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SUMMARY

For 25 years ago, the field of the hydraulic structures revealed to us as an extraordinary one,
for which plates and shells are currently used. It is especially the case for navigation dam gates

and navigation lock gates where the steel is used in relatively small thickness with a very
strong stiffening.

Our studies, derived from the D.K.J. method of cylindrical shells, are presented in our paper.
The method assures that the solution is always exact because the resolution principle is based
on an analytic one. It is a substitute to the F.E.M. which is cumbersome to handle for the
hydraulic structures.

A dedicated software (L..B.R.-3) is now available. Many designs have already been carried
out with L.B.R.-3 : lock gates, canal-bridges, storm surge barrier, navigation-dam gates, ...

The advantages presented by our computer programme are numerous. It is highly efficient
when the stiffening is very important because it takes into account the place and the shape of
the stiffeners without slowing down the resolution of the differential system. The other
qualities and the advantages of the L..B.R.-3 software are quickness, simplicity, reliability,
performance and its opening to every one.



THE DESIGN OF
CYLINDRICAL ORTHOTROPIC PLATES AND SHELLS

I.  INTRODUCTION

Our laboratory, the L.H.C.N. has always been interested in the hydraulic structures field.
Since 25 years we have especially been dealing with the orthotropic hydraulic structures, for
which plates and shells are currently used. Plates and shells with relatively small thickness and
very strong stiffening are often used for navigation-dam gates, navigation-lock gates, tidal
surge barriers, canal-bridges, ... .

The most efficient methods for computing cylindrical orthotropic plates and shells can be
grouped together under the name : harmonic analysis methods. The harmonic analysis
method includes the finite strip, the Guyon-Massonnet method, the Golberg-Leve method, .. .
All these methods are not specifically hydraulic ones. So, we propose the stiffened sheathings
method, which enables us to develop the stiffened sheathings software, L.B.R.-3
(Logiciel des Bordages Raidis- version 3).

II. THE DEVELOPMENT OF THE STIFFENED SHEATHINGS
SOFTWARE L.B.R.-3.

Our studies, derived from the D.K.J. method of cylindrical shells (Donnell, von-Karman,
Jenkins), evolved as follows :

FIRST STEP

- Setting up a system of three differential equations for thin plates and shells without
stiffening.

The basic equations were the Flugge ones. We were interested by the concrete shell roof
design.

- Study of concrete shell roofs prestressed by curved cables.

- Setting up of a system of three differential equations for orthotropic plates and shells with
an uneven stiffening.

To solve this last system easily, the Fourier series have to be used. Usually it is supposed that
the stiffeners (longitudinal and transversal) are evenly distributed. In fact, the hydrostatic
loading excludes the use of an equal spacing for the longitudinal (horizontal) direction.

For the cross-bars, which are not evenly distributed, we solved this system by the Volterra-
Fredholm integral equations and by using the Green functions associated to the three
differential equations.

SECOND STEP

- computation of simple rectangular orthotropic plane sheathings simply-supported along two
vertical lines.

We recall that with the Fourier series, the end conditions are w=Mx=0 (displacement and
bending moment). Then the plates are always considered as simply-supported along two
vertical lines; the two horizontal supports can be fixed, free, supported, ... .



A lock-gate with a simple sheathings and 3 cross-bars was the first important application of
our method.

- computation of box gates using many orthotropic plane elements

This new step allows the design of a double-sheathings gate, for exemple : a maritime lock-
gate .

THIRD STEP

- computation of box gates using plates and shells, both of them orthotropic with simple
supports along two vertical lines.

- computation of box gates using orthotropic plates and shells with any boundary conditions
along vertical lines.

III. THEORETICAL STATEMENTS

The basic element is a cylindrical shell where the length is L and the radius q. The coordinates
system is presented in figure 1, the axis OX along the cylindrical generator, the axis Og along
the circonference and OZ perpendicularly to the shell. Displacements u,v and w are associated
to the OX, O and OZ axis.

FIGURE 1: Cylindrical shell element .

1.1, Th D.K ation:

FIGURE 2 : Concrete shell shed roof.



Starting from the 3 differential equations of the thin plates and shells without stiffening, we
have established coefficient tables which allow us to design shell. The application field is the
design of concrete shell roof as sheds (fig. 2).

III.2. Prestressed concrete shell,

The load can be dead load or hydrostatic pressure but also specific pressure as X,Y and Z

which are oriented respectively along the 3 axis OX, O¢ and OZ. By using adequate
combinations of X,Y and Z loads, it is possible to compute shells which are prestressed by

curved cables.
I
74

FIGURE 3 : Concrete shell roof with curved prestressed cables..

II1.3. The differential equations of stiffen hell

The basic element is now a cylindrical orthotropic shell (fig. 4).

FIGURE 4 : Shell element with longitudinal and transversal stiffeners.
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FIGURE 5 : Unitary forces and moments.

FIGURE 6 : Diagram of the f{¢) functions which allow us to take exactly into account the place of the
different types of stiffeners.

This reference shell includes 3 types of stiffening ribs (longitudinal and transversal stiffeners,

cross-bars). These longitudinal and transversal ribs have respectively a spacing of €, and Ep-
There are also the forces (Ny, N(p, quy N(va Qy» Q(p) and the moments (M,, M‘P’ qu) et
M(PX) which are computed with respect to the mean surface (fig. 5).

The f(¢) function are composed by Heaviside ones. These enable to obtain (fig. 6) functions
perfectly compatible with the structural geometry. They are egal to the unity but cancel out the

spaces (dx et dgp) where the ribs act.

So, we determine the 6 equilibrium equations containing the 10 aforementioned unknown
variables (fig. 5).

N'y + N°ox /q+ X +g¢ =0



N°(p/q+N’x(p-Qq,/q+Y+gq,8=O (2)

Ng/q+ Q% /q+Qx=Z+g, 8 (3)
M°g /g + Mixq - Qp +obby =0 (4)
M'y + M°gx /q - Qx - el = 0 (5)
Nyg - Nox + Mgx/a + o ;=0 (6)

with dffdx =f and df/de = f°

To write the expression of the forces and moments (figure 6) in function of the u,v and w
displacements, the two constants D and K which are dependant of the material (E Young

modulus, v Poisson coefficient) and & the shell thickness, we proceed in the following way :

It must be borne in mind the equilibrium of an infinitesimal element in only two dimensions.
The third one is neglected, we considere only the mean surface.

In order to write the equilibrium of this element, we introduce forces like for instance
]

[ R
2

N, = o, 1+ —Z—) dz 7

)

2

Taking into account of the stress-deformations relationships, we obtain for an unstiffened
shell,

Ny =D/q. (' q+ vv° +vw) avec D=E 8/(1—v2) (8)

With longitudinal stiffeners, the expression (7) is not any more valid and has to be changed to:
)

2
No=| o +dz + K@) | o d ©

)]

2 x
2

with e, the stiffeners' width
dy the maximal width where the stiffeners act

o, the stiffener cross-section

f(¢) the Heaviside function which is 1 under the stiffeners and 0
otherwise (fig. 6).

After integration of the (9) relationship, we have :
Ny =D/q . (' g+ vv° +vw) + f(9) (B/dy).(u' 0y - w" hy) (10)

with hy the static moment with respect to the mean surface.




We obtain again qu)'

Nx<p = D(1-v)/2 . (v' + u®/q) + (@) (G/dx). Q'x . (v' + u°/q) (1)
Following the same procedure we will obtain Nx(p My et MX(P,NCP’ Nq)x M‘P et M(px-

Concerning the Q, et QtP relationships, they are determined from the (4) and (5) moment
equations by introducing the already computed forces and moments.

After, replacing the forces and moments by their analytical expressions in the three equations
(1) to (3), we obtain a system of three differential equations with constant coefficients, (12) to
(14). This system, about the stiffened cylindrical shell are only function of the u,v and w
displacements and their derivatives.

D (q u"+v vo'+v w") + D/q? .(1-v)/2 . (u®°+q v +f(x).[Sq>/q (v°' +u°°/q) ]
+2(Q)q [ Sx (V' + v/ ] + (@) [Q, u"-H, w"+8,/g. (v"'+u*°/) ]+ X =0  (12)

D/g? (v*° + w® + v qu®) + D/q .(1-v)/2 . (u®'+q v")
+ f(x).[Q(P/q2 . (vo° +w°) - H(P/q3 . W+ 8, (v +u®/q) ]
+@/QLSe (v + 0/ T+ @) [ Sy (v"+u/] +Y =0 (13)

D/q2 (v +w + v qu) + K/g*. w°°®° + 2 K/q?. w°°" + K w""
+f(x) [ Qq,/q2 (v +w)-2H/q? . W -
Hy/g3 . v°°° + R /q* . wo°° + To/q? . wo" + Ly/q . (vo" +1u) ]
+£(0) [ T,/q2 . wo" + L,/q . (v*" + u*®/q) - H, . u" + R, . w"™ ]
+2(@)q [ Ty/q . w +L,/q . (v" +u/q) ]
+£x) [Tyfq. W' +Lofq. (v +w/q)] = - M Jq+ Mo+ Z (14)

where Qx,Hx,Tx,Lx,Sx,Rx are parameters depending upon the longitudinal stiffeners
geometry,
Q¢,Hy,To,Ly,S¢,Re are parameters depending upon the transversal stiffeners
geometry,

After reduction, we come to one 8th order differential equation of w with two variables, x and

Q.

nn " oo 00 fecee] " #00 [elele e}

Aw "™ +Bw ™4 Cw "™+ Dw™ + Ew™ 4+ Fw™ + G.w' 4 L w0 4 J.w 4 K.y = 0 (15)
with w° = dw/de , w' = dw/dx , w® = d°w / dx.dg , ...

The A,B,C, ...,J et K coefficients are constants, depending upon the geometrical charac-
teristics of the shell and its stiffeners, and also of the physical properties of the material (E,v).

To obtain an equation which two separated variables, we develop the displacements according

to the Fourier series system.

==

w(x,p) = X w(g) sin(nnx/L) (16)

n=1



o0

v(x,9) = X v(p) sin(nmx/L) amn
n=1

u(x,9) = % u(e) cos(nmx/L) (18)
n=1

II1.4. The simply supported plates.

For a good understanding, it is necessary to recall the end conditions of a simply supported
structure.

The sine-serie developments of w(x,) (16), has fixed the other displacement expressions :
v(x,¢) as sinAx (17) and u(x,p) as cosix (18). So, at the ends (x=0 and x=L), the
displacements w and v are zero but the longitudinal displacement u is not zero.

If the both ends (x=0 and x=L) are always simply supported, the two other ones (¢=0 and
¢=0,) can be free, simply supported, fixed, ...

The first version of the stiffened sheathings software was efficient for the stiffened plates. It
allowed us to compute a lifting lock-gate (fig.7).
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FIGURE 7 : Simple sheathing lock gate



II1.5, Simpl r x-str r

The box-structures are composed of many plate or shell elements. At the junction along OX
between two elements, the end conditions are four continuity equations and four equilibrium
equations. For example, at the junction figure 8, we have :

W1=Vo, oy, U=Ug, ...
and

(N(p)l + (Q(p)z =0

(M(p)l + (M(p)z =0

Qg1 + M =0
(Nx(p)l + (qu))z =0

FIGURE 8 : Junction between two shells.

For example, with this new type of conditions, we can compute a maritime lock gate (fig. 9).
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FIGURE 9 : A maritime lock gate.

I11.6 The Fourier seri li r r ith rticular en ndition

In the last version of the stiffened sheathings software, special external forces are included
such as classic external forces X,Y and Z. Among these external forces, there are also end-
forces Ny, and end-moments M,, which are applied at both ends of the plates and the
shells of the structures (figure 10). These end-forces and end-moments enable us to simulate,

for exemple, the forces and the moments that the supporting arms of a radial gate transmit to
the box-girder (fig. 11).



FIGURE 11 : Forces and moments at the junction between the box-girder and a supporting arm.

Concerning the end forces, we use the development of two end loads F. The analytical
expression of the end forces Ny is :

o

Ny=2 [4 /(2n—1)7td* F. (-1)ntl | cos[(2n-1)7(L-2d*)/L] . cos[(2n-1)mx/L] ] (19)

n=1
X¢ .y

FIGURE 12 : End moments My,



For the end moments, we use the same method. However, there is an important difference,
only the derivative of the external load (4§ ¢ exists in the differential equations (12, 13 and

14). So, we must consider the derivative of the end moments My, (fig. 12).

The development of this end moment My, (20) according to the Fourier series is the following
one :

My(x) =Z [4 Mo fon 1)ga* . (1™ . cos[(2n-1)m(L-2d*)/L] . cos[2n-D)nx/L]1  (20)
n=1

dMy/dx =% [4/(2n-1)rd* -H. (171 . cos[(@n-1n(L-2d*)/L] . sin[(2n-L)nx/L] ] (21)
n=1

H=-2n-Dn/L . M,

The end force Ny, and the moment derivative dMp/dx have the same analytical expression. In

the first expression (19), F is the applied force which is constant for all the terms of the
Fourier series. In the expression (21), H has the dimension of a force, but it varies with every
term. It is a function of the end moment My,

II1.6.1. Fourier series development of the end forces and end moments.
The figure 13 shows that the end moments development requires an important number of

terms, especially if we must get an exact load representation. Indeed, for the current
applications, 7 terms are enough to have a sufficient accuracy.

-183.88

-158. 60

FIGURE 13 : Diagram of a concentrated load with 7 terms of the Fourier series.



In practice, concentrated loads do not exist. They are always more or less spread on small
lengths near the ends. So, the end forces Ny, and the end moments My, are applied on small

lengths near the ends and we obtain successful results with only 7 terms of the Fourier series
(fig. 14)

Y

FIGURE 14 : Development of a load which is applied on the ends over small lenghts d*=I/15.

IV. FIELD UTILIZATION OF THE END FORCES AND MOMENTS.

The figure 15 shows the end deformations of a box-girder. These are the u displacements and
the dw/dx rotations at each shell ends.

FIGURE 15 : End deformation of a box-girder.

We can analyze the case of an elastically supported box-girder. For example, the box-girder
and the supporting arms of a radial gate behave like a portal (fig. 16). The end sections of the
gate cannot have any such deformation as it is possible for a simply supported gate.



If the end of a supporting arm is submitted to a general rotation ¢, the longitudinal
displacements u and the rotations dw/dx at the junction box-girder/arm are automatically
known as function of this variable ¢. It is necessary to apply at the ends, end forces Ny, and

end moments My, which must together lead to coincidence between the end displacements of
the box-girder and those ones resulting from the arm rotation.

FIGURE 16 : Plan of the portal, the box-girder and a supporting arm of a radial gate.

How to proceed in practice ?

Consider figure 17, a structure loaded by a hydraulic pressure (hydrostatic and hydrodynamic
pressures). The moment Mbr (fig. 17) applied at the junctions box-girder/arm is important if
the relative arms stiffness next to the box-girder increases.

At the junction box-girder/arm, we have to realize the compatibility of the displacement u and
the rotations dw/dx. Then, we split the behaviour of the portal into two parts, the arm one and
the box-girder one. So, we analyze the two parts separately.

Concerning the arms, we have a relationship between the moment My, , applied at the
supporting arm ends and the rotation ¢ (fig. 17).

On the other hand, for the box-girder, we can determine the end forces and the end moments
associated to displacements and rotations which are the same of the arms ones. Let Mv be the
resulting moment of the end effects (forces and moments).

—y— o _ _
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FIGURE 17 : Moment diagram in the portal structure (box-girder/arms).

After that, we have to adjust the Mbr moment of the arm with the Mv moment of the box-
girder (fig. 18).
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FIGURE 18 : Diagram of the My, and My, moments in function of the ¢ rotation at the junction
box-girderlarms.

V. HYDRAULIC STRUCTURES APPLICATIONS.

Radial gate (fig. 19), sector gate (fig. 20), flap gate (fig. 21) and lifting gate (fig. 22) are four
examples of navigation-dam gates. Today, the structural engineer designs the navigation-dams
with very long spans. Therefore, he uses frequently box-girders which are stiffened by
longitudinal and transversal stiffeners.

FIGURE 19 : Radial gate



FIGURE 20 : Sector gate

FLAP

BOX GIRDER

T 7777

FIGURE 21 : Flap gate FIGURE 22 : Lifting gate.

£

The same procedure is used for a lock-gate or a canal-bridge. For such structures, the number
of the stiffeners and cross-bars is so important that treating them by F.E.M. becomes very
expensive. Indeed, the computing time for a simple sheathing lock-gate needs 90 minutes
CPU on an IBM 3081 (réf. 9). So, for such structures, the F.E.M. is cumbersome to handle
and a more appropriate method is highly necessary. As alternative of the F.E.M., we propose
the L.B.R.-3 utilization.

With the design and the computation of a navigation-dam gate, we will show as concisely as
possible the L.B.R.-3 software qualities.



V.1. The radial gate of a navigation-dam,

As we explained in the introduction, the main piece of modern navigation-dam gates is
nowadays an open or closed box-girder which is composed of plates and shells. This main
piece can very easily be computed by our L..B.R.-3 software.

We have chosen to present the case of a radial gate (fig. 23) for which the study is particulary
delicate and for which the geometrical caracteristics are noted below.

o
~J AR ) & \
',“\ [ 50 100cm 4\o
L \ ) Al LA™ -
\~\§\\ \\ / E/';‘\\ sl
\ S : s
\ Ao N
Y / e : ggo
! 7 X - \1
\
-

Q=300m¥s

4750

/////////////////////////////
FIGURE 23 : Cross-section of the radial gate.

Upstream panel : longitudinal stiffeners : 300x150x10 ( 0.6m spaced)
transversal stiffeners :  130x65x8 ( 1.8m spaced)
Up and down panels : longitudinal stiffeners : 300x150x10 ( 0.6m spaced)
transversal stiffeners : 95x65x6 ( 1.8m spaced)
Downstream panel :  longitudinal stiffeners : 300x150x10 ( 0.6m spaced)
transversal stiffeners : 95x65x6 ( 1.8m spaced)

The first computation carried out with the L.B.R.-3 software has enabled us to control the
pilot-study. These computations carried out with 1 term and without the end effects (gate
supposed simply-supported) demands only 72 data lines and 20 s. CPU on an IBM 4381. The
last checkings realized with 7 terms and the end forces Nb and the end moments Mb require 3
more data lines and 7 min. CPU. :

The extremely reduced data and the very short computation time (CPU) confirm the interest
for the designer to use the L.B.R.-3 software in order to design such a structure. Moreover,
L.B.R.-3 provides a varied range of numerous, reliable results. So, the complete computing
of a complex structure like this radial gate, can be accomplished within 8 hours (discretization,
data correction, computing, printing and results analysis). This very short computation time
represents a great importance for a designer, because, this way, he can get a quick
confirmation of the good or the bad behaviour of his projected structure.



Owing to the characteristics previously mentioned, we can obtain the diagrams of the
displacements, the stresses and the forces acting in the structure. So, the figure 24 shows the
transversal stresses o, diagram in the sheathing at mid-span.

E TRUCTURE

1AGRAM

FIGURE 24 : Transversal stresses Oy diagram in the sheathing at mid-span (x=L/2).

VI. CONCLUSION.

Our studies evolved following 3 steps. The first step was a theorical one and it concerned the
thin shells which can be prestressed by curved cables. The second one corresponded to the
beginning of the computer study of a simply supported box structure.

The third one includes also an important theorical part concerning an original extension of the
D.K.J. method. Indeed, we can now compute with the Fourier series any structure with any
boundary conditions. Moreover, it contains all the computer development about the shells.
These developments enabled us to estabish an efficient tool : the L.B.R.-3 software.

To increase the application field of our method, we have added to the classic external forces
Np, end forces and end moments My,. These last ones are applied at both ends of the shells.

L.B.R.-3 enables us to compute very complex structures, such as navigation-dam gate, tidal
surge barrier, lock gate, canal bridge. The complete computing of a such complex structures
can be accomplished within a few hours (discretization, data correction, computing, printing
and results analysis).

The main advantages and qualities of the L..B.R.-3 software are : quickness, simplicity,
reliability, performance, ... . However the most important one is surely its "accessibility".
Indeed, using L..B.R.-3 only demands a short training and a little competence, it is at every
one's level.
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