Introduction

- **Effects of weaning**
 - Underfeeding
 - BW ↓
 - Intestinal modifications
 - Morphological
 - Immunological
 - Digestion and absorption
 - Intestinal flora
 - Metabolic modifications
 - Endocrinial modifications

Plan

- **Introduction**
 - Pig weaning
 - Bovine colostrum
- **Bovine colostrum in the weaning diet**
 - Growth performance and feed intake
 - Digestive and immune system
- **Conclusions**

Introduction

- **Weaning = Critical period**

 ![Stress Diagram]

- **Psychological**
 - Separation
 - Manipulation
 - Transport
- **Nutritional**
 - Solid food
 - Composition
- **Environmental**
 - Mixing
 - New environment

Introduction

- **Use of feed additives**
 - Ban on antibiotics
 - Colostrum as alternative
Introduction

- **Bovine Colostrum**
 - 1st milk after calving
 - Composition
 - Essential nutrients
 - Bioactive compounds
 - Growth factors (IGF-I and -II, GH, EGF, TGF)
 - Immune factors (Ig, cytokines)
 - Antimicrobial factors (lactoferrin, lactoperoxidase, lysozymes)

<table>
<thead>
<tr>
<th>Bovine Colostrum and milk composition</th>
<th>Composition (g)</th>
<th>Colostrum</th>
<th>Milk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry Matter</td>
<td></td>
<td>24-51 g</td>
<td>2-4 g</td>
</tr>
<tr>
<td>Crude Fat</td>
<td>36-44 g</td>
<td>24-32 g</td>
<td></td>
</tr>
<tr>
<td>Lactose</td>
<td>39-44 g</td>
<td>7-14 g</td>
<td></td>
</tr>
<tr>
<td>Ash</td>
<td>5-28 g</td>
<td>0-7 g</td>
<td></td>
</tr>
<tr>
<td>IgA</td>
<td>3.0-6.5 g</td>
<td>0.2 g</td>
<td></td>
</tr>
<tr>
<td>IgG1</td>
<td>50-90 g</td>
<td>0.3-0.4 g</td>
<td></td>
</tr>
<tr>
<td>IgG2</td>
<td>1.5-2.2 g</td>
<td>0.05 g</td>
<td></td>
</tr>
<tr>
<td>IgM</td>
<td>3.8-8.6 g</td>
<td>0.05 g</td>
<td></td>
</tr>
<tr>
<td>IGF-I</td>
<td>100-2000 µg</td>
<td>< 25 µg</td>
<td></td>
</tr>
<tr>
<td>IGF-II</td>
<td>200-600 µg</td>
<td>< 10 µg</td>
<td></td>
</tr>
<tr>
<td>EGF</td>
<td>4-8 mg</td>
<td>2 µg</td>
<td></td>
</tr>
<tr>
<td>TGF-β</td>
<td>100-300 pg</td>
<td>1-2 µg</td>
<td></td>
</tr>
<tr>
<td>Lactoferrin</td>
<td>1.5-5.5 mg</td>
<td>0.1-0.3 g</td>
<td></td>
</tr>
<tr>
<td>Lactoperoxidase</td>
<td>10 mg</td>
<td>20 µg</td>
<td></td>
</tr>
<tr>
<td>Lysozyme</td>
<td>0.14-0.7 mg</td>
<td>0.07-0.6 mg</td>
<td></td>
</tr>
</tbody>
</table>

Bovine colostrum in weaning diet

- Growth performance and feed intake
 - 20 g of BC serum/kg of diet (Boudry et al., 2008)

[Graph showing ADG (g/day) and FCR (Feed Conversion Ratio) over days post-weaning for control and Bovine Colostrum]
Bovine colostrum in weaning diet

– Growth performance and feed intake
 • ➤ ADG and ADFI Week 1 PW
 • ➣ FCR Week 1 PW
 • First studies in 1999: 5 to 10 % of BC
 • Last studies: 1 % of BC
 • Pathogen pressure

– Gastro-intestinal tract
 • Morphology (King et al., 2007 and 2008)
 – ➤ villi length
 – ➣ crypt depth
 • duodenal protein synthesis (Le Huerou-Luron et al., 2003)
 ➤ Maintain the intestinal barrier integrity

 • Microflora (Huguet et al., 2006)
 – ➤ Lactobacilli/Coliform
 – ➣ Stomach pH (Gram -)
 ➣ ➣ diarrhoea risk

– Immune system
 • Systemic response (Boudry et al., 2007 and 2008)
 – ➤ total IgA
 • Local response (Boudry et al., 2007)
 – ➤ anti-colostral IgA
 – Cytokine expression : Th1 and Th2 immune response
 – Mainly in the iPP (Primary immune organ) : Th2 immune response
 – ➤ of Tc and Th in the lamina propria (King et al., 2008)

– Hormonal response
 • Boudry et al. (in preparation)
 – ➤ in IGF-I on day 7 : Feed intake ???
 – No effect on T3 and T4 on day 7 : decrease after weaning
 but returned faster to initial level

Conclusion
Conclusion

• Bovine colostrum supplementation
 – Increase growth performance and feed intake
 – Maintain intestinal barrier integrity PW
 – Induce a humoral immune response

• In pig production
 – Bovine colostrum = 60 €/kg
 – 1% during 7 days = 500 g/piglet
 = 0.70 €/piglet

Table 2

<table>
<thead>
<tr>
<th>Treatment</th>
<th>ADG and ADFI Week 1 PW</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC</td>
<td>4.57 ± 0.42</td>
<td>4.67 ± 0.42</td>
<td>4.67 ± 0.42</td>
<td>4.57 ± 0.42</td>
</tr>
<tr>
<td>Control</td>
<td>4.17 ± 0.37</td>
<td>4.17 ± 0.37</td>
<td>4.17 ± 0.37</td>
<td>4.17 ± 0.37</td>
</tr>
</tbody>
</table>

Table 3

<table>
<thead>
<tr>
<th>Treatment</th>
<th>ABS</th>
<th>BW on d7</th>
<th>BW on d14</th>
<th>Jejunum and ileum VH</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC</td>
<td>52.3 ± 2.4</td>
<td>45.7 ± 3.2</td>
<td>47.8 ± 3.5</td>
<td>1.10 ± 0.05</td>
</tr>
<tr>
<td>Control</td>
<td>49.2 ± 2.1</td>
<td>43.1 ± 2.8</td>
<td>45.6 ± 2.9</td>
<td>1.08 ± 0.04</td>
</tr>
</tbody>
</table>

Table 4

<table>
<thead>
<tr>
<th>Treatment</th>
<th>SI lactase</th>
<th>SI aminopeptidase N</th>
<th>SI mucosa weight</th>
<th>SI protein content</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC</td>
<td>101 ± 5.6</td>
<td>98 ± 4.8</td>
<td>102 ± 6.2</td>
<td>100 ± 5.4</td>
</tr>
<tr>
<td>Control</td>
<td>96 ± 4.3</td>
<td>94 ± 3.9</td>
<td>97 ± 4.1</td>
<td>96 ± 4.3</td>
</tr>
</tbody>
</table>