‖) j = 1, ..., r (5.143)
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If the number of radial functions equals the number of given configurations θ(j),

it is possible to interpolate exactly any set of scattered data. However, for large

data sets, the resulting function f̂ may become computationally inefficient, and

the number of basis functions should be reduced following a non-trivial selection

procedure. Moreover, the choice of appropriate radial functions is not systematic,

and sometimes requires nonlinear optimization strategies.

In this research, we prefer low-order polynomial basis functions, which are

more simple and efficient for our problem. In order to increase the flexibility of

the approximation, a piecewise strategy is adopted as proposed in [BDG06], so

that the above procedure is applied for several non-overlapping subsets of the con-

figuration space Ωr
θ. The decomposition into subsets can be realized adaptively in

order to satisfy a specification on the approximation error. Thus, a general, effi-

cient and systematic approximation procedure is developed leading to a portable

and computationally efficient nonlinear model.

The next section presents the piecewise strategy for approximation. After-

wards, the polynomial basis functions are defined and an algorithm is proposed

for automatic configuration space decomposition.

5.6.1 Piecewise strategy

A piecewise approximation is defined over a collection of subsets that cover

the configuration space. In computational mechanics, several methodologies have

been proposed to enforce the consistency of a piecewise approximation, e.g. in a

Finite Element context. Most of them are dedicated to 2 or 3 dimensional spaces,

and they are not applicable for our problem if the configuration space has a higher

dimension. This section describes a more general approach for the decomposition

of the configuration space using the concept of subpaving, developed in the theory

of interval analysis.

Interval analysis theory [JKDW01] offers systematic methods for the approxi-

mation of a complex set using simple subsets. If [θ] ⊂ R represents a real interval,

with a lower and an upper bounds:

[θ] = [θ θ] (5.144)

an interval vector [θ] ⊂ Rs is defined by the cartesian product of s real inter-
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Figure 5.10: Inner and outer approximation of the configuration space using sub-

pavings.

vals [θi]:

[θ] = [θ1]× [θ2]× . . .× [θs] (5.145)

Roughly speaking, an interval vector is a s-dimensional box that can be repre-

sented by two corners: the lower bound θ = [θ1 θ2 . . . θs]
T and the upper bound

θ = [θ1 θ2 . . . θs]
T .

A subpaving X is a set of nb non-overlapping boxes4:

X = {[θ]1, . . . , [θ]nb} (5.146)

The configuration space Ωr
θ can be approximated from inside and outside by two

subpavings, see Figure 5.10:

X− ⊂ Ωr
θ ⊂ X+ (5.147)

A subpaving is an appropriate basis for the definition of piecewise functions.

If B = {0, 1} denotes the set of booleans, we define the activation functions

τ k : X → B:

τ k(θ) = 1 ∀ θ ∈ [θ]k

τ k(θ) = 0 ∀ θ /∈ [θ]k
k = 1, ..., nb (5.148)

and a piecewise approximation function can be formulated

f̂i(θ) =

nb∑
k=1

nv∑
j=1

W k
ij τ

k(θ) vj(θ − θk) (5.149)

4The interested reader may find a more accurate definition in [JKDW01].
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where vj are a low-order polynomials, defined for each boxes in local coordinates.

Hence, the construction of an approximated piecewise model in the configuration

space involves two problems:

- the definition of an appropriate inner subpaving X− ⊂ Ωr
θ,

- the selection of local basis functions vj.

In the following, possible choices for polynomial approximation are first dis-

cussed; the construction of an appropriate subpaving is addressed later.

5.6.2 Local polynomial approximation

Two approaches for the local polynomial approximation are hereby considered

and compared: quadratic polynomials and Lagrange polynomials. For notational

convenience, the presentation focuses on a single component i of the model f =

fi which depends on a s-dimensional configuration vector θ. The interpolating

polynomial is denoted Ps = f̂i, and the weight matrix becomes a vector wj = Wij.

Quadratic polynomials

For a one-dimensional problem, a quadratic polynomial P1 is defined by

P1 = a+ b θ + c θ2 (5.150)

This formula can be generalized to s-dimensional problems:

Ps = a+
s∑
i=1

bi θi +
s∑
i=1

s∑
j=i

cij θi θj (5.151)

The basis functions vk (k = 1, ..., nv) are the monomials 1, θi (i = 1, ..., s) and θi θj

(i = 1, ..., s, j = i, ..., s), and their weights are the coefficients of the polynomial.

If one assumes that the products θi θj are pre-computed5, the computation of Ps

requires nop floating-point operations, with:

nop(s) = s2 + 3s (5.152)

5For a function f : Rs → Rt, the values of θi θj are computed once for the t output com-

ponents, and the associated computational cost is thus far less significant than for the other

operations.
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Full factorial Fractional Factorial Central Composite Design

Figure 5.11: Experimental designs in 3D [Mon97].

Considering a set of r data f (k) = f(θ(k)), (k = 1, ..., r and r > nv), the

definition of the weights is a linear regression problem:
f (1)

...

f (r)

 =


v
(1)
1 . . . v

(1)
nv

...
. . .

...

v
(r)
1 . . . v

(r)
nv




w1

...

wnv

 (5.153)

where v
(k)
j = vj(θ

(k)). This overdetermined set of equations can be solved in the

least square sense, using standard regression algorithms (normal equations, QR

algorithm or Singular Value Decomposition).

Several authors (e.g. Montgomery [Mon97]) argued that the data points θ(k)

should be selected according to an experimental design in order to improve the

quality of the approximation. Figure 5.11 illustrates classical definitions: the full

factorial design, the fractional factorial design, and the central composite design.

More sophisticated methods, such as the Taguchi approach, seem unnecessarily

complicated for our problem.

The central composite design is retained here, since it provides sufficient in-

formation to estimate the quadratic effects required for a second-order polynomial

approximation. The axial position of the ”star points” is selected at the intersec-

tion with the border of the box.6

Due to the piecewise strategy, the approximation function exhibits a discon-

tinuous behavior at every boundary between boxes. This important drawback

can be overcome using the family of Lagrange polynomials (see [ZT89, PTVF92]

6For one-dimensional problems, in order to avoid superimposation on the other data points,

the star points are fixed at intermediate positions.
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for detailed presentations), so that a C0 continuity is obtained at every boundary

between matching boxes.

Lagrange polynomials

Let us consider the approximation of a real function f : R → R, from p data:

f (k) = f(θ(k)), k = 1, ..., p. It is well-known that an order p−1 polynomial can be

fitted exactly on those data, for instance using the p Lagrange polynomials L(i),

which are constructed to satisfy the condition:

L(i)(θ(k)) = δik (5.154)

δik is the kronecker symbol. This condition leads to the Lagrange interpolation

formula:

L(i)(θ) =

p∏
k = 1

(k 6= i)

θ − θ(k)

θ(i) − θ(k)
=

p∑
k=1

Aik θ
k−1 (5.155)

The last equality defines the components of the matrix A, which is implemented

in the numerical code for efficient computations. Therefore, the interpolating

polynomial of the function f is simply

P1(θ) =

p∑
i=1

f (i) L(i)(θ) =

p∑
k=1

f ∗(k) θk (5.156)

with

f ∗(k) =

p∑
i=1

f (i) Aik (5.157)

This idea can be recursively implemented for s-dimensional problems, if the

data points are placed in a s-dimensional grid. Suppose that an interpolating

polynomial Ps−1 is available for s−1 dimensional problems, and consider ps values

for the additional coordinate θs. The s-dimensional interpolating polynomial is

obtained in two steps:

- for each fixed value θ
(i)
s (i = 1, ..., ps), define an interpolating polynomial

P
(i)
s−1 for the s− 1 dimensional problem,

- exploit 1-dimensional polynomials L(i) (i = 1, ..., ps) for interpolation in

direction θs.
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Figure 5.12: Two-dimensional configuration space with a quadratic interpolation

formula (s = 2, p = 3).

This is summarized in the following formula:

Ps(θ) =

ps∑
i=1

P
(i)
s−1 L

(i)(θs) =

ps∑
k=1

P
∗(k)
s−1 θ

k
s (5.158)

with

P
∗(k)
s−1 =

p∑
i=1

P
(i)
s−1 Aik (5.159)

According to this last equation, the construction of P
∗(k)
s−1 relies on a recursive im-

plementation of addition and scalar multiplication for polynomials. In Figure 5.12,

a two-dimensional problem with a quadratic interpolation formula (s = 2, p = 3)

is considered, and equation (5.158) becomes

P2(θ1, θ2) =
3∑
i=1

3∑
j=1

f
(
θ
(i)
1 , θ

(j)
2

)
Li(θ1) Lj(θ2) (5.160)

A remarkable properties of the Lagrange interpolation, is that the s − 1

dimensional function obtained by fixing θs = θ
(k)
s is not influenced by the data

associated with θ
(i)
s , i 6= k. Therefore, if two neighbor boxes share the same

s−1 dimensional grid at their boundary, the piecewise interpolation is continuous.

The continuity is lost when the subpaving is not made of matching boxes, for

instance due to an adaptive strategy for the configuration space decomposition, as

illustrated in Figure 5.13. Such an adaptive strategy is usually adopted to improve

the compromise between accuracy and memory storage. Hence, the continuity of
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Figure 5.13: Discontinuity of Lagrange polynomials between boxes with non-

matching grids: the circled data points do not belong to the grid of the left box.

the model is a third conflicting criterion to be considered for the definition of an

appropriate approximation strategy.

In this work, the second-order Lagrange interpolation has been selected,

which relies on p = 3 data in the 1-dimensional case:

P1 = f ∗(1) + f ∗(2) θ + f ∗(3) θ2 (5.161)

If θ2 is pre-computed7, each component of f̂ requires nop(1) = 4 operations (2

additions and 2 multiplications).

An s-dimensional interpolation involves 3s−1 1-dimensional polynomials, and

we get:

Ps(θ) = P
∗(1)
s−1 + P

∗(2)
s−1 θs + P

∗(3)
s−1 θ

2
s (5.162)

the number of operations per component nop satisfies

nop(s) = 3nop(s− 1) + 4 (5.163)

This difference equations has the solution

nop(s) = 2 (3s − 1) (5.164)

In order to make a connection with standard approximation techniques, equa-

tion (5.162) could be rewritten as a sum of 3s monoms or basis functions, with 3s

weights allowing to fit exactly the 3s data.

7As for quadratic polynomials, the computation of θ2 is computed once for the t output

components, and the associated computational cost is far less significant than for the other

operations.
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s nop ndb ncfg

Quadratic Lagrange Quadratic Lagrange Quadratic Lagrange

1 4 4 3 3 5 3

2 10 16 6 9 9 9

3 18 52 10 27 15 27

4 28 160 15 81 25 81

5 40 484 21 243 43 243

6 54 1456 28 729 77 729

s s2 + 3s 2(3s − 1) s2+3s+2
2

3s 2s + 2s+ 1 3s

Table 5.1: Comparison between quadratic and Lagrange polynomials.

Comparison Quadratic/Lagrange polynomials

The Lagrange polynomials have more flexibility, with the advantages of ex-

act interpolation, and C0 continuity for neighboring boxes with matching grids.

Moreover, recursive concepts make the implementation reliable and efficient. The

price to pay is the manipulation of higher-order polynomials, whose construc-

tion requires more data points. For dimensions s = 1 to 6, Table 5.1 compares

quadratic and Lagrange approximation for a function f : Rs → R with respect

to

- the number of operations nop to estimate Ps,

- the number of weights ndb, that should be eventually stored in a database

for each component of the model,

- the number of data points ncfg required to compute the weights.

From this analysis, Lagrange polynomials are less attractive for high-dimensional

problems. Anyway, a compromise has to be defined between:

- the accuracy,

- the continuity,

- the computational load for the approximation function,

- the memory storage requirement,
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- the number of data point necessary to construct the approximation.

5.6.3 Automatic configuration space decomposition

Quadratic and Lagrange polynomials are defined in a box [θ], on the basis

of information collected at the data points. The approximation error within the

box is directly connected with

- the smoothness of f in [θ],

- the size of [θ].

Ideally, the size of the boxes should be adapted according to the behavior of f , in

order to improve the compromise between accuracy, continuity, memory storage

and efficient construction of the approximation function. For instance, close to

singularities, a refinement is suitable to track the strong variations of the dynamic

parameters. The adaptive algorithm presented here relies on the representation

of the subpaving as tree data structure and it allows a high-level definition of the

approximation error.

Before the description of the algorithm, let us define the algorithmic object

model, at the basis of the configuration space inspection procedure. A model is a

data structure containing:

- the box [θ], defined by θ and θ,

- a pointer to the approximation function f̂ ,

- a boolean valid, true if the approximated function is a valid model,

- two pointers leftModel, and rightModel to child models that might be de-

fined after the bisection of the box [θ], thus, a model is binary tree structure

which represents a subpaving,

- an integer bisectDirection, that specifies the possible bisected dimension.

Temporary variables are also defined

- eval and êi (i = 1, ..., s) are representative of the approximation error in the

box, they will be defined later,
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- cfgSet is the set of configurations defined in the box according to the ex-

perimental design,

- θref is a reference configuration extracted from the database, for which a

valid local model is available; it may belong to cfgSet, otherwise it should

be as close as possible to the box [θ],

- θ is the current configuration.

Figure 5.14 illustrates the construction of a model associated with a box [θ].

Local models are defined for every data points of the configuration set cfgSet, and

after, the approximation function is constructed. The model is bisected if the local

analysis failed at any data point or if the approximation error is not acceptable.

In those cases, a bisection of the model leads to the recursive definition of two

child models. In the following, the error analysis, and the selection of the bisection

direction are presented with more details.

Error analysis

The relative approximation error is defined by:

e(θ) =

∥∥∥f(θ)− f̂(θ)
∥∥∥

‖f(θ)‖
> 0 (5.165)

Since the components of the vector f do not have the same physical meaning

and the same order of magnitude, it is recommended to replace the norm by a

weighted norm:

‖f‖D =
√

fT D f (5.166)

where D = diag(d1, ..., dt) is a diagonal matrix of positive weights. Each weight

di should be adjusted according to the physical meaning of the component fi (e.g.

component of M
θθ

, component of K
γγ

, etc.).

The validation of the approximation relies on the analysis of the error for a

set of validation configurations θval(i) (i = 1, ..., nval). The average error of the

validation set is:

eval =
1

nval

nval∑
i=1

e
(
θval(i)

)
(5.167)

The criterion for the validation of the approximation is defined by

eval < tole (5.168)
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Figure 5.14: Construction of the global model in a box [θ].



160 CHAPTER 5. NONLINEAR MODEL REDUCTION

-

6

θ1

θ2

θ1 θcenter1 θ1

θ2

θcenter2

θ2

b
bb b×

θ2

Figure 5.15: Validation configurations for error and sensitivity analysis in a two

dimensional configuration space. The validation points are represented by the

circles.

where tole is a tolerance. For critical applications, eval can be defined as the

maximal error observed in the validation set.

In order to select the optimal bisection direction, the sensitivity of the relative

error with respect to the configuration parameters θ is analyzed. In particular,

the sensitivity of e with respect to a component θi is defined by

∂e

∂θi
(5.169)

Assuming that the error vanishes at the center of the box, a first order approx-

imation of the maximal error encountered when moving to the side of the box

along direction i is given by:

êi =

∣∣∣∣ ∂e∂θi
(
θi − θi

2

)∣∣∣∣ (5.170)

Therefore, the optimal bisection direction is defined as the direction which maxi-

mizes êi.

The sensitivities of the error are computed using a finite difference method.

The validation set can be exploited for this purpose, for instance, by the defi-

nition of validation configurations at mid-distance star-points, as illustrated in

Figure 5.15.
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Selection of the bisection direction

As described in Figure 5.14, if the definition of a local model failed, or if the

approximation error eval is not acceptable, the algorithm achieves a bisection of

the box into two child boxes. The choice of the bisection direction has a critical

influence on the efficiency of the procedure.

First, it is forbidden to bisect in any direction i for which

∆i < 2 tolwi (5.171)

where tolwi (i = 1, ..., s) is a minimal tolerance on the width in direction i, nec-

essary to ensure the termination of the algorithm. If no error information is

available, the direction associated with the largest normalized width ∆i/tol
w
i is

bisected. If the error analysis has been performed, the maximal value of êi defines

the bisection direction.

To conclude, the adaptive decomposition of the configuration space limits the

difficulties associated with the curse of dimensionality, and it is especially valuable

for complex mechanisms with high-dimensional configuration space.

5.6.4 Additional parameters of the model

The vector f can collect the components of M, h, K, and Ψgθ, necessary

to describe the dynamics associated with the modal coordinates. However, any

other relevant information can also be included in this vector, for instance, the

modal contributions of the gravity forces, the amplitudes of the mode shapes at

a sensor coordinate, etc.

5.7 Summary of the reduction procedure

After the detailed description of the reduction algorithm, and before consid-

ering a couple of applications, let us present an overview of the concepts proposed

in this chapter, which are illustrated in Figure 5.16.

At an undeformed configuration with zero velocities, the linearized equations

are formulated for the assembled mechanism, and exploited for the local mode

synthesis. The local modes are consistent with a nonlinear Global Modal Pa-

rameterization (GMP), in the sense that they are connected with its Jacobian.



162 CHAPTER 5. NONLINEAR MODEL REDUCTION

From an analysis of the potential and kinetic energies, the Lagrange equations are

formulated, and the components of the stiffness matrix, of the mass matrix, and

of the gyroscopic tensor are identified using the local reduction algorithm. The

approximation technique allows a nonlinear, simplified and portable expression of

the reduced model.

5.8 Applications

Two applications are treated in this chapter: an academic flexible four-bar

mechanism, and a rigid parallel-kinematic machine-tool, called Orthoglide.

5.8.1 Four-bar mechanism

Figure 5.17 illustrates a four-bar mechanism with large configuration changes.

The mechanism is controlled by a motor at the lower left hinge, so that the rigid

motion is parameterized with the hinge angle θ. Configurations (a) and (e) are

associated with actuator singularities, and they define the limits of our study in

the configuration space (actually, the configuration space of interest is restricted

to θ ∈ [−1.75, 1.75] rad). At the singular configurations, the actuator is not able

to control the motion of the mechanism, and the aligned links may bend upward

or downward, depending on other external forces. It is noticeable that another

actuator location would lead to another actuator singularity.

We consider that the operations of a tool cause vertical loads on the upper

right hinge, and one constraint mode is therefore associated with the vertical

displacement ze of that point. Three internal modes are also selected to represent

the deformations of the mechanism. The initial Finite Element model contains

91 dofs, whereas the reduced model involves 5 modal coordinates (1 rigid mode,

1 constraint mode, 3 internal modes), which are represented for configuration (d)

in Figure 5.18. Two internal modes have an out-of-plane deformation.

For this one-dimensional configuration space, the Lagrange interpolation tech-

nique is selected and different versions of the reduction algorithm are tested.

First, the configuration space is decomposed into 32 boxes according to a

regular grid, and the mode tracking algorithm is disabled. The natural frequencies

of the selected internal modes are plotted in Figure 5.19. On the left plot, non-
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=
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]
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] [ ∆θ

ηδ

]
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(θ) ηδ

K = 1
2
η̇T M(η) η̇

→
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↓
↙
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[
0

K
δδ
ηδ

]
= ΨqηT gext

Figure 5.16: Overview of the model reduction method.



164 CHAPTER 5. NONLINEAR MODEL REDUCTION

Figure 5.17: Large configuration changes of the four-bar mechanism

smooth variations are observed around θ = 0.7 rad. They can be attributed to the

presence of additional low-order modes which interfere with the selected internal

modes. The algorithm selects the three modes with the lowest frequencies, so that

discontinuities are observed whenever an eigenvalue crossing occurs.

This situation is of course not acceptable, since it leads to a non-consistent

parameterization of the motion. The mode tracking strategy is able to remedy

this situation, as attested by the results on the right plot in Figure 5.19. The

selected modes are tracked in the configuration space, despite the presence of

other low-frequency modes.

For the rigid mode, Figure 5.20 illustrates the variations of the equivalent

mass and gyroscopic tensor in the configuration space. A vertical asymptote

is expected close to the extreme singular configurations. Mathematically, the

components of the rigid modes grow to infinity at those points, which explains

the phenomenon. From the actuator point of view, the mechanical blocking at the

singularity is equivalent to an infinite inertia. The relative error resulting from

the approximation strategy is also presented:

erri(θ) =

∥∥∥fi(θ)− f̂i(θ)∥∥∥
‖fi(θ)‖

(5.172)

A remarkable accuracy is obtained away from the singularities: the error is around

0.1% for the mass, and around 0.5% for the gyroscopic tensor. In particular,

the errors vanish at every grid points. However, at the singularity, low-order

polynomials defined on a regular grid are not able to represent the stiff behavior

of the system. It is also observed that the gyroscopic tensor is connected with

the gradient of the equivalent mass in the configuration space, in agreement with

well-known principles of mechanics.
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Figure 5.18: Mode shapes for configuration (d). From top to bottom: rigid mode,

constraint mode (θ is fixed), and 3 internal modes (θ and ze are fixed).
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Figure 5.19: Natural frequencies in the configuration space - importance of the

tracking strategy (obtained with a regular grid discretization).

The equivalent stiffness associated with the constraint mode is analyzed in

Figure 5.21. The stiffness takes very large values around configuration (c) repre-

sented in Figure 5.17. In this configuration, the two left links are aligned, and any

vertical motion ze induces traction or compression efforts, involving tremendous

strain energy. As a result of the large stiffness of the constraint mode, the vertical

deflection of the effector is almost blocked.

In order to achieve a better trade-off between the number of boxes and the

accuracy of the approximation, the adaptive strategy for the grid definition has

been applied. The tolerance for the relative error is set to tole = 0.003 and the

minimal box width tolw1 = 0.03 rad. The comparison between the regular and

the adaptive grid is presented in Figure 5.22. The adaptive grid consists in 37

boxes (only 5 more than the regular grid), and it is refined close to the singu-

lar configurations, and close to configuration (c). The benefits of this strategy

clearly appears in Figure 5.23, where inertia characteristics and relative errors

are compared. For the adaptive strategy, the accuracy is strongly increased near

the singularities, and small errors are tolerated in other parts of the configuration

space, allowing a coarser discretization. Figure 5.24 reveals the ability of this

approach to deal with the non-smooth behavior of the stiffness of the constraint

mode around configuration (c). The regular grid leads to a bad approximation

in a large domain around the peak, which may strongly affect the quality of the
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Figure 5.20: Regular grid with tracking strategy: variations of the equivalent

inertia associated with the rigid mode Mθθ(1, 1), and of the gyroscopic tensor

h(1, 1, 1).
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Figure 5.21: Regular grid with tracking strategy: equivalent stiffness associated

with the constraint mode. The picture on the right is a zoom.
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Figure 5.22: Regular and adaptive grid.

model.

Additional information can be recorded in the reduced model. For instance,

the modal contribution of the gravity forces ggrav and the amplitude of the rigid

modes for the constraint dof (Ψgθ) are plotted in Figure 5.25.

From this example, we conclude that the reduced-order modeling technique

is able to capture accurately the nonlinear changes in the stiffness and inertia

properties. The mode-tracking strategy is essential to guarantee the consistency of

the results. Close to the singular configurations, the adaptive configuration space

decomposition is valuable to reduce the approximation error and to optimize the

computational resources. In order to demonstrate the generality of the approach,

a mechanical system with a 3-dimensional configuration space is considered in the

next example.

5.8.2 The Orthoglide

The Orthoglide (Figure 5.26) is a parallel kinematic machine-tool designed at

the IRCCyN research center (Nantes, France) for high-speed machining [WC00,

CWA00, GKCW02, CWM02, CW03]. Three orthogonal linear actuators, fixed

to the frame, control the 3-dimensional motion of the effector, and an isotropic

behavior is obtained in the center of the workspace, where the 3 links are parallel
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Figure 5.23: Comparison adaptive/regular grid: inertia components.
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Figure 5.25: Additional information recorded in the model: equivalent gravity

force exerted on the rigid dof, and amplitude of the rigid mode for the constraint

dof Ψgθ(1, 1).

to the inertial frame axes. The effector is connected to the actuators through a

set of three parallelogram mechanisms, so that its orientation is kept constant.

A simplified model is constructed, assuming rigid links, and ideal joints. Since

we are especially interested in the dynamic relation between the actuators and

the translation of the effector, the parallelogram mechanism is modeled as a rigid

link, connected to the actuator by a universal joint, and to the effector by a

spherical joint, see Figure 5.27. Hence, the initial model involves 27 dofs: 15

generalized coordinates, and 12 Lagrange multipliers. In this case, the objective of

the reduction is to formulate an equivalent model in term of the three independent

actuator coordinates. This problem could be equivalently solved according to an

extended constraint elimination method [BDG06]. The resulting inverse dynamic

model is especially well-suited for the design of a computed-torque controller: the

model predicts the required actuator forces and torques to produce a pre-specified

motion.

Chablat et al. [CWM02] analyzed the workspace of the Orthoglide using

interval analysis concepts. Here, the motion of each actuator is limited to the

interval [-0.08, 0.26] m and the corresponding workspace does not contain any

singular configuration; two extreme configurations are illustrated in Figure 5.28.

The reduced mass matrix and gyroscopic tensor are constructed. The ap-

proximation in the configuration space is done with quadratic and Lagrange poly-
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Figure 5.26: Prototype of the Orthoglide and conceptual kinematic representa-

tion. The length of the links is approximately 45 cm.

Figure 5.27: Model of the Orthoglide. The fixation of the links on the actuator

slider is modeled as a universal joint to prevent their axial rotation.
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θ = [−0.08 − 0.08 − 0.08]T m :

θ = [0.26 0.26 0.26]T m :

Figure 5.28: Extreme configurations of the Orthoglide. In grey lines, the config-

uration θ = [0 0 0]T m.
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Figure 5.29: Configuration space discretization: Quadratic and Lagrange polyno-

mials. Configuration space cut in the plane θ3 = −0.08 m.

nomials. The tolerance on the relative error tole is fixed to 0.5%, the minimal box

width tolwi is fixed to 0.05 m (i = 1, 2, 3). The discretization in the configuration

is illustrated in Figure 5.29. Quadratic polynomials require 22 boxes, whereas 8

boxes are sufficient for Lagrange polynomials. Therefore, each component of the

reduced model requires the storage of 220 floating-point numbers for quadratic

polynomials, and of 216 numbers for Lagrange polynomials.

The variations of the inertia parameters along a straight line in the con-

figuration space are presented in Figure 5.30. The quadratic polynomial is not

appropriate, since significant discontinuities are observed. The results would be

improved using smaller tolerances tole and tolwi , but it would lead to an exagger-

ated discretization of the configuration space. Using Lagrange polynomials, the

relative error is kept below 0.5% for the mass, and below 3% for the gyroscopic

tensor.

As a conclusion, the reduction method is applicable to a spatial mechanism

with 3 kinematic dofs. The nonlinear variations of the inertia properties are sig-

nificant but smooth, since the actuator singularities are avoided. Thus, piecewise

polynomials lead to an efficient representation of the dynamic model.

5.9 Summary and concluding remarks

This chapter proposed a modeling tool for the compact and closed-form repre-

sentation of complex flexible multibody systems with parallel topology. Following
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Figure 5.30: Variations of the inertia components from the extreme configuration

θ = [−0.08 − 0.08 0.26]T m to [0.26 0.26 − 0.08]T m. On the left,

the equivalent mass associated with the first rigid mode M
θθ

11 , on the right the

component h111.
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a model reduction approach, the method relies on the following assumptions:

- the system is conservative and holonomic, no pre-stressing effect is consid-

ered,

- the singularities are avoided in the configuration space,

- the elastic behavior is linear, the reduced stiffness only depends on the

kinematic configuration θ, and centrifugal stiffening effects are neglected,

- the reduced parameterization is defined in an optimal way on the basis

of the linearized equations around any kinematic configuration with zero

velocities, i.e., it is optimized for quasi-static configuration changes.

The resulting model is described concisely according to a Global Modal Pa-

rameterization, which is free from kinematic constraints. The clear physical inter-

pretation of the modal coordinates guarantees the consistency of the formulation.

The reduced model is represented by a piecewise polynomial function, with the ad-

vantages of computational efficiency and portability. In the reduction procedure,

the accuracy loss is localized at three levels:

- the truncation of the modal basis (this source of error disappears when

considering a rigid mechanism),

- the approximation in the configuration space,

- the elimination of nonlinear phenomena associated with large deformations.

The procedure is systematic, and the user only needs to provide high-level

information:

- a standard Finite Element model of the mechanism,

- the partitioning into rigid, constraint, and internal dofs,

- the number of internal modes,

- an inner subpaving approximation of the configuration space,

- the tolerance on the approximation error, and the minimum size of the

boxes.
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The mode shapes are deduced automatically, even if the mechanical topology is

complex and if the distribution of physical properties in the flexible bodies is non-

uniform. This is a definite advantage over assumed-mode techniques, where the

appropriate definition of the modes and boundary conditions is often intricate.

In this chapter, two examples have been successfully analyzed: a flexible

four-bar mechanism, and a rigid parallel kinematic machine-tool. In chapter 6,

the reduced-order model of a flexible manipulator will be exploited for the design

of a control algorithm.

The dofs appearing in the final model are directly associated with the actua-

tors, the sensors, and other components of the mechatronic system. The method

can be exploited for control design in (at least) three different ways:

- online implementation of a feedback controller: computed torque control of

a rigid mechanism, active vibration control (see chapter 6),

- offline numerical optimization of a control law: trajectory generation, in-

verse dynamics, training of a feedback action,

- construction of a more structured model, in order to fit well-established

control theories: polytopic linear model, model based on linear fractional

transformation, etc. Then, the reduction procedure makes the database

θ(i) − f (i), i = 1, ..., r available for the external approximation algorithm,

and the configuration space decomposition can be interpreted as an adap-

tive inspection algorithm, which optimizes the information content of the

database.

A priori knowledge for improved configuration space inspection

One may object that the size of the database and the computational effort to

build the reduced-order model increase exponentially with respect to the dimen-

sion of the configuration space. At the end of this chapter, two direct extensions

of the original method are discussed to overcome this problem.

The reduction method has been presented assuming that the model should be

available in the whole configuration space. But, in many control applications, the

trajectory (or the desired trajectory) of the mechanism is known in advance. The

inspection strategy can be restricted to the configurations along the trajectory,
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which is parameterized using the arclength, the time, or a pseudo-time variable.

The approximation then becomes a one-dimensional problem, which can be solved

with a high efficiency. The resulting model is a linear time-varying model about

the reference trajectory, if the gyroscopic effects are neglected.

The approximation strategy can benefit from an analysis of the configuration

space symmetries. Indeed, some properties of the dynamic model may be in-

variant with respect to a group of transformations, so that the inspection can be

restricted to a lower-dimensional part of the configuration space. For instance, if a

mechanism is mounted on a straight slider, the whole dynamic model is certainly

not affected by a translation on the slider. Our algorithm would behave nicely

in such circumstances, since the interpolating polynomials are able to represent

exactly the constant behavior along the translation coordinate, and no bisection

shall occur in this direction (provided slight customization). Likewise, a mech-

anism mounted on a moving basis, e.g. a free-flying manipulator, has six rigid

dofs associated with the motion of the basis, but the dynamic model represented

in local axes is not affected by the overall motion. In this case, if an updated

Lagrangian point of view is adopted for the orientation of the basis in the reduced

model, the construction of the model can be restricted to the relative configuration

changes with respect to the basis.
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VI

Modeling, Simulation and Control of an

Experimental Manipulator

In this chapter, the theoretical concepts presented previously are applied to

the dynamic analysis and the control design of a lightweight manipulator called

RALF, an acronym for Robot Arm Large and Flexible.

Different models are elaborated and utilized for frequency domain analysis,

simulation and control design, as detailed in Table 6.1. Those models are defined

either for the mechanism, for the actuated mechanism or for the whole controlled

mechanism. An experimental validation is also conducted.

Guided by those models, a control strategy is developed and implemented for

the flexible manipulator. According to a two-time-scale approach, a traditional

joint-tracking controller is complemented with a fast indirect vibration controller.

The vibration controller exploits the inertia forces of the manipulator in order to

damp the flexible motion. Hence, it is an extension of inertial damping schemes

developed for the control of macro/micro-manipulators [Geo02].

After a description of the test-bed, the modeling of the actuated mechanism

is addressed in section 6.2, and an experimental validation is realized in the fre-

quency domain. In section 6.3, the composite two-time-scale controller is designed.

Section 6.4 deals with the performance analysis of the controlled mechanism: the

predictions of various models are compared with experimental results.
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Mechanism
Actuated

mechanism

Controlled

mechanism

Full-order

nonlinear
Time simulation

Reduced-order

nonlinear
Control design Time simulation

Reduced-order

linear
Frequency response

Root locus

Frequency response

Table 6.1: Different models and their use for dynamic analysis and control design.

The lines of the tabular are associated with the type of mechanical model, the

columns with the additional components of the mechatronic system.

6.1 Description of the test-bed

The manipulator Ralf, shown in Figure 6.1, is a long-reach manipulator oper-

ating in a vertical plane, that has been developed at the Georgia Institute of Tech-

nology. It was designed by Wilson [Wil86], and completed by Huggins [Hug88].

Ralf has two kinematic dofs, and it is hydraulically actuated.

The structure consists of two main links and a parallel actuation mecha-

nism. The two main links are 3.05 m long and constructed from aluminium pipes,

whereas the lighter actuation link is constructed from a rectangular aluminium

tube. Thick sleeves of aluminium tubing connect the links to each other, to the

actuators, and to the base. The joints are constructed from bronze bushings and

steel shafts. The assembled manipulator structure without actuators and base

weights approximately 45 kg, with its payload capacity of 27 kg. Hence, Ralf has

a high payload to weight ratio, and it is stiff enough to achieve real-world appli-

cations. However, flexible effects in the aluminimum tubes affect the positioning

accuracy.

Two hydraulic cylinders are used for the actuation of Ralf. The first moves

the first link relative to the base, the second moves the second link relative to the

first through the parallel mechanism. Each cylinder is controlled by a hydraulic

servovalve. The oil is supplied at 1500 psi. The maximum cylinder velocities are

0.156 m/s for extension and 0.208 m/s for retraction.

Two linear position sensing transducers, fixed to the hydraulic cylinder, mea-
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Figure 6.1: Ralf, coordinates of the actuators and the sensors.
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Figure 6.2: Relation between actuator coordinates θi and link angles αi, i = 1, 2.

The circle represents the home configuration.

sure the cylinder extension. Moreover, in order to detect the vibrations of the

mechanism, two accelerometers have been placed at the tip, in two orthogonal

directions.

The control law is implemented on a real-time computer, equipped with a

National Instruments A/D board. The control law is developed in the Simulink

environment, built using Real-Time workshop, and loaded on the real-time com-

puter thanks to the XPC Target architecture.

Amplifiers and power supplies are in charge of generating the electrical signals

for the hydraulic valves, as well as to amplify the accelerometer signals.

6.1.1 Workspace description

As seen in Figure 6.1, the kinematic configuration of Ralf can be described

either using the relative angles α1 and α2 of the main links, or the actuator

extensions θ1 and θ2. The relation between those coordinates is illustrated in

Figure 6.2. The tip-accelerometers measure the absolute accelerations aX and aY

in body axes.

The allowed configuration space is defined by a rectangular box represented

in Figure 6.3. In the same figure, 6 configurations of interest are mentioned;

configuration 0 is the so-called home position.
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Figure 6.3: Configuration space of Ralf.

v
Ralf

Actuators + Mechanism
wm- -

Figure 6.4: Ralf - input/output representation.

6.1.2 Transfer functions acquisition

In the experimental system, the inputs are the voltages of the actuators, and

the outputs are the sensor measurements, i.e. the extensions of the hydraulic

actuators and the tip accelerations. We define the voltage vector v and the

measurement vector wm:

v =

[
v1

v2

]
, wm =


θm1

θm2

amX

amY

 =

[
θm

am

]
(6.1)

An input/output view of the actuated mechanism is illustrated in Figure 6.4.

In order to establish the linearized transfer functions of the mechanism around

different operating points, the actuators are independently controlled by low gain

proportional controllers, and a swept-sine signal excites the system, as illustrated

in Figure 6.5. The resulting information shall be used for the validation of the
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θrefi

θexcitationi

Gsi
vi

Ralf
θmi-

?j - - -

6−

+
+

Figure 6.5: Independent SISO controller for each actuator (i = 1, 2). Low gain

values G1 = G2 = 100.

mechanical model.

6.2 Model of the manipulator

6.2.1 Previous models of Ralf

Huggins [Hug88] and Lee [Lee90] achieved an experimental validation of an

assumed-mode model based on Lagrangian dynamics. They considered a two-link

model, with two vibration modes per beam. The definition of appropriate bound-

ary conditions for each link turned out to be a difficult task. In order to verify the

quality of the assumed-mode model, they developed and validated a linear Finite

Element model. On this basis, improved shapes of the assumed-modes were ob-

tained by component-mode synthesis. Despite small discrepancies observed with

respect to experimental data, the assumed-mode model was sufficiently accurate

for control design. The dynamic behavior of the actuators was investigated, it

appeared to play a significant role.

Lee [Lee90] developed a Lagrangian dynamic model including the parallel

drive mechanism, represented by nonlinear constraint equations. For simulation

purpose, a constraint elimination technique based on a singular value decom-

position was implemented. Through experimental work, Lee observed that the

importance of the inertia forces quadratic in velocity is minor, due to the speed

limitation of the hydraulic cylinder.

Magee [Mag91] achieved an experimental analysis of Ralf in the whole workspace.

The structure was excited by the hydraulic actuators, and the tip motion was mea-

sured using accelerometers. The underlying assumed-mode model was based on
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the Lagrangian method formulated by Book [Boo84]. In order to develop an in-

put shaping strategy, a curve fitting method was applied to get the experimental

values of the eigenfrequencies and damping ratio in the configuration space.

The design of Ralf evolved over the years, which explains substantial differ-

ences in the results obtained by those researchers. More recent investigations were

realized by Obergfell [Obe98], who modeled Ralf as a serial two-link manipulator.

Surprisingly low natural frequencies were observed, that could be hardly repre-

sented by the mechanical model. Obergfell concluded that the actuator dynamics

should be responsible for those discrepancies. Introducing a more realistic model

of the hydraulic actuators, significant improvements were obtained, even though

the natural frequencies predicted by the model were still 20 % too high.

6.2.2 Structural model

Following the formalism presented in chapter 3, a nonlinear Finite Element

model has been elaborated for Ralf. Compared with previous models, this ap-

proach allows to represent all the details of the mechanism, including the parallel

actuation mechanism. The two main links and the actuator link are modeled us-

ing flexible beam elements, all other components are considered as rigid-bodies or

lumped masses. For the details about the geometrical data and the computations

of the different masses, we refer to the drawings in [Wil86] and to the numerous

reports on Ralf, such as [Obe98]. The gravity forces are taken into account.

Various other components are present on Ralf, and their masses have been

estimated and introduced in the model. The structural damping has been adjusted

to a value around 1 % (actually, the dominant damping effect in the overall system

comes from the actuators and the control system). The Finite Element model

involves 164 dofs.

Around a fixed configuration, the dynamics of Ralf is reasonably represented

by a linearized model, and a frequency-domain analysis is possible. The linearized

model is reduced according to the standard component-mode technique: 2 rigid

modes and 2 flexible modes are able to capture the essential dynamic behavior

of the system in the frequency range 0-15 Hz. Higher order modes are above 30

Hz, and their participation to the dynamic response is neglected.

The experimental validation of this model relies on transfer functions from
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Figure 6.6: First actuator model (home configuration).

input voltages to linear sensors, and to accelerometers established for different

configurations. A model of the hydraulic actuators is also needed at this level.

6.2.3 Validation and actuators models

First actuator model: velocity source

The experimental transfer functions from voltages to actuator displacements

are plotted Figure 6.6. A velocity source model of the actuator is also considered,

which behaves as an integrator:

θ̇i = Ghydr
i vi, i = 1, 2 (6.2)
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where θi is the displacement of the actuator i, vi is the applied voltage, and Ghydr
i

is the hydraulic gain, whose value has been fitted on the experimental data:

Ghydr
1 = 0.0236, Ghydr

2 = 0.0265 (6.3)

This ideal model does not adequately capture the dynamics of the physical

system in two ways:

- the actuator does not behave as a velocity source near the natural frequen-

cies of the system,

- the predicted frequency responses from voltages to tip accelerations, also

plotted in Figure 6.6, are not satisfactory.

For these reasons, and according to the idea of Obergfell [Obe98], a more elabo-

rated model of the actuator is investigated, accounting for the limited dynamics

of an intrinsic velocity feedback.

Second actuator model: intrinsic velocity feedback

In order to account for the intrinsic velocity feedback that regulates the flow

through the valve of a hydraulic actuator, the following actuator model is pro-

posed:

gai = Gv
i (Ghydr

i vi − θ̇i), i = 1, 2 (6.4)

where gai is the force applied by the actuator, and Gv
i is a new constant to be

determined. If Gv
i → ∞, this model is equivalent to the velocity source model.

For finite Gv
i , the transfer function between vi and θi is affected by the dynamics

of the mechanical system, especially near the resonances.

The value of Gv
i influences the transfer functions from voltages to actuator

displacements, but unfortunately, the transfer function from voltages to tip accel-

eration is not improved, as shown in Figure 6.7, with the values:

Gv
1 = 3.5e5, Gv

2 = 3.0e5 (6.5)

In particular, the predicted transfer functions are shifted to the high frequencies,

which means that the model is probably too stiff. Therefore, let us consider the

effect of a lumped flexibility at the level of the actuators.
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Figure 6.7: Second actuator model (home configuration).

Figure 6.8: Actuator model including a lumped flexibility. gai denotes the gener-

ated force, kai is the finite stiffness of the actuator, θi and Li the actuated dof and

the total length.
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Third actuator model: intrinsic velocity feedback and flexibility

In order to obtain a better matching between the model and the experiments,

lumped flexible effects are considered in the actuators, see Figure 6.8. As in the

previous section, the actuator forces are modeled according to equation (6.4), but

the length Li between the attachment points of the actuator is now different from

the actuated dof θi.

It is not clear whether the measured displacement θmi corresponds to Li (non-

collocated sensor/actuator configuration) or to θi (collocated sensor/actuator con-

figuration). Hence, we follow a two-step identification procedure: (i) select the

stiffnesses kai in order to improve the transfer function vi - a, (ii) compare the

experimental transfer functions vi - θmi with the model transfer functions vi - θi

and vi -Li.

(i) The local stiffnesses are easily adjusted by the observation that actuator

1 has a dominant effect on the first mode, whereas actuator 2 essentially excites

the second one. An iterative procedure results in the selection of the following

stiffness values:

ka1 = 3.5e6 N/m2, ka2 = 3.0e6 N/m2 (6.6)

For the set of configurations mentioned in Figure 6.3, the model and experimental

transfer functions are plotted in Figure 6.9, 6.10 and 6.11. The correspondence

is noteworthy, despite strong variations from one configuration to the other. In

some configurations, the predicted frequency response are still slightly shifted to

the high frequencies, but the model captures the dynamics with sufficient accuracy

for control design.

(ii) The actuator transfer functions are plotted for the collocated and non-

collocated cases in Figure 6.12. It seems that the model with collocated mea-

surements is closer to the experimental results; it is selected for the following

developments.

6.2.4 Nonlinear model reduction

The model of the actuated mechanism can be splitted into one model for the

actuator and one model for the mechanical system, as illustrated in Figure 6.13,

where the vector of actuator forces ga = [ga1 g
a
2 ]T is computed according to for-

mula (6.4). The actuator flexibility is included in the mechanical model.
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Figure 6.9: Experimental and model transfer functions, configurations 0 (home)

and 1.
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Figure 6.10: Experimental and model transfer functions, configurations 2 and 3.
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Figure 6.11: Experimental and model transfer functions, configurations 4 and 5.
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Figure 6.12: Third actuator model (home configuration).

v Actuators Mechanism
ga

wm- - -

Figure 6.13: Mechanical and actuator model. The model of the mechanism in-

cludes the lumped stiffnesses at the level of the actuators.
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In this section, a reduced mechanical model, valid in the whole configuration

space is constructed according to the method presented in chapter 5. The two

parameters of the rigid motion are naturally the actuated dofs θ = [θ1 θ2]
T .

Two internal modes, with coordinates ηδ = [ηδ1 η
δ
2] are sufficient to represent the

dynamic behavior in the bandwidth of interest (0-15 Hz). The rigid and flexible

mode shapes are illustrated in Figure 6.14.

The gyroscopic forces are neglected, which is a reasonable assumption ac-

cording to Lee [Lee90]. Therefore, the reduced equations of motion are:

[
Mθθ Mθδ

Mδθ I

] [
θ̈

η̈δ

]
+

[
0 0

0 Ω2

] [
θ

ηδ

]
=

[
ga

0

]
(6.7)

Ω2 = diag(ω2
i ) is the diagonal matrix of the square eigenvalues. The mass matrix

and Ω2 depend nonlinearly on the configuration. This dependence is approxi-

mated by piecewise low-order polynomials. The configuration space is decom-

posed into boxes where the local polynomials are defined, in order to achieve

a relative error below the tolerance tole = 0.001. The set of boxes are repre-

sented in Figure 6.15, and the variations of the model parameters are illustrated

in Figure 6.16. The different orders of magnitude of the equivalent masses come

from the different normalization of the rigid and flexible modes, as discussed in

Figure 6.14.

The relation between the end effector position xe and the modal coordinates

is:

xe = ρe(θ) + Ψeδ(θ) ηδ (6.8)

where ρe is the nonlinear kinematic transformation of the rigid mechanism, and

Ψeδ is the 2× 2 matrix of the flexible modes at the end effector. At the velocity

level, we have

ẋe =
[

Ψeθ Ψeδ
] [ θ̇

η̇δ

]
= Ψeη(θ) η̇ (6.9)

Ψeθ is the 2 × 2 matrix of rigid modes at the effector. In this equation, the

nonlinear contribution Ψ̇
eη

(θ) ηδ has been neglected under the assumption of

small deformations.
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Rigid modes Flexible modes

Figure 6.14: Mode shapes, home configuration. The amplitudes of the modes are

δθ1 = 0.05 and δθ2 = 0.08, ηδ1 = 2.8, and ηδ2 = 1.45. Those different orders

of magnitude come from the different normalization of the modal cordinates:

the rigid modes are associated with unitary actuator displacements, whereas the

flexible modes are normalized with respect to the mass matrix.
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Figure 6.15: Configuration space discretization.

6.3 Control design

Most control algorithms tested on Ralf in the past were relying on a two-link

assumed-mode model. Our modeling approach is more systematic and general,

and it allows to account for the exact topology of the mechanism. In this section,

the reduced-order model is exploited for the elaboration of a control strategy.

First, let us summarize previous researches on the control of Ralf. For a more

general review of the literature on the control of flexible mechanisms, we refer to

section 2.5. Lee [Lee90] complemented a PID joint controller with a decentral-

ized strain feedback, in order to damp the vibration modes and to improve the

performances of Ralf. Obergfell [Obe98] exploited the concept of output redefi-

nition, reinterpreted in terms of combined positive deflection feedback with PD

joint control. He developed an independent controller for each link/joint of the

serial manipulator. The deflections were measured by optical sensors. In order

to compensate for static deflections, an end-point position feedback was added as

an external loop on the first controller. The absolute position was measured with

a landmark tracking system, using a machine vision system. Even though good

performances were obtained by Obergfell, the sensors are rather sophisticated,

and their implementation imposes restrictive operational and design constraints.

Alternatively, we consider an accelerometer feedback, whose hardware imple-
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mentation is fairly simple and convenient. In particular, we investigate a compos-

ite two-time-scale control strategy (see Figure 6.17), which involves:

- a slow controller based on a feedback of the collocated measurements, re-

sponsible for the trajectory tracking,

- a fast controller, which relies on both collocated measurements and tip ac-

celeration measurements, in order to increase the damping in the flexible

modes.

The time-scale separation is a necessary condition to avoid interferences between

the two controllers; in our case, we shall see that additional filters need to be

implemented in order to fulfill this requirement.

In the literature, numerous authors applied two-time-scale control schemes for

flexible mechanisms. Singular perturbation theory formulates a dynamic model

in terms of a slow and a fast subsystem, which naturally conducts to the design

of a composite controller [SB88, MC95, GLL98, MPK00, GS00, SV01, CYC02].

The HAC/LAC strategy [Pre97, VBS02, Sym04] is another pragmatic dual ap-

proach. The Low-Authority Controller (LAC) refers to the active damping, which

is effective near the resonances, and which modifies the poles of the system only

slightly. The High-Authority Controller (HAC) refers to the motion controller

which dominates the low-frequency dynamics.

Our contribution especially focuses on the fast active damping controller;

before a more detailed investigation, let us briefly describe the design of the slow

controller.

6.3.1 Slow controller

In a serial robot, the actuated dofs are located at the joints, and roboticists are

familiar with decentralized control schemes : each joint is controlled independently,

using collocated feedback of the joint angle or position. This technique is opposed

to the tip-tracking strategy, where one feeds back measurements or estimates of

the tip position.

The slow controller presented here is a conventional joint-tracking controller,

illustrated in Figure 6.18:

vsi = Gs
i

(
θrefi − θmi

)
, i = 1, 2 (6.10)
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θrefi Gsi
vi

Ralf
θmi- j - - -

6−

+

Figure 6.18: Joint-tracking controller for actuator i (i = 1, 2).

The gains Gs
i have to satisfy a double requirement:

- the joint-tracking control should be stable and performant,

- the bandwidth of the slow controller is limited by the natural frequencies

of vibration, and it should be separated from the bandwidth of the fast

controller.

At home configuration, the experimental transfer functions of the open-loop

system are plotted in Figure 6.12. In order to guarantee sufficient phase margin

near the resonance, the value of the gain is limited to 52 dB for both joints, so

that

Gs
1 = Gs

2 = 400 (6.11)

If one accepts the velocity source actuator model, the open-loop system is an

integrator with gain Ghydr
i , and the slow controller leads to the closed-loop band-

width:
ωsi = Ghydr

i Gs
i

⇒ ωs1 = 9.4 rad/s (1.5 Hz),

⇒ ωs2 = 10.6 rad/s (1.7 Hz).

(6.12)

A parametric analysis in the configuration space has shown that those gain values

lead to a stable behavior for any configuration of the mechanism. This has been

confirmed experimentally.

When applying a conventional joint motion control which ignores flexibility,

a rule-of-thumb is to restrict its bandwidth below the half [VBSN+01] or the

third [Boo93] of the lowest natural frequency ω1 of the mechanical system. In our

case, ω1 is about 4 Hz (see Figure 6.16), and the ratio ωs/ω1 is about 1/3. As

we shall see, this ratio is sufficiently low to limit the interferences with the fast

controller.



200 CHAPTER 6. CONTROL OF AN EXPERIMENTAL MANIPULATOR

Mode

observer

Inertial

damping

Inverse

actuator

modelam

θm ̂̇ηδ θ̈
des

vf
-

-

- - -

�
�
�
�
�
��

�
�
�
�
�
��

Figure 6.19: Fast controller. The arrows indicate a model-based scheduling ac-

cording to the configuration changes.

6.3.2 Fast controller

The dynamics of the mechanism is configuration dependent. However, when

designing the fast controller, the time-scale separation assumption allows to con-

sider the nonlinear configuration changes as quasi-static variations. Concepts

from linear system dynamics can thus be exploited to build a linear controller,

whose parameters may be configuration dependent.

Thanks to the reduction procedure, the dynamic model of the mechanism (6.7)

is in linear parameter-varying format, and it can be directly exploited for the

design of such a fast controller. In this model, the action of the actuator forces ga

on the flexible modes comes indirectly from the inertial coupling. Therefore, in

order to control the flexible modes, our idea is to excite the rigid modes so that

the inertia forces produce a damping effect. This approach is equivalent to the

inertial damping method developed for macro/micro-manipulators [Geo02].

The fast controller is composed of three stages illustrated in Figure 6.19:

- the mode observer extracts the rates of the flexible modes ̂̇ηδ from the

measurements,

- the inertial damping control law defines the desired accelerations of the rigid

modes θ̈
des

that would produce appropriate inertial forces,

- the inverse actuator model establishes the voltages vf to be applied to the

actuators.

In the following, the inertial damping control law is first presented; the ob-

server and the inverse actuator model will be described afterwards.
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Inertial damping

In order to analyze the possible damping effect of the coupling inertia forces,

the dynamic equation associated with the flexible modes is extracted from the

reduced-order model (6.7):

η̈δ + Ω2 ηδ = −Mδθ θ̈ (6.13)

The inertial damping consists in controlling the rigid variables θ in order to pro-

duce a velocity feedback. Indeed, if θ̈ satisfies:

−Mδθ θ̈ = −Gf η̇δ (6.14)

the closed-loop equation of motion becomes:

η̈δ + Gf η̇δ + Ω2 ηδ = 0 (6.15)

and Gf η̇δ has the clear interpretation of a damping term, provided that the gain

matrix Gf is positive definite. The stability of the closed-loop system is thereby

guaranteed. It is convenient to define the gain matrix with respect to the desired

modal damping ratios ξi:

Gf = diag(2 ξi ωi) (6.16)

As will be motivated in the root locus analysis (section 6.4.2), our design is based

on the choice

ξ1 = ξ2 = 0.1 (6.17)

In order to generate this damping effect, the subsequent problem is to control

the rigid modes so that equation (6.14) is satisfied. If the number of rigid modes

equals the number of flexible modes, and if the inertia coupling matrix Mδθ is

not singular, this equation can be inverted, leading to the definition of the desired

acceleration of the rigid modes θ̈
des

:

θ̈
des

=
(
Mδθ

)−1
Gf η̇δ (6.18)

The matrix
(
Mδθ

)−1
depends on the configuration. Recorded in the reduced-

order model, it is represented by piecewise polynomial functions, which can be

exported from the modeling environment to the real-time controller.
(
Mδθ

)−1
is

thus scheduled online, according to the slow configuration changes θm detected

by the linear sensors.
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Figure 6.20: Performance index of the inertial damping control.

If the number of flexible modes to be controlled is lower than the number

of rigid modes, this strategy is still applicable using the pseudo-inverse of the

rectangular matrix Mδθ.

It is necessary to check that no mechanical configuration is associated with an

inertial singularity, i.e. a singularity of the coupling mass matrix Mδθ. At an in-

ertial singularity, it may be impossible to generate the required inertial forces. For

this purpose, George [Geo02] proposed to analyze the variations of a performance

index in the configuration space:

Perf. Index = det
(
MδθT Mδθ

)
(6.19)

This definition is still applicable if the coupling matrix Mδθ is not square. Since

the determinant is the product of the singular values, the higher the performance

index, the farther from inertial singularities. In Figure 6.20, we observe that no

singularity is present in the configuration space of Ralf.

Mode observer

In the inertial damping control law (6.18), θ̈
des

is computed from the modal

velocities η̇δ, which are not directly available. The observer aims at reconstructing

η̇δ from the measurements θm and am. First, let us characterize the relation

between the accelerometer signals and the modal coordinates.

The accelerometers measure the absolute accelerations in body axes, and

those axes rotate during the motion. If R denotes the rotation matrix of the end
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effector node, and xe its position referred to an inertial frame, we have:

ẍe = R am (6.20)

Under the assumption of small deformations, R only depends on the configuration

θ, and not on the flexible modes. Thus, in the fast time-scale, the variations of

R are quasi-static and the integration of (6.20) leads to

ẋe =

∫ t

0

R am dτ ' R

∫ t

0

am dτ (6.21)

Defining the integrated accelerometer signal cma

cma =

∫ t

0

am dτ (6.22)

we obtain

ẋe ' R cma (6.23)

Inverting this expression, and introducing the modal amplitudes of the end effector

displacements ẋe = Ψeη η̇, we obtain:

cma = Ψaη η̇ with Ψaη(θ) = RT (θ) Ψeη(θ) (6.24)

The relation between the measurements and the modal coordinates is sum-

marized by: [
θ̇
m

cma

]
=

[
I 0

Ψaθ Ψaδ

] [
θ̇

η̇δ

]
(6.25)

Since there are as many sensors as modal coordinates, this expression can be

inverted, leading to a static estimation formula for the modal velocities:

̂̇ηδ =
[
−
(
Ψaδ

)−1
Ψaθ

(
Ψaδ

)−1 ]︸ ︷︷ ︸
=Ψδm

[
θ̇
m

cma

]
(6.26)

The estimation algorithm is illustrated in Figure 6.21, and it requires the

2×4 modal matrix Ψδm to be available online. The importance of the filters shall

be discussed later on.
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Figure 6.21: Observer. The signals of the sensors are first filtered, then numer-

ically differentiated/integrated with respect to time, and finally, equation (6.26)

is used to estimate the modal velocity.

Inverse actuator model

The velocity source actuator model (6.2) can be inverted, leading to the

definition of the applied voltage:

vfi =
1

Ghydr
i

∫ t

0

θ̈desi dτ, i = 1, 2 (6.27)

In order to avoid any drift in the numerical integration, the integrator is imple-

mented as a high-pass integrator, i.e. an integrator in series with a high-pass

filter.

The construction of the inverse model from the first actuator model has been

motivated by the direct connection that it defines between the input voltage vi and

the actuator motion θi. On the contrary, the second actuator model involves the

actuator force, so that the input/output relation between vi and θi is affected by

the whole dynamics, in particular, by the mechanical resonances. The inversion

of this model would be more complicated and sensitive to modeling error.

One may be afraid that the velocity source model is not satisfactory near the

resonances, where the fast controller is expected to be performant. However, the

root locus analysis presented in section 6.4.2 will assess the stabilization effect of

the resulting control law.

6.3.3 Summary and first results

In essence, the inertial damping strategy defined by (6.18) is conflicting with

the slow controller which tries to achieve θ = θref . This paradox is resolved by
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Figure 6.22: Signal-flow graph of the controlled mechanism: slow and fast control

loops.

imposing that the inertial damping is only active at high-frequencies, near the

resonances of the flexible modes ηδ.

In order to clarify this point, let us summarize the interactions of both con-

trollers with the flexible mechanism. In Figure 6.22, the signal-flow graph illus-

trates the dynamics of the controlled mechanism; in particular, the slow and fast

control loops are clearly represented. Let us briefly comment the graph. In the

second actuator model (6.4), the actuator forces ga are influenced by the applied

voltage v and by the extension rate θ̇. According to the mechanical model (6.7),

these forces excite the rigid dynamics described by the actuator coordinates θ,

which is coupled with the flexible dynamics described by the modal amplitudes

ηδ. The joint-tracking controller is based on collocated measurements θm, whereas

the fast controller feeds back an estimation of the flexible modal rates ̂̇ηδ.
The interaction between both control loops is limited under the time-scale

separation assumption. Indeed, the closed-loop bandwidth of slow controller is

limited to ωs ' 1/3 ω1, whereas the fast controller is a feedback of the flexi-

ble modal coordinates, which are mainly excited near the resonances. At first

sight, the time-scale separation seems to be satisfied, and good performances are

expected from the composite controller.

However, we argue that various disturbances may be responsible for unde-
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Simulation results
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Figure 6.23: Point-to-point trajectory. Sensitivity to an observer error.

sirable interactions between the slow and the fast controller. To illustrate this,

Figure 6.23 presents simulation results for a point-to-point trajectory (more de-

tails about the model will be given later). The left plot shows the slow controller

working alone. Good tracking performances are observed for θ2, but the tip vibra-

tions decay slowly after reaching the final configuration. In the middle plot, the

fast control law is activated, assuming a perfect estimation of the modal veloci-

ties. The improvement of the tip response is remarkable, and the joint-tracking

performances are barely affected. However, when one accounts for the non-perfect

estimation of η̇δ due to the approximation in equation (6.23), the fast controller

is still efficient, but the joint-tracking controller is completely disturbed. This is

easily explained, since the approximation (6.23) is only justified in the fast time-

scale. In the slow time-scale, a significant error is introduced and amplified by

the inverse actuator model, which directly affects the slow controller.

It is possible to improve the observer in order to eliminate this particular

source of error. However, in the experimental system, other disturbances may

affect the observer at low-frequencies, such as the accelerometer errors. Therefore,

there is a need to eliminate the low-frequency components induced in the fast
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controller by appropriate filtering. The design of those filters is presented in the

following section.

Filters design

The fast controller is expected to be active around the first two natural fre-

quencies, between 3 Hz and 7 Hz. Both the lower and higher frequency distur-

bances should be attenuated. Two Butterworth band-pass filters are thus consid-

ered, whose properties are illustrated in Figure 6.24. Filter A is a 4th order filter,

with corner frequencies at 1 and 25 Hz, whereas filter B is a 2nd order filter with

corner frequencies at 1.6 and 16 Hz. Both filters have been designed in order

to keep the phase shift below 20 deg in the interval [3, 7] Hz. Filter A has the

advantage of a larger roll-off, leading to an efficient attenuation of low-frequency

disturbances. However, its lower corner frequency is smaller than for filter B, so

that its performances at intermediate frequencies, around ωs = 1.5 Hz, are less

interesting. Both filters will be tested in simulations and experiments.

Two less critical filters can also be mentioned:

- an output high-pass filter associated with the inverse actuator model (4th

order Butterworth filter, with corner frequency at 0.1 Hz),

- a low-pass filter for the slow controller in order to reduce the measurement

noise (2nd order Butterworh filter, with corner frequency at 100 Hz).

6.4 Closed-loop system: simulations and exper-

iments

In this section, the closed-loop system is simulated and tested experimentally.

The dynamic model includes the model of the mechanism, of the actuator, and

of the controller. As mentioned in Table 6.1 at the beginning of this chapter,

different models of the mechanism are considered for different purposes:

- a reduced-order linear model is used for the construction of root loci, and

the analysis of frequency responses,
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Figure 6.24: Band-pass filters at the inputs of the fast controller. In the Bode plot,

the closed-loop transfer function of the slow controller is represented, assuming a

velocity source actuator model (actuator 1).
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Figure 6.25: Model of the mechatronic system.

- a full-order nonlinear Finite Element model is considered for simulations in

the time-domain, i.e. the response to a tip force, point-to-point trajectories

and a square trajectory,

- a reduced-order nonlinear model is exploited to reduce the computational

load associated with time-domain simulations.

Two categories of analyses are defined: small motion around the home con-

figuration, and large amplitude trajectories in the configuration space. Before

the presentation of the experimental and simulation results, the model of the

mechatronic system is described.

6.4.1 Model of the mechatronic system

In the experimental setup, the control law is implemented on a digital com-

puter, with a sampling rate of 1 kHz. The sampling effect has thus little effects

on the dynamic behavior in the frequency range of interest; we assume that it can

be neglected in the model.

Figure 6.25 represents the model of the mechatronic system. Each block is

implemented according to the formalism defined in chapter 4:

- Mechanism. Different models of the mechanism are used for the different

analyses, as mentioned above.

- Actuators. The actuator model accounts for the intrinsic velocity feedback

defined by equation (6.4).
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- Accelerometers. In the Finite Element model, the tip accelerations ẍe are

available in inertial axes1. In body axes, the accelerometer signals am are

computed by inversion of the formula (6.20) 2.

- Filters and integrator. The filters are continuous linear state-space systems.

- Inertial damping + observer. A nonlinear algebraic equation is defined by

combination of (6.18) and (6.26):

θ̈
des

=
(
Mδθ

)−1
Gf Ψδm︸ ︷︷ ︸

=Ĝf (θ)

[
θ̇
m

cma

]
(6.28)

Ĝf (θ) is implemented in the controller as a C-function, which is directly

reused in the simulation model.

- Inverse actuator model. Formula (6.27) is combined with a high-pass filter.

6.4.2 Dynamic behavior at home configuration

First of all, the closed-loop system is analyzed when Ralf is at home config-

uration: root loci, bode plots, and step responses will be successively analyzed.

The linearized model of the mechatronic system is sufficient, and the reduced-

order mechanical model is exploited for analysis in the frequency-domain. The

simulation of the step response in the time-domain is based on the full Finite

Element model, according to the methodology proposed in chapter 4.

For fixed boundary conditions at the level of the actuators, the model predicts

the natural frequencies of the flexible modes at home configuration:

ω1 = 4.4 Hz, ω2 = 6.7 Hz (6.29)

In the model, the flexible modes are characterized by a small structural damping

(around 1 %). Obviously, in the closed-loop system, those poles are affected by

the behavior of the control system.

1According to Remark 4.2 page 75, an ”observer equation” is added for the accurate esti-

mation of ẍe.
2Due to rather slow variations of the rotation matrix R with respect to the time-step (h =

0.01 s), this formula is not strongly nonlinear, and does not represent a problem for the numerical

integration scheme (see Remark 4.4, page 84)
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Root locus

The root loci for increasing gains of the fast controller ξi (i = 1, 2) are pre-

sented in Figure 6.26. Due to interactions with the actuators and the slow con-

troller, the flexible modes have initially a significant non-negligible damping. In

the absence of band-pass filtering, the vibration controller leads to significant

damping improvements. Considering the position of the poles for ξi = 0.1, there

is room for further improvements. However, in the presence of filtering, a smaller

active damping can be reached for the first flexible mode. For large gain values,

unstable behaviors are predicted, and the value ξi = 0.1 appears as a reasonable

choice.

Frequency response

The tracking performances of the composite controller can be analyzed in

the transfer functions between the reference inputs and the dynamic responses.

Generally, a joint-tracking controller tries to optimize the responses of the actuator

dofs θ, but in practice one is more interested in the positioning of the end effector.

The impact of the fast controller on both types of transfer functions is illustrated

in Figure 6.27.

First, let us consider the predictions of the model when the fast controller is

turned off. In the actuator transfer function, the corner frequency is about 1.5 Hz,

and the roll-off is -20 dB/decade. 4.4 Hz corresponds to the first resonance of the

mechanism with clamped actuators. At this frequency, any motion of the actuator

is amplified in the whole structure and requires a huge amount of energy. This

phenomenon appears as an anti-resonance in the collocated transfer function. In

the tip transfer function, the flexible modes are excited at the resonance despite

the roll-off of the joint-tracking controller.

When the fast controller is turned on, the actuator transfer function is mod-

ified around the resonance, where the inertial damping is active. The benefits

mostly appear in the end effector transfer function, where the resonance peaks

are efficiently attenuated. Due to phase lags, the tracking behavior is still not

ideal around the resonance, but the system is now isolated from disturbances

in this frequency range. This clearly illustrates the objective of the composite

control law: performances at low frequencies, and stabilization at the resonances.
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Without filtering

−30 −25 −20 −15 −10 −5 0 5

0

5

10

15

20

25

30

35

40

45

50

Increasing ξ
1

Real axis (rad/s)

Im
ag

in
ar

y 
ax

is
 (

ra
d/

s)

−30 −25 −20 −15 −10 −5 0 5

0

5

10

15

20

25

30

35

40

45

50

Increasing ξ
2

Real axis (rad/s)

Im
ag

in
ar

y 
ax

is
 (

ra
d/

s)

With filter A

(the dashed lines still refer to the unfiltered case)

−30 −25 −20 −15 −10 −5 0 5

0

5

10

15

20

25

30

35

40

45

50

Increasing ξ
1

Real axis (rad/s)

Im
ag

in
ar

y 
ax

is
 (

ra
d/

s)

−30 −25 −20 −15 −10 −5 0 5

0

5

10

15

20

25

30

35

40

45

50

Increasing ξ
2

Real axis (rad/s)

Im
ag

in
ar

y 
ax

is
 (

ra
d/

s)

Figure 6.26: Root loci. The arrows point to ξi = 0.1. In the second plot, remote

poles and loci associated with the higher corner frequency of the filters exist out

of the axes scales.
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Figure 6.27: Closed-loop transfer function (home configuration). Y e represents

the displacements in body axes, in the direction of the accelerometer measurement

amY .
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Figure 6.28: Step force applied to the tip of Ralf (home configuration).

An experimental transfer function is also represented; at least from a quali-

tative point of view, the predictions of the model are confirmed.

Response to a tip force

The actively damped system should be less sensitive to external disturbances.

In order to demonstrate this capability, the response of the system is analyzed

when an external force is suddenly applied at the tip, as illustrated in Figure 6.28.

The step of force is exerted at time t = 0 s, with an amplitude ge = 89 N .

First, the simulation of this problem is considered. The full Finite Element

model is used for the modeling of the mechanism, and the control system is

modeled using the block diagram formalism developed in chapter 4. The Hilber-

Hughes-Taylor time-integration scheme is exploited with a time-step h = 0.01 s

and a numerical damping αf = 0.02. The step of force is a discontinuous phe-

nomenon, and consistent initial conditions have been carefully computed.

This problem has also been analyzed experimentally. The step of force is

emulated using a payload fixed to the tip of Ralf with a cable: the instantaneous

cutting of the cable gives an equivalent upright force. In practice, the cutting

operation is replaced by a trigger mechanism.

In Figure 6.29, the correspondence between simulation and experimental re-

sults is impressive. The limited resolution of the measured signal θm2 appears in

the experimental data. A tiny shift is noticed in the static value of θm2 ; it is caused
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Simulation results
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Figure 6.29: Tip disturbance. Filter A is used in the control algorithm.
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by the offsets of the hydraulic valves.

When the fast controller is not active, the actuator remains almost motion-

less, and the tip response is dominated by the second mode of vibration. In the

model, the main source of damping comes from the actuators. The decay of the

experimental response is faster, which might be due to unmodeled phenomena in

the joints, such as friction effects.

The active vibration controller efficiently reduces the tip vibrations. This

performance is obtained at the price of a perturbed actuator motion, dominated

by a pole associated with the band-pass filter (in this case, filter A, with corner

frequency at 1 Hz). In the next section, improvements will be discussed for the

attenuation of this phenomenon.

6.4.3 Trajectories in the configuration space

After the analysis of the controller performances around the home configura-

tion, the next step is to consider large amplitude motions, where several nonlinear

effects may arise, due to configuration changes, to the scheduled control strategy,

and to observer errors. The composite controller should also cope with the dual

task trajectory control/active damping.

When θ1 increases, the system gets closer to a singular configuration, where

actuator 1 is aligned with the first link3. For instance, in Figure 6.2, the slope ∂α1

∂θ1

increases with θ1. As a consequence, any motion of the actuator is amplified by

the mechanism, and for a desired transmitted power, higher forces ga1 are required.

The controllability measures the ability of the actuator forces to excite the system;

it is thus optimal when actuator 1 is orthogonal to the first link4 and it vanishes

at the actuator singularity.

Therefore, the implementation of the control law is analyzed in a restricted

part of the configuration space θ1 < 1.12 m (α1 < 84 deg), where the controlla-

bility is sufficient for the design of an efficient controller. The trajectories follow

straight paths defined in the space of joint angles (Figure 6.30). Any of these

motions involves both actuators 1 and 2. A point-to-point motion and a square

3Rigorously, at the singularity, actuator 1 is orthogonal to the virtual displacement of its

attachment point.
4Rigorously, the controllability is optimal when actuator 1 is parallel to the virtual displace-

ment of its attachment point.
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Figure 6.30: Point-to-point motions in the configuration space.

trajectory will be successively considered.

The mechatronic system is modeled and simulated as in the previous case

(full Finite Element model, block-diagram model of the control system, Hilber-

Hughes-Taylor algorithm, h = 0.01 s, αf = 0.02).

Point-to-point motion

A smooth point-to-point trajectory from configuration S4 to configuration

S1 is analyzed. The trajectory θref (t) follows bang-bang acceleration profiles, i.e.

θ̈
ref

is piecewise constant and the velocity θ̇
ref

is limited. At the end configuration

(t = 0.85 s), the transition is not perfectly smooth in order to emulate possible

high-frequency disturbances.

Simulation and experimental results are compared in Figures 6.31. In the

simulation results, three subcases are studied. When the vibration controller is

turned off, the slow controller is able to track efficiently the trajectory, with a

small delay. However, tip vibrations continue for a long time after the end of the

trajectory. Those vibrations are dominated by the first flexible mode. Without

filtering, the fast controller leads to an important reduction of those transient

vibrations, but the tracking controller is disturbed in an unacceptable way, as

discussed earlier. Filter A leads to a better trade-off between vibration control

and trajectory tracking; the slow oscillations at the actuator level are dominated

by the poles of the filter.

Qualitatively, the experiments agree with those observations (the non-filtered
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Simulation results
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Figure 6.31: Point-to-point trajectory.
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fast controller has not been tested, fearing unpredictable motions of the mecha-

nism). However, the amplitude level of the transient vibrations after the motion

is higher than the prediction of the simulation, even when the fast controller is

disabled.

Part of this discrepancy may be attributed to unmodeled phenomena and

disturbances. For instance, clearance effects in the joints may excite the flexible

motion at the end of the trajectory. In the tip-force experiment, the predictions

of the model were far closer to the experimental results, which can be explained

as follows. The response to a tip force is dominated by the second mode of

vibration, which is almost a pure bending mode of the second link, as represented

in Figure 6.14. Thus, the joints do not participate in the motion, and no clearance

phenomenon is observed. The situation is quite different for the point-to-point

motion, since the first mode of vibration is then excited.

Another explanation may come from the non-perfect actuator model around

the first natural frequency. Indeed, in Figure 6.12, it was difficult to make a deci-

sion whether the sensor measurements and the actuators were collocated or not.

For our developments, we assumed collocated measurements, but, a posteriori, an

additional simulation has been realized for the non-collocated case. The compar-

ison is given in Figure 6.32. For the noncollocated case, without active vibration

control, the vibrations detected by the linear sensors have a destabilizing effect on

the slow controller. When the vibration controller is activated, the efficiency of

the active damping is overestimated by the model. We may conclude that the true

reality is between the collocated and the non-collocated situations. Experimental

data could be exploited for the optimization of an ”intermediate” model. In the

following, this identification problem is left aside, and the simulation results rely

on the assumption of collocated measurements.

Figure 6.33 focuses on the behavior of the system at the end of the trajectory,

when the final configuration has been reached. The damping performances of the

fast controller appear more clearly. Filter B turns out to be more appropriate in

this case: the slow motion of the actuator is more efficiently damped.

In order to improve the computational efficiency of the simulation algorithm,

the full Finite Element model of the mechanism can be replaced by the nonlinear

reduced model. The reduced model describes the dynamics in terms of modal

coordinates. The tip position is connected with the modal amplitudes by the
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Simulation results (collocated sensors)
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Figure 6.32: Comparison: collocated / noncollocated measurements.
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Simulation results
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Figure 6.33: Point-to-point trajectory: zoom at the end of the trajectory, after

reaching the end point.
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Simulation results
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Figure 6.34: Comparison of the reduced model and the full model. Point-to-point

trajectory, normal bandwidth of the slow controller, fast controller off.
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relation ẋe = Ψeη η̇, which is implemented in a special ModesToDofs element. In

this element, the dependence of the 2× 4 mode-shape matrix Ψeη with respect to

the configuration θ is represented by a polynomial approximation obtained from

the model reduction procedure.

The results are compared with the full model in Figure 6.34. Discrepancies

mostly concern the high-frequency content of the response, but the correspondence

is good for the slow component of the motion. We conclude that the model

reduction technique can be utilized to speed up the simulation of a (controlled)

mechanism.

Square trajectory

For a point-to-point trajectory, we are especially interested in the perfor-

mances at the final configuration. Since the performances of the composite con-

troller might depend on the configuration, a square trajectory is analyzed in the

configuration space. The cyclic sequence S1, S2, S3, S4, S1 was illustrated in Fig-

ure 6.30. The experimental results are presented in Figures 6.35 and 6.36, and the

performances of the vibration controller are appreciable for each configuration.

6.5 Concluding remarks

In this chapter, the theoretical concepts developed previously have been ap-

plied to a large and lightweight manipulator, with a parallel actuation mechanism.

The dynamic modeling of the mechanism, of the actuators and of the controller

has been realized, validated and exploited at the different stages of a control

design procedure. In summary, different models have been constructed:

- a low-order linearized model of the actuated mechanism, for experimental

validation,

- a low-order and nonlinear model of the mechanism, for the design of the

vibration controller, and for efficient simulation,

- a linearized model of the controlled mechanism, for root locus and frequency

response analyses,
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Experimental results
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Figure 6.35: Square trajectory.
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Experimental results
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Figure 6.36: Square trajectory: various zooms.
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- a full model of the mechatronic system, for the simulation of the closed-loop

dynamics.

The predictions of those models were generally in good agreement with the exper-

imental results. However, the dynamic parameters of the actuators are critical for

the quality of the model. Their estimation was based on experimental data, but

a more systematic identification procedure would be helpful at this level. Some

discrepancies are also attributed to friction and clearance effects in the joints of

the mechanism.

A two-time-scale strategy has been selected for the design of the controller. A

slow controller is responsible for the tracking performances, and a fast vibration

controller damps the flexible motion. The vibration controller is based on the

inertial damping concept, and we conclude that:

- the inertial damping concept, initially developed for macro/micro manipu-

lators is also applicable for any flexible manipulator,

- the implementation of this control strategy is fairly simple: only two ac-

celerometers complement the hardware of the joint-tracking controller,

- a low-order model is necessary for the design and the implementation of the

control law, our reduced-order modeling technique is appropriate for this

purpose,

- one difficulty is associated with the reliable estimation of the rates of the

flexible coordinates, especially at low frequencies,

- in order to prevent interferences between both controllers, filtering is neces-

sary,

- finally, a compromise can be obtained between the efficiency of the fast

vibration controller, and the performances of the slow tracking controller,

The modeling and design concepts were intimately connected throughout

the chapter. The major conclusion is that the modeling and simulation tools

developed in this dissertation are highly relevant for the control design of a complex

experimental mechanism.
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In future research, significant improvements of the controller could be ob-

tained using a more accurate estimation formula, or a dynamic observer. Replac-

ing the accelerometers by strain gauges would also lead to a more reliable signal

at low frequencies, less sensitive to the rigid motion.
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VII

Conclusion

The integrated design of mechatronic systems is a multidisciplinary challenge.

In particular, our objective was to develop modeling and simulation methods

to assist the engineer at the different stages of the design of controlled flexible

mechanisms. The dissertation investigated two main research orientations: the

simulation of mechatronic systems, and the reduced-order modeling of flexible

mechanisms. Those concepts were also exploited for the control design of an

experimental manipulator.

The specific conclusions associated with the different parts of this work are

reported hereafter.

1. Integrated simulation of mechatronic systems

A modular formulation has been presented for the dynamic analysis of mecha-

tronic systems composed of a flexible mechanism and a control system. The cou-

pled differential and algebraic equations are constructed numerically, and their

time-integration is performed according to a strongly coupled approach.

The methodology relies on several strategic choices and personal contri-

butions:

- The selection of the Finite Element method as a modular modeling frame-

work for the analysis of mechatronic systems, with the advantage of an

accurate representation of the mechanical subsystem.

- The use of the block diagram language for the description of control systems

in the Finite Element environment. This leads to a general, systematic and
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modular formulation, familiar to control engineers.

- The implementation of the generalized-α method for the simulation of the

coupled system. The ability of this method to deal with constrained mechan-

ical equations or with first-order equations is well-known, and the possibility

to adjust the high-frequency numerical damping is very convenient for stiff

problems.

- The analysis of stability and convergence properties of the generalized-α

method when applied to the coupled dynamic equations.

- The extension of the time-integration algorithm to deal with discontinu-

ous dynamic effects in some subsystems, for instance due to sampling or

saturation phenomena.

Well-established formalisms from flexible multibody dynamics and from sys-

tem theory have thus been unified for the reliable and modular simulation of

controlled flexible mechanisms. The most important conclusions are:

- The theoretical convergence and stability results are confirmed by several

test-cases.

- The proposed methodology is able to predict the dynamic behavior of com-

plex mechatronic systems, e.g. a car equipped with a complex semi-active

suspension system, and a controlled flexible manipulator. For this last sys-

tem, the simulation results are validated experimentally.

- The simulation method is a relevant pre-prototyping tool, useful for control

design.

Future investigations could focus on the following issues:

- The analysis and the optimization of the computational efficiency, in par-

ticular the development of an adaptive time-stepping method.

- The combination of the approach with a multi-rate or a subcycling strategy,

in order to improve the computational efficiency when very fast dynamic

phenomena have to be represented within specific subsystems.
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- The extension of the functional simulation concept to include subsystem

models developed in formalisms dedicated to specific technologies (e.g. elec-

trical, hydraulic or pneumatic systems), which would reinforce the modu-

larity and the generality of the methodology.

- The development of a user-friendly graphical interface, and of drivers with

software specialized in block diagram modeling.

2. Model reduction in flexible multibody dynamics

In order to represent concisely the configuration-dependent dynamics of a

flexible mechanism, a systematic model reduction technique has been proposed,

which transforms an initial high-order model into a low-order and explicit model.

The reduction procedure relies on (i) an order reduction, which can be realized

locally for any given configuration, (ii) a consistent approximation of the reduced-

order model in the configuration space.

Since similar approaches are reported in the literature, we need to draw the

attention to the originality of our methodology:

- As the Finite Element method is selected to formulate the dynamics of the

initial model, complex mechanical topologies can be systematically repre-

sented.

- The Global Modal Parameterization concept is formally defined in order

to guarantee the consistency of the reduction procedure and the physical

interpretation of the reduced coordinates. This parameterization is based

on an extension of the component-mode method, and it accounts for the

nonlinear kinematics. The Global Modal Parameterization is well-defined

in the configuration space of interest, and it represents exactly the rigid-

body motion.

- The local reduction procedure accounts for the nonlinearity of the Global

Modal Parameterization; in particular, the curvature of the parameteriza-

tion contributes to the equivalent inertia forces. Nonlinear effects caused by

large deformations are neglected.
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- A piecewise polynomial approximation of the reduced-order model in the

configuration space follows an adaptive strategy, which achieves a user-

specified tolerance on the approximation error.

A complex flexible mechanism can thus be represented by a compact and

closed-form dynamic model, formulated in a systematic way. From the develop-

ment of the methodology and its application to various problems, we conclude

that:

- The model leads to a deep understanding of the dynamic system under

consideration. Valuable insights are obtained into the inertia, stiffness and

kinematic properties all over the configuration space.

- The degree of nonlinearity of the model is associated with the degree of

nonlinearity of the dynamics seen by the actuators; the reduction method

breaks down at the actuator singularities.

- Low-order polynomials are able to capture efficiently the smooth variations

of the model in the configuration space. A compromise is necessary between

accuracy, continuity, memory storage requirements and computational time

to build the model. Lagrange polynomials defined on a regular grid have

ideal continuity properties, but this strategy requires important resources to

capture a nonlinear behavior in a high-dimensional configuration space. For

such specific problems, adaptive configuration space decomposition and/or

quadratic polynomials may be preferred.

- The method is applicable for rigid mechanisms with parallel topology; the

reduced model gives the solution to the inverse dynamics problem, and it is

directly exploitable for computed-torque control techniques.

- The configuration-dependent dynamics of a flexible manipulator is efficiently

captured by a reduced model, as confirmed by experimental results.

- A reduced model is an appropriate basis for the design of a vibration con-

troller, e.g. using the inertial damping concept. It is portable and it can be

implemented online on a real-time controller.

- The computational efficiency of a simulation algorithm is improved using a

reduced model.
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Several outcomes are foreseen for the model reduction technique:

- The reduction method can be a basis for the extraction of a more structured

model (e.g., a polytopic linear model or a model based on linear fractional

transformation), for which specialized control theories are applicable.

- In the literature related with component-mode synthesis, various enhanced

mode shapes have been defined; any of them could be associated with the

Global Modal Parameterization.

- A priori knowledge on the configuration space geometry (specified trajec-

tory, symmetries, etc) could be exploited for an optimized approximation of

the nonlinear model.

- As such, our formalism is applicable to mechanisms without pre-stressing

effects. The extension to include those effects could also be considered in

future investigations.

3. Control of a flexible manipulator

The proposed simulation and modeling methods have been applied for the

motion and vibration control of a flexible manipulator.

The design of the controller is based on the following personal develop-

ments:

- A two-time-scale control strategy is elaborated from the structure of the

dynamic model: the rigid modes are controlled by a slow joint-tracking

controller, and the flexible modes by a fast vibration controller.

- The inertial damping concept is applied for the vibration control of the

flexible manipulator.

- The interaction problem caused by a non-perfect time-scale separation is

analyzed, and solved by appropriate filtering.

Various models are involved in the control design procedure, which confirms

the relevance of our original modeling and simulation tools. From the simulation

and experimental results, we conclude that:
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- The identification of the parameters of the mechanical model is important

to obtain a good agreement with the experimental data. This motivates the

future development of systematic identification techniques in flexible multi-

body dynamics, which can take advantage of the model reduction method.

- Inertial damping leads to a simple, pragmatic and efficient control strategy,

able to improve the dynamic behavior of a mechanism proned to vibration

problems.

- Due to the necessary time-scale separation, a compromise is necessary be-

tween motion performances and vibration suppression.

- The reliable estimation of the modal velocities is critical for the performance

of the controller. Improvements are expected if the acceleration feedback is

replaced by a strain feedback, less sensitive to low-frequency disturbances.

4. General perspective and closure

The modeling and simulation tools presented in this dissertation appear as a

relevant basis for constructive methods in mechatronics. In particular, trajectory

generation, inverse dynamics and concurrent design are challenging problems for

controlled mechanisms, for which optimization techniques can be of great assis-

tance. The utilization of our methods in a numerical optimization approach is

thus a recommended direction for future research.

Mechatronics is a multidisciplinary framework; at the closure of this the-

sis, we strongly believe that our contribution naturally resulted from the cross-

fertilization of concepts encountered in several fields of science and technology.

More than ever, discarding inter-domain barriers appears as a fruitful guideline

in engineering.
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Multibody Systems, volume 103 of NATO Science Series II: Mathematics, Physics

and Chemistry, pages 325–332. Kluwer Academic Publishers, 2003.

[Boo84] W.J. Book. Recursive Lagrangian dynamics of flexible manipulator arms. Int. J.

Robotics Res., 3(3):87–101, 1984.

[Boo93] W.J. Book. Controlled motion in an elastic world. ASME J. Dyn. Syst., Meas.,

and Control, 115(2B):252–261, 1993.

[BP87] E. Bayo and B. Paden. On trajectory generation for flexible robots. Int. J.

Robotic Systems, 4(2):229–235, 1987.

[Car89] A. Cardona. An Integrated Approach to Mechanism Analysis. PhD thesis, Uni-
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[Fav97] W. Favre. Contribution à la Représentation Bond Graph des Systèmes Mé-
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Université Catholique de Louvain, 2004.

[SB88] B. Siciliano and W.J. Book. A singular perturbation approach to control of

lightweight fexible manipulators. Int. J. Robotics Res., 7(4):79–90, 1988.

[Sch97] W. Schiehlen. Multibody system dynamics: Roots and perspectives. Multibody

System Dynamics, 1:149–188, 1997.

[Sch98] J. Scheikl. Comparison 11 (scara-robot) with matlab/simulink, hybrid modelling

approach, model level. Simulation News Europe, 24:44, November 1998.

[Sch01] C.W. Scherer. LPV control and full block multipliers. Automatica, 37:361–375,

2001.

[Sco95] M.A. Scott. Time Varying Compensator Design for Reconfigurable Structures

using Non-Collocated Feedback. PhD thesis, University of Colorado, 1995.

[SF03] J.-C. Samin and P. Fisette. Symbolic Modeling of Multibody Systems. Kluwer

Academic Publishers, 2003.

[SH04] K. Seto and M. Hon. Modeling strategy suited to motion and vibration control

for flexible structures. In Proc. of the 7th Int. Conf. on Motion and Vibration

Control (MOVIC), St-Louis, USA, August 2004.

[Sha98] A.A. Shabana. Dynamics of Multibody Systems. Cambridge University Press,

2nd edition, 1998.

[Sim85] J.C. Simo. A finite strain beam formulation. the three-dimensional dynamic

problem. Part I. Comp. Meth. Appl. Mech. Eng., 49:55–70, 1985.

[SJK97] R. Sepulchre, M. Jankovic, and P. Kokotovic. Constructive Nonlinear Control.

Springer-Verlag Series in Communications and Control Engineering, 1997.

[SL91] J.-J.E. Slotine and W. Li. Applied Nonlinear Control. Prentice Hall, 1991.

[SLP03] R. Serban, D. Li, and L.R. Petzold. Adaptive algorithms for optimal control

of time-dependent partial differential-algebraic equation systems. Int. J. Num.

Meth. Eng., 57(2):1457–1469, 2003.

[SM00] P. Shi and J. McPhee. Dynamics of flexible multibody systems using virtual work

and linear graph theory. Multibody System Dynamics, 4:355–381, 2000.



244 BIBLIOGRAPHY

[SM03a] M. Scherrer and J. McPhee. Dynamic modelling of electromechanical multibody

systems. Multibody System Dynamics, 9:87–115, 2003.

[SM03b] C. Schmitke and J. McPhee. Modelling mechatronic multibody systems using

symbolic subsystems models. In Proc. of the ECCOMAS Conf. on Advances in

Computational Multibody Systems, Lisbon, Portugal, July 2003.

[SMH01] P. Shi, J. McPhee, and G. Heppler. A deformation field for Euler-Bernoulli beams

with applications to flexible multibody dynamics. Multibody System Dynamics,

5:79–104, 2001.

[SP01] R. Serban and L.R. Petzold. COOPT - a software package for optimal control of

large-scale differential-algebraic equation systems. Mathematics and Computers

in Simulation, 56(2):187–203, 2001.

[SS90] N.C. Singer and W.P. Seering. Preshaping command inputs to reduce system

vibration. ASME J. Dyn. Syst., Meas., and Control, 112:76–82, 1990.

[Str98] O. von Stryk. Optimal control of multibody systems in minimal coordinates. Z.

Angew. Math. Mech, 78:1117–1120, 1998.

[STW92] J.C. Simo, N. Tarnow, and K.K. Wong. Exact energy-momentum conserving

algorithms and symplectic schemes for nonlinear dynamics. Comp. Meth. Appl.

Mech. Eng., 100:63–116, 1992.

[SV01] B. Siciliano and L. Villani. Two-time scale force and position control of flexible

manipulators. In Proc. of the 2001 IEEE Int. Conf. on Robotics and Automation,

pages 2729–2734, Seoul, Korea, 2001.

[SVQ86] J.C. Simo and L. Vu-Quoc. A three-dimensional finite-strain rod model. Part II:

Computational aspects. Comp. Meth. Appl. Mech. Eng., 58:79–116, 1986.

[SW83] A.A. Shabana and R.A. Wehage. A coordinate reduction technique for dynamic

analysis of spatial substructures with large angular rotations. J. Struct. Mech.,

11:401–431, 1983.

[Sym04] W. Symens. Motion and Vibration Control of Mechatronic Systems with Variable

Configuration and Local Non-Linear Friction. PhD thesis, Katholieke Universiteit

Leuven, 2004.

[Til01] M.M. Tiller. Introduction to Physical Modeling with Modelica. Kluwer Academic

Publishers, 2001.
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