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ABSTRACT 
The rise of Carnivora (Mammalia, Laurasiatheria) is an important evolutionary event that 
changed the structure of terrestrial ecosystems, starting at the dawn of the Eocene, 56 million 
years ago. This radiation has been mainly analysed in North America, leaving the evolution of 
carnivoran diversity in other regions of the globe poorly known. To tackle this issue, we 
review the evolution of terrestrial carnivorous mammal diversity (Mesonychidae, Oxyaenidae, 
Hyaenodonta, and Carnivoramorpha) in Europe. We reveal four episodes of intense faunal 
turnovers that helped establish the dominance of carnivoramorphans over their main 
competitors. We also identify two periods of general endemism. The remaining time intervals 
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are characterized by dispersals of new taxa from North America, Asia, and Africa. The 
European Paleogene carnivorous mammal fauna appears to have been almost constantly in a 
transient state, strongly influenced by dispersals. Many of the bioevents we highlight for 
European carnivorous mammals are probably best seen as ecosystem-wide responses to 
environmental changes. In contrast to the North American record, European hyaenodonts 
remain more diverse than the carnivoramorphans for the entire Eocene. The replacement of 
hyaenodonts by carnivoramorphans as the most diverse and dominant predators only occurred 
after the ‘Grande Coupure’ at 33 Ma, about 16 Myr later than in North America. 
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INTRODUCTION 
The fossil record reveals several cases of inferred ecological competition between 

mammal clades over long timescales (Janis et al., 1994; Meng & McKenna, 1998; Maas et 
al., 1998; Van Valkenburgh, 1999; Prufrock et al., 2016). An iconic example is the evolution 
of terrestrial carnivorous mammals during the Paleogene (66-23 Ma), which involves the 
Carnivoramorpha (the clade that includes the modern order Carnivora) and the extinct clades 
Hyaenodonta, Mesonychia and Oxyaenidae (Savage, 1977; Radinsky, 1982; Van 
Valkenburgh, 1999; Friscia & Van Valkenburgh, 2010). These clades independently evolved 
a series of guild-defining dental and locomotor adaptations (Muizon & Lange-Badré, 1997; 
Rose, 2006), most notably carnassial teeth: a labio-lingually compressed, bladelike 
morphology that cuts through skin, muscles, and tendons by generating intense shearing 
forces (Savage, 1977; Flynn & Wesley-Hunt, 2005; Rose, 2006; Solé & Ladevèze, 2017). 
Mesonychia did not possess carnassial teeth, but are regarded as carnivorous (Szalay & 
Gould, 1966; Rose, 2006). All these clades were sympatric in many ecosystems during the 
Paleogene in North America, Asia, and Europe (Savage, 1977; Flynn & Wesley-Hunt, 2005; 
Rose, 2006). It has thus been proposed that they were competitors (Van Valkenburg, 1999; 
Morlo & Nagel, 2007; Friscia & Van Valkenburgh, 2010; Morlo et al., 2010). However, only 
carnivoran carnivoramorphans would eventually prevail and give rise to a myriad of forms 
including cats, dogs, raccoons, bears, and seals, for a total of more than 281 species extant 
(Wilson & Mittermeier, 2009). 

How carnivoramorphans radiated and eventually outcompeted hyaenodonts, oxyaenids, 
and mesonychids on a global scale is unclear, as few studies have focused on this question 
beyond North America. Since the 1990’s, the success of the carnivorans in North America has 
been investigated in extraordinary detail, showing that carnivorans outcompeted hyaenodonts 
and oxyaenids during the Eocene, beginning around 50 Ma (late Ypresian), when carnivorans 
became the most diverse clade of carnivorous mammals (Van Valkenburgh, 1999, 2007; 
Flynn & Wesley-Hunt, 2005; Friscia & Valkenburgh, 2010). Friscia & Van Valkenburgh 
(2010) hypothesized that the pattern in Europe, Asia, and Africa would be similar to that of 
North America. This hypothesis is supported by the numerous carnivorous mammal taxa 
shared between Europe and North America following the Mammal Dispersal Event (MDE; 
Hooker, 1996, 1998, 2015; Smith & Smith, 2001, 2010; Solé et al., 2011, 2013a, 2013b, 
2014a), but it remains to be tested in Europe.  

The evolution of the carnivorous mammals in Africa has been recently studied by Borths 
& Stevens (2017c) and Friscia et al. (2020). Throughout the Paleogene, most terrestrial 
carnivore niches in Afro-Arabia were occupied by hyaenodonts, but in the Neogene 
carnivorans seem to have displaced hyaenodonts after their dispersals into Africa, pushing 
hyaenodonts into more specialized forms, in terms of both body size and carnivory (Borths & 
Stevens, 2017c; Friscia et al., 2020). The transition from a hyaenodont fauna to a carnivoran 
fauna coincides with other ecological changes in Afro-Arabia as tectonic conditions in the 
African Rift System altered climatic conditions and facilitated faunal exchange with Eurasia 
(Borths & Stevens, 2017c). This transition occurred around the Paleogene–Neogene boundary 
(ca. 23 Ma), so later than in North America (27 Ma) and Europe (11 Ma).  

To address the success of the carnivorans in Europe, we analyse the taxonomic evolution 
of carnivorous mammals during the Paleogene of Europe and compare it to: (1) the faunal and 
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climatic events affecting European ecosystems during the Paleogene; and (2) the evolution of 
taxonomic diversity of carnivorous mammals in North America in order to evaluate the 
hypothesis of Friscia & Van Valkenburgh (2010). 
 
MATERIAL AND METHODS 
DEFINITION OF SUPRAGENERIC CLADES 

Hyaenodontidae and Oxyaenidae were previously grouped within ‘Creodonta’, but several 
studies suggest that these two groups are ecomorphologically convergent rather than closely 
phylogenetically related (Polly, 1994; Rose, 2006; Morlo et al., 2009). The use of the clade 
Hyaenodonta (order level) rather than Hyaenodontidae (family level) has thus been proposed 
(Solé, 2013) and this approach is followed here. This notably differs from Friscia & Van 
Valkenburgh (2010) who still use ‘Creodonta’ as a clade. 

The subfamily Proviverrinae has been redefined as an endemic European clade of 
hyaenodonts that evolved in relative isolation (Solé, 2013; Solé et al., 2014a). However, some 
recent phylogenetic analyses recovered Proviverrinae as paraphyletic (Borths et al. 2016; 
Borths & Seiffert, 2017; Borths & Stevens, 2017a,b,c). Some phylogenetic analyses recovered 
some proviverrine taxa as early diverging taxa among Hyaenodonta and proposed to name 
Hyaenodontoidea for the clade that includes the last common ancestor of Proviverrinae and 
Hyaenodontinae (Solé & Mennecart, 2019; Solé et al., 2019a). Throughout this paper, the 
term “endemic hyaenodontoid” is used to focus on the early hyaenodontoids autochthonous to 
Europe, prior to the arrival of Hyaenodon. The subfamilies ‘Sinopinae’ and ‘Arfiinae’ are 
possibly paraphyletic (Borths et al., 2016) but will be retained here for practical reasons.  

Carnivoramorpha includes Carnivora and its closest relatives (i.e., Viverravidae and 
‘Miacidae’) (Wyss & Flynn, 1993). Carnivoraformes also includes Carnivora and its closest 
relatives (i.e., ‘Miacidae’) but excludes Viverravidae (Flynn et al., 2010). The term ‘early 
carnivoraform’ replaces the term ‘miacid’ herein.  
 
TAXONOMIC SAMPLING, TEMPORAL DATA, AND PERCENTAGE OF 
RENEWAL 

Our dataset incorporates all carnivoramorphans, hyaenodonts, viverravids, and oxyaenids 
from the Paleogene of Europe that have been found in a locality that can be assigned to an MP 
(Mammal Paleogene) reference level of the mammalian biochronological scale for the 
European Paleogene (Schmidt-Kittler et al., 1987; BiochroM’97, 1997) and that are 
determinable at the species level. Our dataset has been built based on the literature; we 
focused on the most recent studies and did not question the taxonomy of the carnivorous 
mammals. The core of the dataset is the record from the Quercy Phosphorites Formation in 
France, which provided numerous upper Eocene and Oligocene fossiliferous localities (e.g., 
Escarguel & Legendre, 2006). Our sampled localities are also largely drawn from Western 
Europe, notably from France, Germany, Belgium, Spain, Switzerland, and England. We 
treated cf. and aff. species assignations as a valid occurrence of a species if this species is 
already recorded in this MP/locality. Finally, we used Lazarus ranges to populate our time 
bins and reduce the influence of sampling biases: even if not recorded, a species was thus 
regarded as present within an MP if both older and younger occurrences of that species exist 
in Europe.  
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The dataset comprises 167 species representing 86 genera. The Supplementary Table 1 
provides the stratigraphic distribution of carnivorous mammal genera and species recorded in 
Europe. Based on these data, we reconstructed the evolution of taxonomic diversity through 
time at the species and genus levels (species level: Figs. 1-2; genus level: Supplementary 
Figure 1; Supplementary Table 2). We derived the First Appearance Datum (FAD) and Last 
Appearance Datum (LAD) for all taxa at the species level through time (Supplementary Table 
3, Supplementary Text 1, and Supplementary Figure 2); we also established the evolution 
through time of taxic renewal (as a percentage) based on these data (see Supplementary Table 
4, Supplementary Text 2, and Supplementary Figure 3).  

Each MP reference level from MP6 (late Thanetian, ca. 57 Ma) to MP30 (latest Chattian, 
ca. 23 Ma) was defined as an independent time point. It should be noted that MPs mainly 
represent roughly contemporaneous faunal assemblages rather than precise bio- and 
chronostratigraphic units. Each MP reference level is defined by the whole fauna of a 
reference locality (Schmidt-Kittler et al., 1987; BiochroM’97, 1997, p.770). MP8 and MP9 
are provisionally grouped together due to insufficient information on the mammal faunas 
between MP7 and MP10 (Schmidt-Kittler et al., 1987, p. 16, 21; BiochroM’97, 1997, p. 774). 
MP15 has a questionable definition as it likely represents a reworked deposit (Comte et al., 
2012). Our sampling of carnivorous mammals at this MP level is null and is thus 
uninformative. The trends seen between MP14 and MP16 must be considered cautiously. 
Following BiochroM’97 (1997), MP17 is divided in MP17a and MP17b. For the absolute 
ages of the Paleogene stages and estimated ages of the MP levels, we used the Paleogene 
dates compiled by Speijer et al. (2020) and plotted our data by using Time Scale Creator 
version 7.4 (TSCreator, 2020). 

We performed simple linear regressions accompanied by a t-test and a F-test between the 
number of taxa (including Lazarus ranges), the number of localities, and the estimated MP 
ages with the ‘lm’ functions in the stats package in the R statistical environment (R Core 
Team, 2019). These methods were used to assess the importance of sampling biases in our 
dataset. We found no significant correlation between the number of taxa and the estimated 
MP ages, but there is a weak but significant correlation between the number of taxa and the 
number of localities: R² < 0.31; p-value < 0.004 (see also Supplementary Table 5 and 
Supplementary Figure 4). 
 
POLY-COHORT ANALYSES 

The individual poly-cohort analysis, or survivorship poly-cohorts, helps investigations of 
taxon survivorship over a given time span (Escarguel & Legendre 2006; Scherler et al., 2013; 
Mennecart, 2015) by visualizing origination/immigration and extinction/emigration 
proportions. We used the ‘nested’ analyses, in which the survivorship curves illustrate the 
percentage of taxa present between an initial taxonomical assemblage and the last appearance 
of the assemblage’s last representative (Scherler et al., 2013). These curves show the 
progressive disappearance of the original assemblage as its constituent taxa go extinct 
(Escarguel & Legendre 2006; Scherler et al., 2013). We conducted the poly-cohort analyses at 
the genus and species levels on Paleogene carnivore taxa (Supplementary Table 6).  
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DICE SIMILARITY  
We performed cluster analysis based on the Dice similarity indices using the PAST 

software (Hammer et al. 2001) in order to define the consistency of our palaeocommunities 
through time. Our method is based on Scherler et al. (2013). The Dice index for the 
presence/absence of data puts more weight on joint occurrences than on mismatches. When 
comparing two columns (or associations), a match is counted for all taxa present in both 
columns. The Dice index is expressed as 2M/(2M + N), where M is the number of matches 
and N the total number of taxa present in only one column. We constructed the clusters for the 
Dice similarity index using two methods: (1) with an unweighted pair-group method with 
arithmetic mean (UPGMA), the clusters are joined based on the average distance between all 
members of both groups, and (2) with the Single Linkage or Nearest Neighbour method 
(SINGL), the clusters are joined based on the smallest distance between both groups 
(Hammer et al., 2001).  
 
RESULTS 
EVOLUTION OF TAXONOMIC RICHNESS 

The species richness of European carnivorous mammal faunas generally increased through 
the Paleogene (Fig. 1A). However, this increase was not constant, and the diversity of 
carnivorous mammals fluctuated widely during the interval. There were few species of 
carnivorous mammals during the Thanetian (MP6), with only carnivoraforms and 
mesonychids recorded in Europe. The species richness of carnivorous mammal faunas 
boomed in the earliest Ypresian. The oldest hyaenodont and oxyaenid species are known from 
MP7, and are joined by new carnivoraform and mesonychid species. Diversity continued to 
increase with the appearance of one viverravid, and new mesonychids and oxyaenids in 
MP8+9. In summary, numerous clades were present in Europe during the early to middle 
Ypresian (MP7-MP8+9): Mesonychidae, Oxyaenidae, Hyaenodonta, and Carnivoramorpha.  

Diversity slightly decreased at the end of the Ypresian partly because of the disappearance 
from Europe of the viverravids, oxyaenids, ‘sinopine’ hyaenodonts (last occurrence at 
MP8+9), and mesonychids (last record at MP10) (Fig. 1B-C). As a consequence of these 
disappearances, only endemic hyaenodontoids and early carnivoraforms persisted into the 
Lutetian of Europe. Thus, carnivoraforms decreased in diversity during the Ypresian and 
Lutetian. In contrast, endemic hyaenodontoids diversified during the Ypresian and at MP13-
MP14. Hyaenodonts were thus more speciose than carnivoramorphans during the Lutetian 
(Fig. 1B).  

The MP16 (Bartonian) records a modest increase in species diversity relative to MP14 
(Fig. 1A). Subsequently, diversity remained stable during most of the Priabonian (MP17a-
MP19). Some new groups appeared in Europe at that time: hyainailourines (Hyaenodonta) are 
first recorded at MP16, hyaenodontines (Hyaenodonta) at MP17a (Fig. 1C), and 
amphicyonids (Caniformia) at MP18 (Fig. 2B). Hyaenodonts remained more diverse during 
this period than the carnivoraforms (Fig. 1B).  
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Figure 1. Evolution of specific diversity of carnivorous mammals during the Paleogene in 

Europe. A. All taxa. B, Higher level taxa: Mesonychidae, Oxyaenidae, Hyaenodonta, 
Carnivoraformes, Viverravidae. C, Hyaenodonta: Apterodontinae, Arfiinae, Hyaenodontinae, 
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Hyainailourinae, Prionogalidae, “Endemic hyaenodontoids”, Sinopinae. Orange bars: most 
notable Eocene climatic warming phases; blue bar: climatic cooling at the onset of the 
Oligocene. Abbreviations: EECO, Early Eocene Climatic Optimum; PETM, Paleocene-
Eocene Thermal Maximum; MECO, Middle Eocene Climatic Optimum; Oi-1, Oligocene Oi-
1 event. 

 
 
Total taxonomic richness strongly decreased just before the end of the Eocene (MP20) and 

bounced back in the earliest Oligocene (MP21) (Fig. 1A). More importantly, the ratio 
between the hyaenodonts and carnivoraforms reversed (Fig. 1B). Hyaenodonts were more 
numerous than carnivoramorphans during the entire Eocene. This situation inverted at the 
onset of the Oligocene after the ‘Grande Coupure’ (Fig. 1B). Moreover, during the Eocene, 
hyaenodonts were mainly represented by endemic hyaenodontoids, but by the Oligocene most 
hyaenodonts belong to Hyaenodontinae (Fig. 1C). 

 
During the Oligocene (MP21-MP30), hyaenodonts remain relatively limited in their 

diversity. Their highest diversity is reached at MP23 with the presence of the enigmatic 
hyaenodontid Thereutherium (Prionogalidae) and two hyaenodont subfamilies: 
Apterodontinae and Hyaenodontinae (Fig. 1B-C). Caniformia represented the most diverse 
clade of carnivorans at MP21 (Fig. 2A), partially due to the abundance of Ursidae (Fig. 2B). 
However, at MP22 the feliformians became the most diverse group, a trend that lasts until the 
end of the Rupelian (MP25) (Fig. 2A). The ratio between feliformians and caniformians 
changes once again during the early Chattian at MP26. This change is related to the 
disappearance of the Nimravidae (Fig. 2C). The diversity of Caniformia is further increased in 
the late Chattian by the high number of ursid and amphicyonids species (MP28-30) (Fig. 2A-
B).  

 
POLY-COHORT ANALYSIS 

Only one of the two carnivorous genera recorded at MP6 (late Thanetian) persisted until 
MP10 (late Ypresian). MP7 shows an almost complete faunal turnover, and this assemblage 
survived only until the middle Ypresian (MP8+9). Some genera – but none of the species – of 
MP8+9 and MP10 faunas persisted until the end of the Eocene (Fig. 3). The Lutetian faunas 
(MP11-MP14) were partially replaced, especially at the species level. For instance, the 
species of the MP11 faunas are unknown from the overlying MP levels (Figure 3). A drastic 
modification of the cohorts occurred in the Bartonian (at MP16). A small fraction of the 
genera of the MP8+9, MP10, and MP13 faunas, but none of MP11and MP12, are recorded in 
the Bartonian and Priabonian. Some genera even survive until the end of the Eocene (Fig. 3). 
The Bartonian and Priabonian faunas (MP16-MP19) were continuously renewed at the 
species and genus levels until the end of the Eocene (Fig. 3). 
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Figure 2. Evolution of specific diversity of carnivoraformes during the Paleogene in 

Europe. A. Carnivoraformes: “Early carnivoraforms”, Caniformia, Feliformia. B, Caniformia: 
Basal Arctoidae, Amphicyonidae, Ailuridae, Ursidae, Mustelidae. C, Feliformia: Aeuloroidea, 
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Nimravidae. Orange bars: most notable Eocene climatic warming phases; blue bar: climatic 
cooling at the onset of the Oligocene. Abbreviations: Ai., Ailuridae; EECO, Early Eocene 
Climatic Optimum; Mus., Mustelidae; PETM, Paleocene-Eocene Thermal Maximum; MECO, 
Middle Eocene Climatic Optimum; Oi-1, Oligocene Oi-1 event. 

 
 
The faunas changed dramatically in the earliest Oligocene (early Rupelian, MP21). Only a 

tiny fraction of the species of the Priabonian (MP17a-MP17b, not MP18-19) persisted until 
MP21. The genera of MP17a, MP18, and MP19 persisted slightly longer, but their constituent 
species changed. The MP21 cohort is very persistent: it lasts until the late Chattian (MP28) 
for the species cohort and the end of the Oligocene (MP30) for the genus cohort. The slightly 
younger MP22 and MP23 cohorts also survived until the end of the Oligocene. The MP24 to 
MP27 faunas show very limited modification of the cohort, especially for the genera. Only the 
early Chattian MP26 fauna contains new taxa, but a lot of these taxa disappeared rapidly 
(after MP27). The MP28, MP29, and MP30 faunas include numerous newcomers among the 
carnivorous taxa, along with representatives of the older MP levels, including some taxa from 
the early Rupelian.  

 
DICE SIMILARITY  

We recover a fairly similar pattern for all taxa (Fig. 4). The lower MP levels (MP6, MP7, 
MP8+9, and MP10) in some cases cluster together but the groups vary slightly depending on 
the carnivore clade and taxonomic level analysed (i.e., species or genera) (Fig. 4C-F). Based 
on these analyses, we recognize several groups that are supported by all taxa combined (Fig. 
4A-B), as well as by the hyaenodonts (Fig. 4E-F) and carnivoramorphans (Fig. 4C-D) 
separated: One group clusters the Lutetian MP12, MP13, and MP14 faunas; another clusters 
the Bartonian-Priabonian MP16 to MP19 faunas; the final group clusters MP21-MP30, 
corresponding to the entire Rupelian-Chattian interval. The relationships between these three 
groups is variable depending on the analysed criteria. 
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Figure 3. Survivorship poly-cohort for the genera and species of carnivorous mammals 

(in %). It illustrates the percentage of carnivorous taxa still present from an initial 
taxonomical assemblage (i.e., the carnivorous taxa recorded in an MP level) until the last 
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appearance of its last representative; these curves show the on-going decay of the assemblage 
by extinction of its constituent taxa. The colours used for the MP taxonomical assemblages 
are different from those used in Figs 1 and 2; they are not symbolic but were chosen for ease 
of reading. Orange bars: most notable Eocene climatic warming phases; blue bar: climatic 
cooling at the onset of the Oligocene. Abbreviations: EECO, Early Eocene Climatic 
Optimum; PETM, Paleocene-Eocene Thermal Maximum; MECO, Middle Eocene Climatic 
Optimum; Oi-1, Oligocene Oi-1 event. 

 
 

 
DISCUSSION 
THE EVOLUTION OF EUROPEAN CARNIVOROUS MAMMALS AND ITS 
REGIONAL CONTEXT 

Our results highlight a series of important turnovers and dispersals that punctuated the 
evolution of European carnivorous mammals during the Paleogene. These bioevents are 
contemporaneous with other phenomena such as climate change and dispersals of other 
mammalian groups (Figure 5), suggesting that these phenomena affected several trophic 
levels in terrestrial Paleogene ecosystems. These changes can be summarized as follows:  
 
Thanetian 

Thanetian European floras indicate the existence of subtropical (i.e., warm and subhumid) 
and tropical (i.e., warm and humid) environments in Europe as well as the presence of 
forested vegetation with dense understory during this interval (Hooker & Collinson, 2012; 
Smith et al., 2014; see also Wolfe, 1975). For instance, the flora of Rivecourt (France) shows 
affinities with the modern tropical and subtropical floras of Asia (notably Indo-Malaysian 
flora; Del Rio et al., 2019). MP6 (ca. 57 Ma, late Thanetian) is characterized by the first 
occurrence of carnivorous mammals in Europe (Fig. 5). However, the carnivorous mammal 
fauna is not very diverse with only a few carnivoraforms and mesonychians known from MP6 
(Fig. 1B). These mammals probably followed distinct routes to disperse to Europe: 
mesonychids might have come from North America around the Selandian along with 
neoplagiaulacid multituberculates (De Bast & Smith, 2016), or during the Thanetian (Solé et 
al., 2018); and the early carnivoraforms recorded at Rivecourt might have dispersed from 
Asia, together with rodents, at the end of the Thanetian (Smith et al., 2014; Solé et al., 2016). 
In general, the latest Thanetian European fauna appears to be transitional, comprising late 
Thanetian and earliest Ypresian taxa, including the first representatives of the modern orders 
of Carnivoraformes and Rodentia (Gheerbrant et al., 1999; Smith et al., 2014; Solé et al., 
2016).  
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Figure 4. Results of the Paired-group Dice analysis. A-B: all taxa; C-D: 

Carnivoramorpha; E-F: Hyaenodonta. The boxes highlight the recognized assemblages among 
the Paleogene, i.e., the similarity of the carnivorous faunas identified for each MP level. 
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Carnivoramorphan silhouette: Daphoenus, (credit: Robert Bruce Horsfall, vectorised by T. 
Michael Keesey, phylopic.org), hyaenodontan silhouette: Hyaenodon "horridus" (credit 
Robert Bruce Horsfall, phylopic.org). Abbreviations: EECO, Early Eocene Climatic 
Optimum; PETM, Paleocene-Eocene Thermal Maximum; MECO, Middle Eocene Climatic 
Optimum; Oi-1, Oligocene Oi-1 event. 
 
 
Ypresian 

The earliest Eocene floras do not suggest a radical change in vegetation from the late 
Paleocene (Hooker & Collinson, 2012), although there are some differences in the 
assemblages, especially the rise of Aulacoxylon, a dominant species in the Ypresian Paris 
Basin (De Franceschi & De Ploëg, 2003; Smith et al., 2014). Aulacoxylon and the other 
components of the palaeoflora indicate the presence of closed forests as well as a warm and 
wet seasonal climate in Europe (Fairon-Demaret & Smith, 2002; Fairon-Demaret et al., 
2003). In contrast, European mammal assemblages changed greatly around the Paleocene-
Eocene boundary (ca. 56 Ma). The mammal fauna that lived in Laurasia at that time was 
profoundly affected by the Paleocene-Eocene Thermal Maximum (= PETM), a period of ~150 
Kyr of climate warming (Zachos et al., 2001, 2008; Hollis et al., 2019). The numerous 
dispersal events to Europe that originated from Asia, North America, and Africa that mark the 
MDE notably brought the first primates, artiodactyls, and perissodactyls into Europe (e.g., 
Hooker & Dashzeveg, 2003; Smith et al., 2006; Gheerbrant & Rage, 2006; Hooker, 2015). 
This resulted in a homogenization of mammal faunas across the continents of the Northern 
Hemisphere. During this interval, numerous carnivoramorphan taxa, as well as the first 
hyaenodonts, and oxyaenids dispersed into Europe (Smith & Smith, 2001; Solé et al., 2011, 
2013a, 2014b) (Fig. 1B-C, Fig. 5). The carnivoraform and mesonychid genera of MP6 
survived into the early Ypresian (MP7) and mixed with the newcomers (Fig. 3). Dispersals 
continued for some groups of mammals for ~500,000 years after the PETM (MP8+9; ca. 55 
Ma) (Hooker, 2010). Among carnivorous mammals, the first viverravids as well as new 
mesonychids dispersed into Europe, probably from North America (Hooker, 2010; Solé et al., 
2018) (Fig. 1B, Fig. 5). Carnivorous mammals then evolved endemically into the Bartonian, 
despite the possible continuation of intercontinental connections (e.g., Smith, 2001). 

As indicated by both the FAD/LAD and the percentage of renewal (Supplementary Texts 
1-2), the Ypresian as a whole was a period of instability for carnivorous mammal diversity – 
notably for hyaenodonts, which experienced higher turnover rates than carnivoramorphans. 
Other clades underwent profound changes as well, illustrated by the disappearances of 
viverravids and oxyaenids around 54-52 Ma (Intra-Ypresian Mammal Turnover; Solé et al., 
2011, 2019b), and mesonychids at the end of the Ypresian (ca. 48 Ma; Ypresian–Lutetian 
Mammal Turnover; Solé et al., 2018, 2019b) (Fig. 1B, Fig. 5). Their disappearances may be 
connected to the diversification of hyaenodonts in Europe around the Ypresian-Lutetian 
transition (Solé et al., 2014a) (Fig. 1B-C). Other mammal groups radiated at the end of the 
Ypresian (MP10): perissodactyls, artiodactyls, rodents, and pantolestids (Savage et al., 1966; 
Sudre & Erfurt, 1996; Smith, 2001). However, these events are best seen as turnovers, being 
associated with a series of contemporaneous extinctions (Solé et al., 2019b). These 
extinctions and radiations might be related to the Early Eocene Climatic Optimum (EECO, ca. 
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53-49 Ma; Zachos et al., 2008; Hollis et al. 2019) (Fig. 5), a global warming period that had a 
drastic impact on the composition of the mammal fauna in North America (Woodburne et al., 
2009). The EECO produced a major increase in habitat complexity, but a subsequent climatic 
cooling event (49-46 Ma) resulted in major mammal diversity loss: the Bridgerian Crash 
(Woodburne et al., 2009). Woodburne et al. (2009) suggested that the EECO began the 
greatest episode of land mammal faunal turnover of the first part of the Cenozoic. 
 
Lutetian 

During the Lutetian (MP11-MP14), European ecosystems experienced increased aridity 
and increased seasonality. This is illustrated by the appearance of perissodactyl palaeotheriids 
at MP13, which have more hypsodont teeth than the perissodactyls recorded in the older 
faunas (Franzen, 2003; Badiola et al., 2009). This period is known as the First Intra-Eocene 
Mammal Turnover (Franzen, 2003) (Fig. 5). It is also marked by a floristic change, which 
reflects a cooling and drying during the MP13-MP14 interval (Collinson et al., 1981). An 
important and drastic change in global temperatures occurred after the EECO as global 
temperature decreased (Zachos et al., 2008). Cooling in Central Europe around 45 Ma was 
stepwise and primarily driven by cooler winters, which also increased seasonality 
(Mosbrugger et al., 2005).  

For carnivorous mammals, the Lutetian corresponds to a period of relative stability 
characterized by speciation within endemic genera of carnivoraforms and hyaenodonts, an 
observation supported by our poly-cohort analysis and Dice similarity results (Figs 3-4). 
Despite the stability of genera during the Lutetian in Europe, there is an overall decrease in 
the diversity of carnivorous mammals, which might be related to aridification and increased 
seasonality during the interval. However, the specific origin of this decline in diversity 
remains to be tested.  
 
Bartonian-Priabonian 

Numerous changes in the carnivorous mammal fauna are observed in Europe during the 
Bartonian and Priabonian. They could be related to: (1) the long warming interval (~750 kyr) 
known as the Middle Eocene Climatic Optimum (MECO; ca. 40 Ma); and (2) the global 
cooling trend that started after the EECO (Zachos et al., 2001, 2008). Indeed, the high 
FAD/LAD percentage of renewal values after the MECO clearly indicate that hyaenodonts 
and carnivoramorphans both experienced a high degree of turnover (Supplementary Tables 3-
4, Supplementary Texts 1-2). Cenograms that document the interval before 37 Ma (early 
Priabonian, MP17a-MP17b) show a log-uniform distribution of body weights, typical of 
mammal communities inhabiting a tropical evergreen forest under warm and humid 
conditions (Escarguel et al., 2008). From 37 Ma (MP17b) to the Eocene/Oligocene boundary 
(33.9 Ma; MP20), cenogram analysis indicates more arid climates (possibly the arrival of 
extended dry seasons?) and more open vegetation, corresponding to wooded savannah. This 
analysis is consistent with the climatic deterioration (i.e., greenhouse to icehouse transition) 
during the late Eocene (Escarguel et al., 2008). Subtropical evergreens were still dominant in 
the Priabonian, but the vegetation was less tropical than before, indicating a transition from an 
equable humid climate to a more seasonal, periodically drier, subhumid climate (Collinson & 
Hooker, 1987; Collinson, 1992; Knobloch et al., 1993; Kvaček, 2010). However, 
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paleoclimatic deterioration varied with latitude and palaeogeographic situation (Kvaček, 
2010).  
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Figure 5. Summary of the faunal events (dominant group, dispersion/endemic phases, 
appearances, extinctions) that characterized the history of the carnivorous mammals in 
Europe. Green bars: faunal events recognized based on the evolution of the European 
mammals. Black boxes: dominant carnivorous group. White boxes: dispersal/endemic phases. 
Open stars: appearances; closed stars: extinctions. The grey box indicates a period of general 
decline of diversity among carnivorous mammals. Abbreviations: Ca., Caniformia; D., 
dispersals EECO, Early Eocene Climatic Optimum; PETM, Paleocene-Eocene Thermal 
Maximum; MECO, Middle Eocene Climatic Optimum; Oi-1, Oligocene Oi-1 event. 
 
 

The fossil mammal record also suggests changes in ecosystems during the Bartonian-
Priabonian. Blondel (2001) demonstrated a decrease in folivorous perissodactyls and an 
increase in both folivorous/frugivorous and folivorous artiodactyls during the Bartonian to 
early Priabonian (MP16-MP17b). During this time some groups, such as Amphimerycidae 
(Artiodactyla), acquired fused cuboid and navicular bones of the tarsus, suggesting the 
development of more open habitats and increased seasonality in this time interval. These 
habitat changes are also supported by the appearance of hypsodont rodents (Vianey-Liaud & 
Marivaux, 2017). The Bartonian-Priabonian ecosystem changes correspond to the Second 
Intra-Eocene Mammal Turnover first established using the perissodactyl and artiodactyl fossil 
record (Franzen, 2003) (Fig. 5). 

Regarding the carnivorous mammals, the Bartonian-Priabonian assemblages (MP16-
MP20) are very distinct from all others, consistently clustering together in our Dice similarity 
analyses (Fig. 4). After the Lutetian stability, the Bartonian (MP15-MP16) and the Priabonian 
(MP17a-MP20) record another drastic period of restructuring that is illustrated by the near 
absence of cohorts from the Lutetian (Fig. 3). This restructuring marks the end of a period of 
endemism for the European carnivorous fauna. The appearances of new subfamilies of 
hyaenodonts (Hyainailourinae and Hyaenodontinae), as well as the first occurrence of the 
caniformian family Amphicyonidae, are notable markers of this restructuring (Fig. 1C, Fig. 
2B, Fig. 5). Hyaenodontines probably dispersed from Asia into Europe, while hyainailourines 
probably dispersed from Africa into Europe (Lange-Badré, 1979; Solé et al., 2015; Borths & 
Stevens, 2019). The origin of Amphicyonidae is less clear (Wang et al., 2005). Several new 
hyaenodontoids and early carnivoraforms from endemic lineages evolved in Europe during 
the Bartonian and early Priabonian (MP16-MP17b), mixing with the newcomers. The 
Bartonian and Priabonian appearance of lineages that originated outside of Europe is also 
observed in other mammalian clades. Notably Anthracotheriidae (Artiodactyla) dispersed 
from Asia into Europe in the middle Priabonian (MP18; Blondel, 2001) through dispersal 
corridors between Asia and southeastern Europe (Balkan archipelago, Iran, Anatolia) 
(Heissig, 1979; Ducrocq, 1995; Blondel, 2001; Mennecart et al., 2021). Rodents also 
underwent several phases of diversification and dispersal during this interval time (Vianey-
Liaud & Marivaux, 2017).  

 
‘Grande Coupure’ 

The Eocene-Oligocene transition saw the establishment of subhumid to semi-arid summer 
seasons, which resulted in the disintegration of forest cover. This resulted in the withdrawal or 
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extinction of some paleotropical elements of the paleoflora, as well as the dispersal of 
deciduous trees (Ollivier-Pierre et al., 1987; Leopold et al., 1992; Knobloch et al., 1993). In 
Western Europe, this boundary is marked by a spread of conifers and temperate woodlands. In 
some areas, even savanna-bound Umbelliferae (Ollivier-Pierre et al., 1987) are recorded. The 
European flora thus suggests that the climate became much drier, with a marked seasonality, 
and that the tropical and subtropical forests were replaced by temperate, mixed deciduous 
floras and more open habitats (Gruas-Cavagnatto, 1974; Collinson & Hooker, 1987; Ollivier-
Pierre et al., 1987; Cavagnetto & Anadón, 1996). To summarize, European vegetation 
gradually changes around the Eocene-Oligocene boundary; characterized by the expansion of 
arid and more-seasonal biomes, and the decline of mangroves, swamps, and forest biomes 
(Kvaček et al., 2014; Kunzmann et al., 2016; Pound & Salzmann, 2017). 

The Eocene/Oligocene boundary is marked by numerous disappearances in various 
vertebrate groups. As shown by Rage (2006), most of the lower vertebrate species present 
during the Eocene, which were mainly endemic to Europe, went extinct. Extinction ratios 
reached ca. 60% among late Priabonian mammalian lineages (Legendre et al., 2006; 
Escarguel et al., 2008). Many archaic frugivorous/folivorous families of endemic artiodactyls, 
such as Xiphodontidae, went extinct. Some artiodactyl families survived into the Oligocene, 
notably Cebochoeridae, Dacrytheriidae, Anoplotheriidae, and Amphimerycidae, but were 
extinct by the end of the Oligocene (Legendre et al., 1995; Blondel, 2001, Erfurt & Métais, 
2007).  

The onset of the Oligocene is also marked by numerous appearances, such as that of new 
perissodactyl families (e.g., Rhinocerotidae) (Legendre & Hartenberger, 1992; Tissier et al., 
2018). These new arrivals may have been facilitated by a new land connection with Asia, the 
product of the drying of the Turgai Strait (Pomerol, 1967) in response to glacio-eustatic sea-
level fall (Haq et al., 1987). This great faunal shift, as well as the modification of the floras, 
collectively called the ‘Grande Coupure’, was first identified by Stehlin (1909) and is coeval 
with the global climate cooling and large-scale Antarctic glaciation called the Oligocene Oi-1 
event (Blondel, 2001; Zachos et al., 2001; Escarguel et al., 2008; Mennecart et al., 2021) 
(Fig. 5). 

Our results show that the diversity of endemic hyaenodontoids and early carnivoraforms 
dramatically decreased at the end of the Eocene (latest Priabonian) (Fig. 1C, Fig. 2A, Fig. 5). 
The hyaenodont decrease also includes the newly arrived the hyainailourines (MP16-MP20), 
which are absent from the Oligocene (Lange-Badré, 1979) (Fig. 1C). Moreover, only one 
species of Hyaenodon, the most abundant hyaenodont genus of the Priabonian and Oligocene 
of Europe, crossed the Eocene-Oligocene boundary (Bastl et al., 2014). 

Our poly-cohort analysis results are consistent with a strong modification of the 
carnivorous fauna around the Eocene-Oligocene boundary (Fig. 3). Essentially, MP21 marks 
the shift in dominance from hyaenodonts to carnivoraforms (Fig. 1B). The lower values of 
FADs, LADs, and percentage of renewal suggest that hyaenodonts experienced slower rates 
of diversification after the ‘Grande Coupure’ (see Supplementary Texts 1-2). MP21 is also 
crucial from an evolutionary perspective, as it records the first occurrence of Feliformia 
(probably dispersing from Asia) (Dashzeveg, 1996; Peigné & de Bonis, 1999; Peigné, 2000), 
Ursidae (Caniformia), and basal Arctoidea (Caniformia) in Europe (Fig. 5). These 
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appearances establish the foundation of a relatively stable fauna that spans the entire 
Oligocene (MP21 to MP30) (Fig. 4).  

Blondel (2001) concluded that, for Western European ungulates, the Eocene-Oligocene 
transition is marked by different phases of extinction and origination related to environmental 
changes. Several other studies indicate that changes in the European ungulate fauna started in 
the late Priabonian (Legendre & Hartenberger, 1992). Like changes in the ungulate fauna, the 
carnivorous fauna transition at the ‘Grande Coupure’ is gradual: the endemic hyaenodontoids 
and early carnivoraforms disappeared before the end of the Eocene (MP18-MP20) and 
newcomers arrived in the early Oligocene (MP21-MP23) (Fig. 5). The gradual modification 
of the mammal communities’ parallels trends observed in the evolution of the European 
vegetation. However, it is important to note that the Eocene-Oligocene boundary itself is 
marked by a major and sudden shift in the carnivorous mammal fauna. 

 
Rupelian 

This stage corresponds to the peak of floral change that started in the late Eocene, which is 
characterised by the extinction of some paleotropical elements and the dispersal of deciduous 
trees (Knobloch et al., 1993). The Quercy Phosphorites provide very few botanical data, 
however, De Franceschi et al. (2006) described a fossil assemblage that is evidence of a warm 
Mediterranean to subtropical paleoenvironment. Based on cenogram analysis, Escarguel et al. 
(2008) hypothesized that arid conditions with relatively low mean annual temperatures, which 
are associated with (sub)desert to lightly forested environments, reigned in Europe from the 
early Rupelian (MP21) to middle Chattian (MP26-MP27). The end of the Rupelian (ca. 
MP25) might correspond to a period of maximum aridity in Western Europe (Legendre et al., 
1991).  

The appearance of new mammals in Western Europe two million years after the ‘Grande 
Coupure’ (ca. 31 Ma; MP23) is known as the Bachitherium Dispersal Event (Fig. 5), named 
after the oldest known European ruminant (Mennecart et al., 2018a,b). Our data indicate 
limited dispersal of carnivorous mammals during this event (see Supplementary Texts 1-2). 
The most interesting Oligocene period for carnivorous mammals occurred at end of the 
Rupelian (MP24-MP25) (Fig. 1A, Fig. 5) as it is one of the rare periods in our dataset when 
the LADs outnumber the FADs (this also occurs at MP14 and MP19-MP20) (Supplementary 
Table 3). This reflects the Europe-wide disappearance of the highly diverse Nimravidae 
(Feliformia) (see also Rémy et al., 1987), and a few of aeluroids (Fig. 2C, Fig. 5). A decrease 
in diversity around MP25-MP26 has been observed for other groups of mammals, notably the 
rodents (Vianey-Liaud & Schmid, 2009). The disappearance of Nimravidae in Europe renders 
feliformians less diverse than caniformians for the first time, losing their position as the 
dominant predators in Europe (Peigné, 2000). The extinction of Nimravidae in Europe (Fig. 
5) might be associated with increased aridity in Europe. In North America nimravids 
inhabited closed forest habitats and their decline in the late Oligocene correlates with the 
spread of grassland ecosystems, the result of increased aridity (Bryant, 1996). 

 
Chattian 

The end of the Oligocene in Europe is marked by increased seasonality, which is 
characterized by a dry season and a more open environment with fewer forests (Mennecart, 
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2012; Weidmann et al., 2014). Wattinne et al. (2018) described the end of the Chattian 
(MP29-MP30) as a period of general aridity, which is associated with a cooler climate. Based 
on cenogram analysis, Escarguel et al. (2008) suggested that middle to latest Chattian (MP26-
MP29) climate was rather temperate and humid and that the Quercy area was predominated 
by temperate deciduous forests. In contrast, from 24.5 Ma (MP29-MP30) to the end of the 
Oligocene, closed environments and warm and humid conditions prevailed in Europe 
(Escarguel et al., 2008), indicating a return to the more temperate to subtropical (but probably 
less humid) conditions of the Priabonian (see also De Man & Van Simaeys, 2004). The 
ecology of the ruminants suggests that these mammals characterized wooded environments 
before the Microbunodon Event – an event of generalized dispersals across Eurasia around 
MP28 (Fig. 5). After the Microbunodon Event these ruminants lived in more open habitats 
(Mennecart, 2015). The results of Mennecart (2015) and Escarguel et al. (2008) clearly 
support ecosystems change during the Chattian, but the findings of these studies seem to 
contradict each other (open environments with fewer forests versus closed environments and 
warm, subtropical conditions). We think that this contradiction indicates the existence of a 
mosaic of ecosystems across Europe. The Microbunodon Event might be related to the Alpine 
orogeny and the Late Oligocene Warming that occurred around 26–23 Ma (Fig. 5) 
(Mennecart, 2015). The Late Oligocene Warming corresponds to a global marine temperature 
increase of 2 to 4°C, a terrestrial temperature increase of nearly 10°C, and the collapse of the 
Antarctic ice sheet (Zachos et al., 2001).  

Similar to what has been observed for the ruminants, the diversity of carnivorous 
mammals’ rebounds in MP27 to MP29 (Figs. 1A, 3, 5, Supplementary Texts 1-2), largely the 
result of the appearances of numerous caniformians at the end of the Chattian (Fig. 2A-B). 
MP28 records the first occurrence of mustelids and ailurids in Europe (Bonis, 1976). All these 
appearances may be the result of dispersals from Asia into Europe, but the lack of data 
concerning the phylogenetic relationships of caniformians from the latest Chattian makes it 
difficult to test. The taxa that arrive during this interval are clearly part of the Microbunodon 
Event; the taxa correspond to “the late travelers of the big Stampian migration” of Viret 
(1929; see also Bonis, 2011). After this bioevent, the caniformians became the dominant 
predators of Europe during the Chattian (Fig. 5). Finally, large amphicyonid carnivorans 
appear at MP28 and MP29 (Ginsburg, 1966). Their occurrence supports the hypothesis that 
terrestrial environments are becoming more open. 

 
COMPARISON WITH NORTH AMERICA 

The rise of carnivoran mammals during the Paleogene is an iconic case of competition 
between mammal clades (Savage, 1977; Radinsky, 1982; Van Valkenburgh, 1999; Friscia & 
Van Valkenburgh, 2010). According to Radinsky (1982, p.192), feliformians and 
caniformians “radiated to fill niches vacated by the extinction of many groups of Eocene 
carnivorous mammals during the climatic deterioration at the end of the Eocene”. Van 
Valkenburgh (1999) considered that, in North America, the transition from a guild composed 
of mesonychids, oxyaenids, hyaenodonts, viverravids, and early carnivoraforms to one largely 
composed of carnivorans and hyaenodontines represents a double-wedge turnover (i.e., one 
taxon rises in diversity, but then declines alongside an increase in the diversity of a second 
group), resulting from an active, competitive replacement of one group by another (Benton, 
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1987, 1996). However, the possibility that climatic events might have also affected the 
evolution of the carnivorous mammals cannot be ruled out, prompting Van Valkenburgh 
(1999, p.473) to conclude “that the cause of the decline of the first dynasty of carnivorous 
mammals remains a mystery”. Friscia & Van Valkenburgh (2010) further developed this view 
by investigating the hypothesis of a competitive replacement of oxyaenids and hyaenodonts 
by carnivoramorphans. They suggested that carnivoramorphans increase in size throughout 
the Eocene, and that the dietary diversity of carnivoramorphans increased throughout the 
Eocene, while that of the hyaenodonts decreased. In North America, carnivoramorphan 
genera clearly outnumbered other groups by the early Lutetian (= Uintan North American 
land mammal age; see Speijer et al., 2020). Friscia & Van Valkenburgh (2010) concluded that 
the replacement of ‘creodonts’ (i.e., Oxyaenidae and Hyaenodonta) by Carnivoraformes 
corresponds to a competitive replacement that might have been driven by the anterior position 
of the carnassial teeth in Carnivoraformes compared to the posterior position of carnassial 
teeth in oxyaenids and hyaenodontoids. The anterior position of the carnassial teeth may have 
allowed the distal molars to evolve different morphologies, resulting in a broader range of 
dental adaptations and thus a broader range of diets. 

de Vries et al. (2021) recently examined the Eocene-Oligocene boundary in Africa. They 
noted a crash in hyaenodont diversity in Africa (no carnivoran was present in Africa at that 
time). The African hyaenodonts, however, did recover in the Oligocene and Miocene. This 
observation is interesting because it suggests that diversity reduction, as well as recovery, in 
carnivorous faunas can be climate-induced rather than competition-induced. Alternatively, 
some studies focused on the evolution of the African carnivorous mammals around the 
Paleogene-Neogene boundary indicate that carnivorans displaced hyaenodonts after dispersal 
into Africa (Borths & Stevens, 2017c; Friscia et al., 2020). This competitive replacement 
scenario recalls the one hypothesized for North American carnivorous mammal assemblages. 

A competitive replacement scenario is not recorded in Europe. Our results demonstrate that 
hyaenodonts are more diverse than carnivoramorphans through the Eocene until the ‘Grande 
Coupure’ (Fig. 1B, Fig. 5; Supplementary Figure 1). This discrepancy between the European 
and North American records is rather surprising because the Ypresian (MP7-MP10) 
carnivorous mammal faunas of both regions were largely similar at the generic level, 
following the early Eocene MDE (e.g., Smith & Smith, 2001, 2010; Hooker, 2010; Solé et al., 
2013a,b) (Fig. 5). The Ypresian of Europe differs from North America because several groups 
disappear from Europe (i.e., mesonychids, oxyaenids, and viverravids) that continued to 
thrive in North America until the late Eocene. Moreover, while hyaenodonts were identical at 
the genus level on both sides of the North Atlantic during the earliest Eocene (MP7), the 
similarity decreased rapidly by MP8+9, as the hyaenodont genera went extinct earlier in 
Europe than in North America (Solé et al., 2013a). Consequently, the composition of the 
European fauna changed during the Ypresian (Intra-Ypresian Mammal Turnover and 
Ypresian-Lutetian Mammal Turnover; Fig. 5). These extinctions probably had important 
consequences on European carnivorous mammal faunas because oxyaenids and mesonychids 
were the largest carnivorous mammals present in Europe at that time. Their disappearance 
possibly encouraged the diversification of hyaenodonts in Europe around the Ypresian-
Lutetian transition (see above). By the Bartonian and early Priabonian, new endemic 
hyaenodonts and recently arrived taxa (Hyainailourinae, Hyaenodontinae) compose a newly 
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diverse hyaenodont fauna. In contrast, carnivoraformes were limited to three genera present at 
a given interval during the Eocene (Supplementary Figure 1; Supplementary Table 2). The 
marked differences between the North American and European records allow us to interrogate 
the drivers of the success or failure of the distinct groups of carnivorous mammals (e.g., 
ecomorphological replacement, climatic changes, dispersals). 

 
CONCLUSIONS 

The European record of fossil carnivorous mammals is rich and documents a series of 
turnovers that profoundly altered carnivorous mammal assemblages over the course of the 
Paleogene. Four main episodes stand out: the mid-late Ypresian, the Bartonian-early 
Priabonian, the Eocene-Oligocene boundary, and the Chattian. The Eocene/Oligocene 
boundary, the so-called ‘Grande Coupure’, represents a drastic faunal transition, involving a 
major extinction of the endemic European fauna and the rising dominance of carnivorans. 
However, this important faunal restructuring was a long (ca. 8 Myr) and complex transition, 
which can be split into several extinction and origination waves that started in the Bartonian 
(MP16) and ended in the early Rupelian (MP21). Several turnovers in carnivorous mammal 
evolution can be linked with bioevents identified in other European clades such as ruminants 
and rodents, as well as with regional to global environmental changes. This suggests that 
several levels of continental trophic chains were affected simultaneously during these 
episodes.  

Our results reveal marked differences in the evolution of carnivorans on both sides of the 
North Atlantic. While carnivorans are present in Europe from at least the latest Thanetian, 
their diversification and dominance appear delayed in Europe, occurring abruptly at the 
Eocene-Oligocene boundary, i.e. 16 million years later than in North America.  
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