Biodiversity conservation in central Africa

Tempe, February 9, 2022

Dr. Simon LHOEST

Arizona State University

My background

Gembloux Agro-Bio Tech, University of Liège, Belgium

Master (2015): Bioengineering, Management of Forests and Natural Areas PhD (2020): Agronomic sciences and biological engineering

- 2. Biodiversity and ecosystem services in tropical forests
- 3. Actionable science for conservation

Focus today

1. Wildlife monitoring by drone

© Julie LINCHANT & Simon LHOEST, Garamba National Park

Wildlife monitoring by drone

Check for updates	Mammal Review 🔗			
Mongabay.com Open Access Journal - Tropical Conservation Science Vol.6 (4):506-520, 2013	Mammal Review ISSN 0305-1838			
December Article	REVIEW			
Research Article	Are unmanned aircraft systems (UASs) the future of wildlife monitoring? A review of accomplishments and challenges			
Aerial surveys using an Unmanned Aerial System (UAS): comparison of different methods for estimating the surface area of sampling strips	Julie LINCHANT* University of Liege, Gembloux Agro-Bio Tech., Forest Resources Management, Laboratory of Tropical & Subtropical Forestry, Passage des Déportés, Gembloux 2.B-5030, Belgium. E-mail: julie.linchant@doct.ulg.ac.be Jonathan LISEIN University of Liege, Gembloux Agro-Bio Tech., Forest Resources Management, Passage des Déportés, Gembloux 2.B-5030, Belgium. E-mail: jo.lisein@ulg.ac.be Jean SEMEKI University of Kinshasa, Faculté des Sciences Agronomiques, Kinshasa XI B.P. 117, Democratic Republic of the Congo. E-mail: jesneki@yahou.fr Philippe LEJEUNE University of Liege, Gembloux Agro-Bio Tech., Forest Resources Management, Passage des Déportés, Gembloux 2.B-5030, Belgium. E-mail: p.lejeune@ulg.ac.be Cédric VERMEULEN University of Liege, Gembloux Agro-Bio Tech., Forest Resources Management,			
Bouché ¹ , Cédric Vermeulen ¹	Laboratory of Tropical & Subtropical Forestry, Passage des Déportés, Gembloux 2.8-5030, Belgium. E-mail: cvermeulen@ulg.ac.be			
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3/W3, 2015 ISPRS Geospatial Week 2015, 28 Sep – 03 Oct 2015, La Grande Motte, France				
HOW MANY HIPPOS (HOMHIP): ALGORITHM FOR AUTOMATIC COUNTS OF ANIMALS WITH INFRA-RED THERMAL IMAGERY FROM UAV S. Lhoest *, J. Linchant **, S. Quevauvillers, C. Vermeulen, P. Lejeune	RESEARCH ARTICLE UAS imagery reveals new survey opportunities for counting hippos			
WIMUAS: DEVELOPING A TOOL TO REVIEW WILDLIFE DATA FROM VARIOUS UAS FLIGHT PLANS	Julie Linchante ^{128 +} , Simon Lhoest ¹⁴ , Samuel Quevauvillers ² , Philippe Lejeune ² , Cédric Vermeulen ¹ , Jean Semeki Ngabinzeke ³ , Basile Luse Belanganayi ¹ , Willy Delvingt ¹ Philippe Bouché ²¹			
J. Linchant 6 *, S. Lhoest 6 S. Quevauvillers 6 J. Semeki 5 P. Lejeune 5 C. Vermeulen 6	Remote Sensing in Ecology and Conservation			
	ORIGINAL RESEARCH			
Unmanned Aerial Survey of Elephants	Multispecies detection and identification of African mammals in aerial imagery using convolutional neural networks			
Cédric Vermeulen ¹ *, Philippe Lejeune ¹ , Jonathan Lisein ¹ , Prosper Sawadogo ² , Philippe Bouché ¹	Alexandre Delplanque ¹ ()), Samuel Foucher ² , Philippe Lejeune ¹ , Julie Linchant ¹ & Jérôme Théau ^{3,4}			

Wildlife surveys

Pedestrian surveys	Aerial surveys	Drones			
Low costs	Speed	Security			
Logistics	Large areas	Hard-to-reach areas			
Inaccuracies, operator effect	Hard-to-reach areas	Speed and logistics			
	High costs	Reliable and repeatable methods, animal disturbance			
Limited areas	Logistics	Automatable procedures			
	Dangers	Technical constraints (low autonomy)			
Potential risks	Inaccuracies, animal disturbance	Large amounts of data (time consuming!)			

Wildlife surveys

Pedestrian surveys	Aerial surveys	Drones			
Low costs	Speed	Security			
		Hard-to-reach areas			
MER NE SAM		Speed and logistics			
		Reliable and repeatable methods, animal disturbance			
		Automatable procedures			
		Technical constraints (low autonomy)			
Potential risks	maccuracies, animal disturbance	Large amounts of data (time consuming!)			

Types of drones

Fixed wings

Rotary wings

Types of sensors

Thermal infrared

3 main groups of animals monitored

- Large terrestrial mammals (bison, deer, elephant, rhinoceros, giraffe, ...)
- Aquatic mammals (dolphin, whale, seal, ...)
- Birds

African Elephant (Vermeulen *et al.,* 2013)

Orca (Durban *et al.,* 2015)

Snow geese (Chabot, 2009)

Detection

Spatial distribution, characterization of the habitat and its occupation

Anti-poaching and surveillance

PLOS ONE

RESEARCH ARTICLE

UAS imagery reveals new survey opportunities for counting hippos

Julie Linchanto^{1,2e*}, Simon Lhoest^{1e}, Samuel Quevauvillers², Philippe Lejeune², Cédric Vermeulen¹, Jean Semeki Ngabinzeke³, Basile Luse Belanganayi⁴, Willy Delvingt⁵, Philippe Bouché^{2†}

Frederick et al. 2008

Calculation of a density D = N / A

Reference method Aerial sample counts

Frederick et al. 2011

Reference method Aerial sample counts

Calculation of a density D = N / A

Adaptation to drones: *transect* flight plan and alternative *rosette* design

Manual counting tool (WIMUAS software)

J. Linchant^{a, *}, S. Lhoest^a, S. Quevauvillers^a, J. Semeki^b, P. Lejeune^a, C. Vermeulen^{a,}

UAS FLIGHT PLANS

Effect of flight altitude

40 m

250 m

Effect of sunlight

Automatic detection

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3/W3, 2015 ISPRS Geospatial Week 2015, 28 Sep – 03 Oct 2015, La Grande Motte, France

HOW MANY HIPPOS (HOMHIP): ALGORITHM FOR AUTOMATIC COUNTS OF ANIMALS WITH INFRA-RED THERMAL IMAGERY FROM UAV

S. Lhoest *, J. Linchant **, S. Quevauvillers, C. Vermeulen, P. Lejeune

Automatic detection

Object detection algorithms (convolutional neural networks)

Торі

Buffalo

Elephant

Remote Sensing in Ecology and Conservation

ZSL LET'S WORK FOR WILDLIFE

23

ORIGINAL RESEARCH

Multispecies detection and identification of African mammals in aerial imagery using convolutional neural networks

Alexandre Delplanque¹ 💿, Samuel Foucher², Philippe Lejeune¹, Julie Linchant¹ & Jérôme Théau^{3,4}

2. Biodiversity and ecosystem services in tropical forests

Tropical forests in the Anthropocene

Central Africa

170 million hectares

Contribution to the livelihoods of **>60 million people** in a high-poverty rural context

References: Abernethy *et al.* (2016), Doumenge *et al.* (2015), FRMi (2018), Minang *et al.* (2019), WRI (2012) Design: Globaïa

Central Africa

Protected areas 45 millions hectares **Production forests** 51 millions hectares **Community forests** 4 millions hectares **Other forests** 70 millions hectares

References: Abernethy *et al.* (2016), Doumenge *et al.* (2015), FRMi (2018), Minang *et al.* (2019), WRI (2012) Design: Globaïa

Introduction

Social-ecological system (southeastern Cameroon)

Conceptual framework and objectives

General objective: Assess the conservation value of tropical forests in southeastern Cameroon, as well as the supply of ecosystem services and use by local populations, in three contrasted forest land allocations

Photos: J. Atkinson, J.-Y. De Vleeschouwer, J.-L. Doucet, D. Fonteyn, J. Laporte, S. Lhoest, J. Schure

Conservation value of forest allocations

Lhoest S., Fonteyn D., Daïnou K., Delbeke L., Doucet J.-L., Dufrêne M., Josso J.-F., Ligot G., Oszwald J., Rivault E., Verheggen F., Vermeulen C., Biwolé A. & Fayolle A. (2020). Conservation value of tropical forests: Distance to human settlements matters more than management in Central Africa. *Biological Conservation*, 108351.

all sea

Objectives

Ø

Identify the determinants of the conservation value of tropical forests in southeastern Cameroon, disentangling the effects of:

- i. Forest allocation
- ii. Proximity to human settlements (roads and villages)
- iii. Local habitat (forest degradation, canopy openness, proximity to rivers)

Two indicator taxonomic groups:

i. Mammals

١.,

ii. Dung beetles

Two components of diversity:

- Species richness (α and γ -diversities)
- ii. Species composition (β-diversity)

Biodiversity inventory

44 camera traps 3 months Density of 1 camera / 2 km² 30-50 cm above ground level Oriented to animal trails Herbaceous vegetation cleared

72 baited pitfall traps
18 groups of 4 traps
250 m between traps in each group
48 hours

Mammals

3464 independent detection events

Chimpanzee (Pan troglodytes)

Red River Hog (Potamochoerus porcus)

African Palm Civet (*Nandinia binotata*)

MPAL27_02

Giant Pangolin (*Manis gigantea*)

MDJA_03

3-21-2017 11:4

Dung beetles

4475 individuals

Species richness

Species richness

Species composition

Conclusion

Gradient of human pressure on forest biodiversity

Protected area

High conservation value Not a paper park

Logging concession

High potential for conservation, but high variability in biodiversity patterns

Community forests

Degraded forests, but not empty forests yet

Our results cannot be generalized at the scale of all Cameroonian / Central African protected and logged forests

Perceptions of ecosystem services supplied by tropical forests to local populations

Lhoest S., Dufrêne M., Vermeulen C., Oszwald J., Doucet J.-L. & Fayolle A. (2019). Perceptions of ecosystem services provided by tropical forests to local populations in Cameroon. *Ecosystem Services*, 38, 100956.

A FSC-certified logging concession (Pallisco company) Three community forests (Medjoh, Avilso, Eschiambor)

Objectives

Assess the perceptions of ecosystem services provided by tropical forests to local populations in southeastern Cameroon, and specifically:

- 1. Assess the significance and abundance of ecosystem services
- 2. Identify the determinants of the perceptions of ES abundance among:
 - i. Forest allocations
 - ii. Deforestation
 - iii. Socio-demographic characteristics (gender, age, ethnicity, main occupation)

Individual interviews with 225 forest stakeholders in 23 locations

1 open-ended question
 → Perceptions of ES significance
 16 directed questions
 → Perceptions of ES abundance

Perceptions of ecosystem services

The ES most frequently perceived as important are provisioning and cultural services. Bushmeat is the only ES perceived as highly important but not very abundant.

Determinants of ES perceptions						43	
Ecosystem services	Forest allocation	Deforestation	Gender	Age	Ethnicity	Occupation	
Vegetal NTFP							
Meat (hunting)						***	
Fish (fishing)							
Firewood	***	***					
Timber	***	***	***				
Traditional medicine			,	-			
Cultural heritage and identity		_					
Tourism	***						
Inspiration for culture	***			***			
Spiritual experience	***						
Recreation		, ,					
Water quality regulation					***		
Climate regulation							
Air quality regulation							
Natural hazard mitigation							
Soil formation and regeneration							
Perceptie	ons of ES abundanc	e are relatively	homoge	eneou	S.		

ES perceptions are mainly explained by spatial parameters >< social parameters.

Use of forest ecosystem services by local populations

Lhoest S., Vermeulen C., Fayolle A., Jamar P., Hette S., Nkodo A., Dufrêne M. & Meyfroidt P. (2020). Use of forest ecosystem services by local populations in southeastern Cameroon. *Sustainability*, 12(6), 2505.

Biodiversity Ecosystem services Provisioning Regulating Firewood Timber Meat Climate & Water Soil air quality quality quality regulation Cultural Fish Medicines NTFP Assessment with biophysical & social Heritage. Education, approaches Relaxation rites & science & traditions tourism Use **Forest stakeholders** Dung-beeties 72 baited pitfall traps MahmmalS 3 months/grid Species identification 48 hours/trap Species identification 3 Local populations **Forest land allocations** A protected area (Dja Biosphere Reserve) A FSC-certified logging concession (Pallisco company) Three community forests (Medjoh, Avilso, Eschiambor)

Objectives

Quantify the use of important ES provided by tropical forests to local populations in southeastern Cameroon, and specifically:

- 1. Quantification and mapping of ES use
- 2. Determinants of ES use at the village scale: population size, forest allocations, deforestation rate?
- 3. Sustainability of the use of provisioning ES?

Data collection in 3 villages:

Field surveys (biophysical approaches) and interviews (social approaches)

3 provisioning services:

Bushmeat, firewood, timber

5 cultural services: Cultural heritage, inspiration, spiritual experience, recreation, education

ES use

Data collection in 3 villages

- Exhaustive household census (structured interviews, n = 133)
- Sampling of 55 volunteer households stratified by: main source of income & ethnic group

Bushmeat use:

- GPS tracking of volunteer \bullet hunters (n = 651 km)
- Daily survey of dietary ightarrowintake: Structured interviews + Weighing (n = 3291 meals)

Firewood use:

- GPS tracking of volunteer villagers (n = 50 km)
- Daily survey of firewood use: Structured interviews + Weighing (n = 3367 days)

Timber use:

Quantification with structured interviews
 + Measurements

 (n = 69 households)

Cultural services use:

- Participatory mapping + 0 Georeferencing (n = 26 sites)
- Evaluation of the use of cultural services: Structured interviews (n = 145 respondents)

Bushmeat

56 kg / person / year 57% is purchased

(n = 3291 meals)

Firewood

1 1 7 m³ / person / year

(n = 3367 days)

Photo: P. Jamar

Timber

003 m³ / person / year

% is purchased

(n = 69 households)

Cultural heritage

73% of positive mentions

(n = 145 respondents)

Inspiration

25% of positive mentions

(n = 145 respondents)

Photo: S. Hette

Spiritual experience

56% of positive mentions

(n = 145 respondents)

Recreation

55% of positive

mentions

(n = 145 respondents)

Education

86% of

positive mentions

(n = 145 respondents)

ES use

Mapping and determinants of ES use at the village scale

Sustainability of bushmeat consumption

Dja area (2018)

4.7 km²/household

32 kg/km²/year

8 people/km²

References

In 2001: 2.0 km²/household

In 2001: 93 to 173 kg/km²/year
Maximum production of wild meat in tropical forests: 150-200 kg/km²/year

Maximum density for sustainable
 bushmeat consumption: 1 person/km²

Decrease of animal populations since decades (100% of 24 interviewed hunters) Defaunation, extension of hunting areas, **non-sustainable hunting practices**

References: Delvingt *et al.* (2001), Robinson and Bennett (2000), Vermeulen and Karsenty (2001) Photo: S. Hette

Sustainability of firewood and timber use

Mean use of firewood: 1.8 kg/person/day Mean use of timber: 3.75 m³/household Firewood use = 39 x timber use

Total firewood mass used annually in each village = 0.20 to 0.69 Mg/ha/year = 4 to 13% of the natural growth of the wood resource based on a biomass increment of 5.46 Mg/ha/year estimated in Cameroon agro-forest areas

Sustainable use of wood by rural populations, minor impact on forest ecosystems

Reference: Djomo *et al.* (2011) Photo: P. Jamar

Thank you for your attention! simlho@hotmail.com / slhoest@asu.edu

Arizona State University