Reducing the error in estimates of the Sunda Strait currents by blending HF radar currents with model results

Subekti Mujiasih*a,b, Dwi Hartantob, Jean-Marie Beckersa and Alexander Bartha

aGeoHydrodynamics and Environment Research (GHER), Department of Astrophysics, Geophysics and Oceanography (AGO), University of Liège, Sart-Tilman B5a, 4000 Liège, Belgium

bAgency for Meteorology, Climatology, and Geophysics of the Republic of Indonesia (BMKG)

Highlights

- Model accuracy can be improved by using a blending method, ETKF, with HF radial velocity and an optimal representativity error from an independent validation
- Improved model analysis can be obtained either from the original HF radar data or from HF radar data obtained at a different site
- Every site has a different optimal representativity error
- Winds have a high impact on the periodicity of root mean-squared (RMS) fluctuation

Abstract

The examination of currents by merging model results and radial velocity High-Frequency (HF) radar data has been undertaken in the Sunda Strait, which links the Indonesian islands of Sumatra and Java, involving two sites (Anyer and Labuan) and using the Ensemble Transform Kalman Filter (ETKF). Dependent validation involved the data used during model analysis while independent validation utilised observations from different site. These validations are needed to obtain an optimal representativity error, which has the lowest averaged root mean square

*Corresponding author.

Email address: mujiasih.subekti@uliege.be (S.Mujiasih), subekti.mujiasih@bmkg.go.id

Present address: GeoHydrodynamics and Environment Research (GHER), Department of Astrophysics, Geophysics and Oceanography (AGO), University of Liège, Sart-Tilman B5a, 4000 Liège, Belgium.

Permanent address: Agency for Meteorology, Climatology, and Geophysics of the Republic of Indonesia (BMKG), Regional Office III, Jl. Raya Tuban, Kuta 80361, Badung, Bali, Indonesia

This is a preprint submitted to the Continental Shelf Research September 10, 2020. For citation, please refers to the final version in https://doi.org/10.1016/j.csr.2021.104512
(RMS) over time and is appropriate for all sites. Moreover, we evaluated the optimal representativity error with the relative error reduction and the associated skill score metric. The results show that the model analysis for both independent and dependent validation have better results than the model with no blending. Interestingly, independent validation has a smaller RMS than the model with no blending, although it is still greater than the dependent validation. The best results were obtained from model analysis of all sites with 0.4459 m/s being the value of the representativity error. However, it has a pattern in the RMS error over time series. It is necessary to consider the factor such as winds that would have a large influence on the magnitude of radial velocity.

Keyword Radial velocity, HF radar, Sunda Strait, Sumatra, Java, Indonesia

1 Introduction

Economic activity at sea requires high-quality marine weather information to prevent or reduce the risk of loss. It is a big challenge for researchers to improve the accuracy of both the marine model and the technology of observations. During the last two decades, the research of combining models and observations, has become an important research area and still leaves many unsolved questions. Models are based on mathematical equations that describe physical conditions and are solved numerically. The advantage of the model is the fact that they can produce output for the past, present and future, a high temporal resolution, potentially covering a large area if enough computer processing unit (CPU) power is available together with a high spatial resolution. In contrast, model output can have uncertainty, which can be substantial, while observations typically have lower uncertainties than the model. On the other hand, the effort to make observations, retrieval, data collection and maintenance or the observation equipment itself all have a huge cost. The combination of models can be a solution to improve the accuracy of marine forecasting.

To improve the accuracy of an ocean model, ideally one would need evenly distributed and continuously available observations. An observation type, which has these characteristics, is High-Frequency (HF) radar. In the last decade, one of the growing research areas in the field of oceanography is the incorporation of ocean models and HF radars. HF radar is reliable in capturing spatial ocean surface phenomena with a high coverage (Paduan & Washburn, 2012), such as wave (Orasi et al., 2018) and surface currents (Abascal et al., 2012; Kim et al., 2008; Kohut et al., 2004; Paduan & Washburn, 2012; Solabarrieta et al., 2014; Yaremchuk & Sentchev, 2009) and, in particular, tidal currents (Tian et al., 2015) and tsunami (Lipa, Barrick, et al., 2012; Lipa et al., 2011; Lipa, Isaacson, et al., 2012). Indirectly, HF radar also gives information about winds (Kirincich, 2016; Lana et al., 2016; Orasi et al., 2018). In practice, HF radar can be used for managing hazard risks, such as navigation safety at ports and docks, controlling pollution, sedimentation when dredging, tsunami warning, monitoring positions of cold fronts in open ocean and sea breeze fronts in particular locations (Heron et al., 2016). The high spatial coverage attracts researchers to merge these data with the hydrodynamic model.

There are two methods of combination, namely blending and data assimilation. Blending is a method of combination between the model and observation data to obtain the best estimation at time k that we call a “model analysis”. Almost similar to blending, data assimilation obtains the best estimation at forward time \(k + 1 \), \(k + 2 \) and so on, that we call “a model forecast”. Some blending research has been carried out, such as aiming to produce nowcasts (present
and future events) of the surface velocity by filtering using a Codar HF radar System with a Natural Mode Analysis method and gap-free nowcasts (Lipphardt Jr et al., 2000), estimating Lagrangian transport using the Wera system (Berta et al., 2014) and the analysis of tidal hindcast (past and present events) from radial currents, also using the Wera system (Stanev et al., 2015). A further method is data assimilation, which does not only produce the model analysis but also forecasting (Barth et al., 2008; Breivik & Satra, 2001; Ren et al., 2016; Vandenbulcke et al., 2017; Xu et al., 2014; Yu et al., 2012). Data assimilation methods in the body of literature include the Ensemble Kalman Filter (Barth et al., 2008; Breivik & Satra, 2001), the Variational method (Yu et al., 2012), the Optimal Interpolation (Xu et al., 2014), the Lewis assimilation scheme based on a shearing stress (Lewis et al., 1998) in (Ren et al., 2016), and the Ensemble Transform Kalman Filter (ETKF) (Vandenbulcke et al., 2017).

Our study focuses on applying a blending method to obtain the estimates of currents in the Sunda Strait (linking Sumatra and Java islands, Indonesian). In comparison to previous research such as that undertaken by Lipphardt Jr et al. (2000), Berta et al. (2014) and Stanev et al. (2015), there are some similarities and differences regarding our investigation. The similarity of the present study with that of Lipphardt Jr et al. (2000), is that we applied blending to combine HF radar and a model. In addition, we used the same HF Codar but our study is different with respect to method, HF radar data and output. Lipphardt Jr et al. (2000) used the Natural Mode Analysis method for blending and HF surface currents for blending input, and their output was a nowcasting result (a short few hours of forecasting). Meanwhile, in the present study we utilised the ETKF method, HF radial velocity and we also produced a model analysis. One difference with respect to previous research in the literature is that our model analysis is valid for time k, in that, it is not valid for time $k+1, k+2$, and so on. Berta et al. (2014) assimilated Lagrange transport (trajectory) from a model, HF radar and drifter using the LAgrangian Variational Analysis (LAVA) method in the Ligurian Sea (between Italian Riviera and Isle of Corsica). Those authors used trajectory objects that were superimposed with surface currents from HF radar plus a model, model analysis and forecasting. While we utilised surface current objects only and compared them to model analysis. Berta et al. (2014) produced blended and forecasting output compared to drifter and HF radar itself, while the present study had a focus on the blending process only. Hence, the similarity is only in terms of an analysis output. Compared to other previous research such as that by Stanev et al. (2015), we also used radial velocity for blending. Another similarity is the use of Kalman filtering for blending. However, in the present work we utilised an ensemble variant of the Kalman filter, the ETKF (Bishop et al., 2001).

The difference is that those authors considered tides in simulation because the research area was dominated by tides. While in the present research we used one year of an ensemble model, 3 months of HF radial velocity of CODAR SeaSonde and also tides were not considered. The present study proposes another way to validate by using cross validation of each site, namely independent and dependent validation and estimates of an optimal representativity error to obtain the best analysis for all sites; besides, the previous study applied a blending for shallow water areas. In the present study, we applied a blending of not only strait, which is relatively shallow with about 0 - 100 metres depth, but also of the continental shelf area with more than 200 metres depth (see Fig. 1) because the Sunda Strait borders with the Indian Ocean at the southwestern part. The other difference is that Stanev et al. (2015) have used an acoustic Doppler current profiler (ADCP) for validating blending results, which is not only analysis but is also hindcast, nowcast and forecast. For reducing computational cost, the state vector was decomposed into eigenvectors
and eigenvalues. The decomposition method used by those authors is the Empirical Orthogonal Function (EOF), whereas in the present study we use the Singular Value Decomposition (SVD). The analysis covariance matrix used by Stanev et al. (2015) is based on the model state matrix, while in the present study we use the decomposition of the inverse transformation matrix, which originates from the model state perturbation matrix in observation space and the innovation matrix. In our study we use the representativity error which is included in the observation error covariance matrix (R). The resulting model analysis was validated independently relative to radial velocity from different sites (independent validation). As a result, we obtained one representativity error for every site, which gives the lowest average root mean square error (RMS). All model analyses have lower RMS than models without blending, while in Stanev et al. (2015) the representation error was represented by multiplication of the observational error covariance by a factor 25.

Studies of HF radar in a strait region (Strait of Gibraltar) have also been previously undertaken and described in the literature (Soto-Navarro et al., 2016). Identifying characteristic surface currents in a strait is not an easy task because of the narrow shape and the dynamic of economic activity, except that we had access to adequate equipment. HF radar has the capability to capture surface currents in a horizontal pattern structure from a distance. (Soto-Navarro et al., 2016) compared the Autonomous Measurement, Prediction and Alert System in the Bay of Algecira (SAMPA is the Spanish acronym) model output against 3 sites of HF radar at the Strait of Gibraltar using statistical metrics such as variance, complex correlation, veering angle, scalar correlation and root mean square error. The period of the used data was February 2013 – September 2014. The used parameters were zonal and meridional velocity components. Their study shows the existence of currents that are stronger than for other areas when currents flow out from strait. It appeared from monthly mean velocity in February, May, August and November. The pattern also occurred in the assimilation result in the channel between Xuejiadao Island and Xiaomaida Island (Qingdao, China, on the western coast of the Yellow Sea) (Xu et al., 2014), mean surface circulation pattern from HF radar for 2016–2017 in the Gibraltar Strait (Lorente et al., 2019). We analyse the similarity of this pattern in the Sunda Strait.

Since the 1960s, the Sunda Strait has been receiving the attention of marine researchers notably regarding oceanographic conditions (Amri et al., 2014; Jumarang & Ningsih, 2013; Koropitan et al., 2006; Li et al., 2018; Novico et al., 2015; Oktavia et al., 2011; Pariwono, 1999; Potemra et al., 2016; Rahmawitri et al., 2016; Sandro et al., 2014; Susanto et al., 2016; Wyrtki, 1961). They conducted research using various data such as vessel observations data (Wyrtki, 1961), ship drift (Pariwono, 1999), in situ observation (Amri et al., 2014), ADCP (Li et al., 2018; Novico et al., 2015; Susanto et al., 2016), Princeton Ocean Model (Koropitan et al., 2006), satellite (Rahmawitri et al., 2016; Sandro et al., 2014), geostrophic currents derived tides-gauge (Oktavia et al., 2011), the Nucleus for European Modelling of the Ocean – Ocean Parallelise (NEMO-OPA) Model (Rahmawitri et al., 2016), and HYCOM (Potemra et al., 2016). However, to the best of our knowledge, there are only a few studies focusing specifically on the variability of currents. Based on all of these studies, the variability of the current in the Sunda Strait flows mostly from the Java Sea towards the Indian Ocean the whole year (Pariwono, 1999; Rahmawitri et al., 2016; Wyrtki, 1961). Rahmawitri et al. (2016) implicitly noted that sea surface height (SSH) in the Java Sea is higher than that of the Indian Ocean throughout the year except for November-January. The calculation of currents can be derived from SSH, hence that it can have the same meaning. Nevertheless, there are different exceptional months, the currents flow towards the reverse...
directions such as in March, August, and October (Pariwono, 1999), and November-January (Rahmawitri et al., 2016).

Notwithstanding, Amri et al. (2014) found currents coming from the Java sea which appeared along the west coast of Banten (Carita, Labuan until Tanjung Lesung) flowing southwestward and being deflected northeastward around Panaitan Island. Moreover, Oktavia et al. (2011) conclude that geostrophic currents variation is indirectly influenced by winds in the Sunda Strait. However, with respect to the speed of currents from the previous research papers in the literature, they vary depending on data availability and type. Generally, the maximum speed of currents was about 2.63 m/s on 18 October 2012 at 16:30 Western Indonesian Time (WIB) at the narrow channel in the northeastern part of the Sunda Strait (Novico et al., 2015).

The Sunda Strait became a focus of attention because of the presence of HF radar at that location, which was previously used for tsunami detection, but can also be used to better understand the surface circulation. The existence of currents data inspires us to test the merging with the ensemble method so that it allows us to bring the model closer to the observation. With respect to that reason, previous research and the lack availability of observational currents spatially, we propose a blending method using the Ensemble Transform Kalman Filter (ETKF) (Bishop et al., 2001) and the explanation (Vetra-Carvalho et al., 2018) to provide the best estimation of surface currents in spatial distribution. The best estimation could be achieved by testing the sensitivity of the representativity error to averaged root mean square error (RMS). The testing can show the optimal representativity error, which gives the smallest averaged RMS. In addition, this method can also provide a larger coverage of the best estimation, which is not only limited to the HF radar domain but also goes beyond the models. Hence, the fluctuation of surface currents outside HF radar coverage can be made to clearly appear. To carry out this, we blend the Copernicus Marine Environment Monitoring Service (CMEMS) model with the HF radar radial velocity of each site. Radial velocity from one site is blended with the CMEMS model to create a full map of surface currents and then this current map is compared to the originally used data (dependent validation) and to the HF radar of other site (independent validation). The optimal representativity error for all sites was obtained by cross validation. The improvement is shown by error reduction and skill score after blending. If it is significant, it becomes very interesting to continue with the next step, such as data assimilation, to produce a forecast. The other benefit is that we will have the model analysis (the best estimation) in the same abundance as for the HF radar data; in that, the more HF radar that is involved, the more model analysis that will be produced. We treat a long period of CMEMS model as an ensemble model with which to provide the more representative model analysis with consideration of: the more ensemble members there are, the more accurate the model analysis will be. However, in the present study the ensemble model remains constant over time. We may conclude that the novelties of this study are the usage of HF surface currents, a blending method to obtain the currents estimates from one site of HF radar, and the optimal representativity error.

This paper is presented in five sections. Section 1 contains the background of this research and a review of previous studies. Section 2 discusses data, methods and steps for processing the data. Section 3 displays the results such as the comparison of model without blending, model with blending and the comparison with observation, plus the selection of an optimum representativity error that is possible for all sites. Section 4 provides a discussion on topics such as the comparison between the performance of the previous study and the present study and also the fluctuation of RMS signal which obtained by the optimum representativity error. Section 5 concludes.
2 Material and Methods

2.1 Material

In this section, the research domain, data, methods used and steps of data processing are explained. The research area chosen is the Sunda Strait (see Fig. 1), which is created by using the M_Map application (Pawlowicz, 2020). The Sunda Strait connects the Indian Ocean and the Java Sea, and the northeastern part is a narrow channel and shallow, in contrast to the southwestern part which is wide and steep. Three types of data were used in this study. The first type is the output from Copernicus - Marine Environment Monitoring service (CMEMS) model, which has hourly-mean zonal u and meridional velocity component v during one year, 01 September 2013 until 31 August 2014, from the global ocean 1/12 degrees physics analysis and with the forecast updated daily. This model does not include tides. The second type was HF radar Coastal Ocean Dynamics Application Radar (CODAR) SeaSonde radial velocity for 23 September 09 UTC until 22 December 2013 01 UTC from both sides of the strait (Anyer and Labuan; see Fig. 1), which have a “measured antenna pattern” an hourly temporal resolution, 20-60 km of spatial range, 3 km of range resolution, 5 degrees of angular resolutions and spatial resolutions, and 11.5-14 MHz of frequency. Measured antenna pattern means the pattern of antenna, which is adjusted with respect to the environment of the specified site. All radial velocity data have metadata, which contain all information of that data representation. One sample of the data is the type of pattern. All data we have are using a “measured” type of antenna pattern. Time series data availability of each site are described in Fig. 2 and spatial data availability in Fig. 3. Limited measurement at Labuan, due to the energy supply from a solar panel, was sometimes unstable. The third data type was hourly wind speed at 10 metres from the meteorological station at Serang Banten, which is part of BMKG. Winds were used for comparing the signal pattern of the blending result.

![Fig. 1. Research domain.](Credit: Bathymetry from the General Bathymetric Chart of the Oceans (GEBCO)) (Group, 2020)
Fig. 3. Accumulated spatial availability of radial currents at each site 23 September - 22 December 2013 at the Anyer site (a) and the Labuan site (b)

Fig. 2. Time series of the availability of radial currents at each site 23 September - 22 December 2013

2.2 Method

2.2.1 Preprocessing

The hourly CMEMS model data from the September 1, 2013 to August 31, 2014 representing 8761 time instances are used. In the following, it is assumed that this time variability of the model can be used as proxy of the error covariance (Stanev et al., 2015). Those authors considered winds, which is a time-variant parameter, while in our study, we do not have a true ensemble simulation, hence we also use the time variability as a proxy. However, this approximated ensemble variability keeps constant over time. This approach had been implemented for assimilating altimetry data and ocean model using the Singular Evolutive Extended Kalman (SEEK) filter with a time-independent
error sub-space scheme (Brasseur et al., 1999).

Before the HF radial velocity is used in the blending, the data are preprocessed in 3 stages. We deleted bad data such as incomplete coordinate data, vector data, which were not in the sea and not used for total vector and also non-calculable data. Next, we detected and removed outliers by using the scaled Median Absolute Deviation (MAD), which detects elements that have value more than three times the scaled Median Absolute Deviation (MAD) from the median. The scaled MAD is defined as Eq. (1) for a random variable vector \(A \) with \(N \) scalar observation with Eq. (2) for \(c \) coefficient. The last term usually uses 1.4826 value. This method was introduced by R. Hampel (1974) as mentioned by (Leys et al., 2013). In our case, outliers are removed during time series \(N \) since September 23, 2013 - April 1, 2014. Afterwards, we removed the periodic tides effect on the radial velocity using the T_Tide application (Pawlowicz et al., 2002). Tidal signal was removed since CMEMS in this study has not considered tides. Hence, the radial velocity to be used also needs to be removed from the effect. We still have the radial velocities in the south of Java Island as in Fig. 3b. However, the maximum percentage of radial velocities in the south of Java Island is 8.5% of the total of radial velocities in the Labuan site. It occurred on October 8, 2013 20:00 UTC. Also, the average daily percentage is 0.961%. In other words, the contribution of radial velocities in the south of Java Island for the blending output is quite small.

\[
\text{MAD} = c(\text{median}|A_i - \text{median}(A)|)
\]

where \(i = 1,2,\ldots,N \) and

\[
c = -1/\sqrt{2}\text{erfc}^{-1}(3/2)
\]

2.2.2 Processing

The method that is used in this study is the Ensemble Transform Kalman Filter (ETKF). It is a variant of the Ensemble Kalman Filter that was first introduced Evensen (1994), which is a development of the Kalman filter method (Kalman, 1960). The method inverses the observational error covariance matrix \(R \) so that it can be easily identified. For an explanation regarding calculating ETKF the reader is referred to the user manual: Sangoma Package (Vetra-Carvalho et al., 2018).

Regarding the Ensemble Kalman Filter, there are four general formulas including the updated ensemble mean \(\bar{x}^a \) as Eq. (3), the analysis error covariance matrix \(P^a \) as Eq. (4), Kalman gain \(K \) as Eq. (5), the analysis ensemble \(X^a \) as Eq. (6)

\[
\bar{x}^a = \bar{x}^f + K(y - H(\bar{x}^f))
\]

\[
P^a = (I - KH)P^f
\]

where \(K \) is Kalman gain, which is defined as
\[
K = P^f H^T (HP^f H^T + R)^{-1}
\]
(5)

where \(R \) is an observational error covariance matrix, \(H(...) \) in Eq. (3) is a linear observation operator for scalar form. While \(H \) Eq. (4) is an observation operator in the forecast ensemble mean (matrix form). The observation operator contains transformation values from model grid to observations grid; with the analysis ensemble given by

\[
X^a = \tilde{X}^a + X^a
\]

(6)

Where \(\tilde{X}^a = (\tilde{x}^a_1, \tilde{x}^a_2, ..., \tilde{x}^a_N) \in \mathcal{R}^{nxN} \). \(\tilde{X}^a \) is the ensemble analysis mean. While \(X^a \) is the ensemble analysis perturbation; superscript \((\cdot)^a\) and \((\cdot)^f\) denote analysis and forecast, respectively.

Besides formula in Eq. (4), the initial error covariance matrix \(P \) can be calculated from covariance around the mean \(\bar{x} \) at the time index \(k = 0 \) by using

\[
P^a,0 = \frac{1}{N-1} \sum_{j=1}^{N} (x^a_j,0 - \bar{x})(x^a_j,0 - \bar{x})^T
\]

(7)

or

\[
P^a,0 = \frac{X^a,0(X^a,0)^T}{N-1}
\]

(8)

where \(j = 1,...,N \) is an ensemble member index, \(N \) is the total number of the ensemble. The subscript \(T \) denotes transpose. Because we aim to obtain an analysis, so we omit the time index \(k = 0 \), thus equation of the analysis ensemble error covariance Eq. (8) can be written as

\[
P^a = \frac{X^a(X^a)^T}{N-1}
\]

(9)

Based on the derivation by Vetra-Carvalho et al. (2018), Eq. (4) and Eq. (9) can be obtained by using the ensemble perturbation matrix in observation space \(S \), the innovation covariance matrix \(F \), and the transformation matrix \(TT^T \) and the ensemble forecast perturbation \(X^f \) as in the following equations.

\[
X^a(X^a)^T = X^f(I - (S^T(SS^T + (N-1)R)^{-1}S))(X^f)^T
\]

(10)

\[
= X^f(I - S^TF^{-1}S)(X^f)^T
\]

(11)

\[
S = HX^f
\]

(12)

\[
F = SS^T + (N-1)R
\]

(13)
\[I - S^T F^{-1} S = TT^T \] (14)

In this study, the ETKF (Bishop et al., 2001) method is used to transform matrix \(TT^T \) as explained in (Vetra-Carvalho et al., 2018) by using the Sherman-Morrison-Woodbury identity (Golub & Loan, 1996), the scaled forecast ensemble observation perturbation matrix \(\tilde{S} \) (Livings, 2005) and Singular Value Decomposition (SVD) (Vetra-Carvalho et al., 2018). It is more efficient to inverse the observation error covariance matrix \(R \) since a diagonal matrix \(R \) is often a reasonable assumption. In data assimilation, the observation error covariance matrix \(R \) is assumed in diagonal because of the following reason. If \(R \) is not a diagonal matrix, then nonzero off-diagonal elements exist. Next, we substitute \(F \) in Eq. (13) to Eq. (14), then we used the Sherman-Morrison-Woodbury identity (Golub & Loan, 1996) as in Eq. (15) to obtain Eq. (16)

\[
AB^T(C + BAB^T) = (A^{-1} + B^T C^{-1} B)^{-1} B^T C^{-1}
\] (15)

with \(A = I, B = S^T, C = (N - 1)R \)

\[TT^T = (I + \frac{1}{N-1} S^T R^{-1} S)^{-1} \] (16)

In ETKF, the innovation covariance matrix can be solved by computing an eigenvalue decomposition of the matrix \(TT^T \) as in Eq. (16). However, as noted by Livings (2005), to avoid the floating point, rounding errors can produce an asymmetric matrix \(TT^T \), in fact, Eq. (13) is symmetric. Hence, Livings (2005) introduced the scaled forecast observation ensemble perturbation matrix \(\tilde{S} \) as per Eq. (17)

\[\tilde{S} = \left(\frac{1}{\sqrt{N-1}} \right) R^{-1/2} S \] (17)

we will obtain

\[TT^T = (I + \tilde{S}^T \tilde{S})^{-1} \] (18)

Now we can perform Singular Value Decomposition (SVD) to compute \(TT^T \) efficiently. SVD is used to preserve accuracy (Livings, 2005) and it is a technique to decompose any size of matrix so that it can be processed more easily. SVD produces 3 matrices, namely two orthogonal matrices \(U_T \) in size \((m \times m) \) and \(V_T^T \) in size \((n \times n) \) and diagonal matrix \(\Sigma_T \) with size \((m \times n) \) with positive values. The last matrix of SVD contains a singular value according to its singular vector sequence. This singular value plays the biggest role in the variation of the data as a whole, and is stored in the first order of the diagonal matrix \(\Sigma_T \).

\[\tilde{S}^T = U_T \Sigma_T V_T^T \] (19)
Next step, substitute Eq. (19) to Eq. (18), and because U and V_T are orthogonal matrices, hence $V_T^T V_T = I$ and $U_T U_T^T = I$, where I is Identity matrix, hence, $(U_T U_T^T)^{-1} = (U_T U_T^T)^T = U_T U_T^T$. Hence, we have TT^T in another form as Eq. (20)

$$TT^T = U_T (I + \Sigma_T \Sigma_T^T)^{-1} U_T$$ (20)

Returning to the ensemble analysis perturbation matrix in Eq. (11), we can replace Eq. (14) which is inside Eq. (11) by Eq. (20), so that we have Eq. (21). We can also take root in Eq. (21) becoming Eq. (22), so that we obtain

$$X'^a(X'^a)^T = X'^f U_T (I + \Sigma_T \Sigma_T^T)^{-1} U_T (X'^f)^T$$ (21)

$$X'^a = X'^f U_T (I + \Sigma_T \Sigma_T^T)^{-1/2} U_T^T$$ (22)

Note that U_T^T is necessary at the end of the right hand side, so that the ensemble perturbation X'^a has a zero mean. After that, we can calculate the Kalman gain in Eq. (5) by using derivation of Eq. (12), Eq. (13), Eq. (14), the Sherman-Morrison-Woodbury Identity Eq. (15), Eq. (17) and Eq. (19), so that we obtain

$$K = (\frac{1}{\sqrt{N-1}})X'^f U_T (I + \Sigma_T \Sigma_T^T)^{-1} \Sigma_T V_T^2 R^{-1/2}$$ (23)

Hence, the updated ensemble mean found in Eq. (3) can be changed by substituting Eq. (23) into Eq. (3)

$$\bar{x}'^{a} = \bar{x}' + (\frac{1}{\sqrt{N-1}})X'^f U_T (I + \Sigma_T \Sigma_T^T)^{-1} \Sigma_T V_T^2 R^{-1/2} (y - H(\bar{x}'))$$ (24)

With regard to the derivation of ETKF, the needed input data are the forecast ensemble X^f, the ensemble perturbation matrix in observation space $S = (HX'^f)$, the observational error covariance matrices R and the observation y^o. The analysis ensemble can, therefore, be computed by using Eq. (22) and Eq. (23), and Eq. (24).

The following are stages of data processing:

(i) The projected radial velocity is calculated using Eq. (25). Zonal u and meridional v velocity component originate from the zonal u and meridional v velocity component of the CMEMS model and they were interpolated based on the coordinates of radial velocity HF radar. Then, they were calculated altogether using the bearing of radial velocity HF radar θ to obtain the model radial velocity. We call the projected radial velocity in this step the original model or model without blending. The outputs of this process are the original model Anyer and the original model Labuan. The original model Anyer is defined as the CMEMS model without passing the ETKF process, which is re-interpolated based on radial velocity coordinates from the Anyer site. The original model
Labuan is defined as the CMEMS model without passing the ETKF process, which is re-interpolated based on radial velocity coordinates from the Labuan site.

\[U = u(-\sin(\theta)) + v(-\cos(\theta)) \]

(ii) The zonal u and meridional velocity component v of the CMEMS model from different time instances are assembled into the model ensemble \(X \). Grid cells corresponding to points on land are excluded from the state vector. Hence, the total number of ensemble members \(N \) is 8761. Theoretically, the more ensemble members there are, the more accurate the analysis ensemble will be.

(iii) Then, the forecast ensemble or \(X_f \) is calculated. Beforehand, we calculated ensemble mean \(\bar{X} \) by averaging all state vectors from initial ensemble \(X \) over the number \(N \) ensemble member. Then, all ensemble members were subtracted by the ensemble mean \(\bar{X} \), so that we have ensemble perturbation \(X'f \). Finally, we obtained the forecast ensemble by summation of ensemble perturbation and model state at member index \(j \), which was replicated until \(N \) member, and at time \(k \), in this case \(k = 0 \).

(iv) The observation part of ensemble members \(HX_f \) is computed. It contains radial velocity of forecast ensemble \(X_f \), which was derived from the zonal u and meridional v velocity component of forecast ensemble \(X_f \) using Eq. (25).

(v) In the next step, the forecast ensemble observation perturbation matrix \(S \) or \(HX'f \) is calculated. Beforehand, the observation part of ensemble members \(HX_f \) from the previous step was averaged by \(N \) yielding \(H\bar{X}_f \). The subtraction of the observation part of ensemble members \(HX_f \) by \(H\bar{X}_f \) obtained the forecast ensemble observation perturbation matrix \((S) \).

(vi) The observation \(y_o^k \) every \(k \) time instance until \(N \) size of the ensemble was defined. These variable values are taken from radial velocity HF radar itself, but only those in the sea are selected.

(vii) The observation error covariance matrix \(R \) is determined. As is known, observations value \(y^o \) consists of real observation (that unknown exactly) and observation error \((\epsilon_o) \) as Eq. (26). Observation error comes from 3 sources, namely instrument noise, forward model error and representativity error.

\[y^o = H(x) + \epsilon_o \]

In this study, the observation error covariance matrix \(R \) was the sum of instrument error and representativity error, which was made in the form of a diagonal matrix. The related SeaSonde instrument has 4 ordered products, namely the radial velocity from spectra, the Short-Time Radials, the Final Output Radial, and the Total vector. The Short-time Radials are a merged of list of radial velocity from spectra, which is within the same range and bearing and in the same time interval 10 minutes (for a standard range type of Seasonde). The Final Output Radial is calculated from a merged of collection of Short-time radials over 5 degree and the configured time.
Total velocity is a combination of radial velocity from at least two sites of HF Radar. The radial velocities have spatial uncertainties due to horizontal shear, which is the so-called Spatial Quality, which in the Short-Time Radials is the standard deviation of the list of radial velocity in the Short-Time Radials. The Spatial Quality Q_s in the Final output Radials is based on Spatial Quality in Short-Time Radials. Besides the Spatial Quality, the radial velocities also have temporal uncertainties due to the change of the current pattern over time, which is the so-called Temporal Quality Q_t, which in the Final output Radials is the standard deviation of list of radial velocity across the Short-Time Radials (CODAR, 2009). Hence, the instrument error in this study was from standard deviation of radial velocity measurement for both spatial quality Q_s and temporal quality Q_t.

Representativity errors (ϵ_{rep}) have various values, which were tested between 0 and 1. The error in this context is associated with radial velocity in order that they have the same unit in m/s. In the present study, we apply a quadratic function for each component, so that the observational error covariance matrix R is the sum of squares of spatial quality Q_s, temporal quality Q_t, and representativity error ϵ_{rep} as Eq. (27).

$$R_{ii} = Q_{si}^2 + Q_{ti}^2 + \epsilon_{rep}^2$$ \hspace{1cm} (27)

Where i is an index of a grid cell, which has non-zero elements. R was transformed into a sparse array following length of matrix Q_s or Q_t. The unit of R is m^2/s^2.

(viii) The analysis ensemble X^a and the analysis ensemble mean \bar{x}^a are computed. After this, all variables are available, such as forecast ensemble X^f, the ensemble perturbation matrix in observation space S, observational error covariance matrix R, and observations y^o, then we can use these in the ETKF equations, such as Eq. (12), Eq. (17), Eq. (19), Eq. (22), Eq. (23), Eq. (24), Eq. (26), Eq. (27), which are available in Sangoma package (Vetra-Carvalho et al., 2018).

(ix) Last but not least, the analysis ensemble is re-interpolated based on the position of the coordinates of radial velocity. We chose the analysis ensemble mean \bar{x}^a for re-interpolating the model analysis radial velocity according to coordinates of radial velocity on each site. The term “the model analysis” refers to the definition of the best estimation resulted in time k. To maintain simplicity, we use the term “the blended model” to represent “the model analysis”. The re-interpolation result is needed to validate the blended model against the observation in the same grid. The outputs of this process are the blended model Anyer (the model analysis Anyer), the blended model Anyer for Labuan (the model analysis Anyer for Labuan), the blended model Labuan (the model analysis Labuan), and the blended model Labuan for Anyer (the model analysis Labuan for Anyer). The blended model Anyer (the model analysis Anyer) is defined as the CMEMS model, which is already blended with the observed radial velocity from the Anyer site and re-interpolated based on radial velocity coordinates from the Anyer site. The blended model Anyer for Labuan (the model analysis Anyer for Labuan) is defined as the CMEMS model, which is already blended with the observed radial velocity from the Anyer site and re-interpolated based on radial velocity coordinates from the Labuan. The blended model Labuan (the model analysis Labuan) is defined as the CMEMS model, which is already blended with the observed radial velocity from the Labuan site and
re-interpolated based on radial velocity coordinates from the Labuan. The blended model Labuan for Anyer (the model analysis Labuan for Anyer) is defined as the CMEMS model, which is already blended with the observed radial velocity from the Labuan site and re-interpolated based on radial velocity coordinates from the Anyer.

2.2.3 Post-Processing

The further procedure was a validation process against data used in the analysis (dependent validation) and against withheld data (independent validation). In this study, dependent validation means the blended model Anyer compared to observations from Anyer itself or the blended model Labuan compared to observations from Labuan itself. Whereas, independent validation means the blended model Labuan for Anyer compared to observations from the Anyer site or the blended model Anyer for Labuan compared to observations from the Labuan site. The validation result was indicated by the root of the mean squared error (MSE) Eq. (28) (Murphy & Epstein, 1989). For every date, the RMS error of the model and the observations are computed (averaging over all coordinates); this time series of RMS errors are averaged over time and the result is the averaged RMS.

\[
MSE = \frac{1}{N} \sum_{i=1}^{N} (f_i - o_i)^2 \tag{28}
\]

\(f\) is forecast vector, \(o\) is observations vector. In this study, \(f\) is the blended model (the model analysis) or original model without blending, whereas the observations \(o\) are the radial velocity observations from each of the sites. The perfect score for this metric is 0 (which is only possible if the observations have no noise).

Notwithstanding, we examined the blended model (the analysis model) using two metrics, namely the relative error reduction (RER) Eq. (29), and the associated skill score (SS) Eq. (30) (Murphy & Epstein, 1989).

\[
RER = \left(\frac{\text{RMS}_{\text{originalCMEMSmodel}} - \text{RMS}_{\text{blendedmodel}}}{\text{RMS}_{\text{originalCMEMSmodel}}} \right) \tag{29}
\]

In this study, the RMS of the original CMEMS model was computed by the averaged RMS of the model without blending. The RMS blended model was computed by the averaged RMS of the blended model, such as independent validation and dependent validation. The perfect score for this metric is 1. The greater the reduction, the better the estimation. Our colour scheme is explained in the following result section.

\[
SS = 1 - \left(\frac{MSE_{\text{forecast}}}{MSE_{\text{ref}}} \right) \tag{30}
\]

In this study, \(MSE_{\text{forecast}}\) was computed by square of the averaged RMS of the blended model, \(MSE_{\text{ref}}\) computed by square of the averaged RMS of the model without blending. The perfect score for this metric is 1, which means that the model would approach observations. Our colour scheme is explained in the following result section.
3 Result

Fig. 4a and Fig. 4b show the sensitivity of the averaged RMS relative to the representativity error ϵ_{rep} of the Anyer site and the Labuan site, respectively. For every date, the RMS error of the model and the observations are computed (averaging over all coordinates). This time series of RMS errors is averaged over time. The blue colour shows comparison between the original model and the observation. The red colour represents a dependent validation, that is, the blended model obtained from the observation itself. The green colour represents independent validation, that is, the blended model obtained from another site. In Fig. 4a the blue colour indicates the sensitivity of the averaged RMS relative to the representativity error ϵ_{rep}, in which the averaged RMS originating from the difference between radial velocity from the model without blending of the Anyer site and the observation radial velocity of the Anyer site. The green colour indicates the sensitivity of the averaged RMS relative to the representativity error ϵ_{rep}, in which the averaged RMS comes from the difference between the blended model Labuan for Anyer and the observation radial velocity of the Anyer site. The red colour indicates the sensitivity of the averaged RMS relative to the representativity error ϵ_{rep}, in which the averaged RMS is a result of the difference between radial velocity from the original model Labuan (the model without blending of the Labuan site) and observations radial velocity from the Labuan site. The green colour indicates the sensitivity of the averaged RMS relative to the representativity error ϵ_{rep}, in which the averaged RMS is a result of the difference between radial velocity from the original model Labuan (the model without blending of the Labuan site) and observations radial velocity at the Labuan site. The red colour indicates the sensitivity of the averaged RMS relative to the representativity error ϵ_{rep}, in which the averaged RMS is a result of the difference between radial velocity of the blended model Anyer and the observations radial velocity at the Anyer site. While in Fig. 4b, the blue colour indicates the sensitivity of the averaged RMS relative to the representativity error ϵ_{rep}, in which the averaged RMS is a result of the difference between radial velocity of the blended model Anyer for Labuan and observations radial velocity at the Labuan site. The red colour indicates the sensitivity of the averaged RMS relative to the representativity error ϵ_{rep}, in which the averaged RMS is a result of the difference between the blended model Labuan and observations radial velocity of the Labuan site.

Both figures show the averaged RMS of the blended model (red colour and green colour) is smaller than the averaged RMS of the original model (blue colour). It means that the blended model which resulted from blending process is better than the original model. Notwithstanding, the averaged RMS of dependent validation (red colour) is decreasing, as the representativity error ϵ_{rep} is equal to zero. This validation ensures that the blending process is working properly and has been well-examined, because validation of the blended model which is obtained from its own observation should be the smallest error in the representativity error ϵ_{rep}, equal to zero, otherwise the larger the representativity error ϵ_{rep}, the worse the error becomes. One would have expected that the RMS of the red curve is the smallest as the representativity error ϵ_{rep} approaches zero. The small increase of this RMS error in the rounding errors is because the matrices involved in the blended model (the analysis) become ill-conditioned if the representativity error ϵ_{rep} approaches to zero. In theory, the optimal representativity error ϵ_{rep} of dependent validation would be achieved in the representativity error ϵ_{rep} equal to zero, otherwise, it becomes worse when the representativity error ϵ_{rep} equal to unlimited value, in which red line is approaching blue line. We displayed a red line in order to make sure that the dependent validation worked properly, and as well as theory. In Fig. 4, it was achieved by the representativity error ϵ_{rep} equal to nearly zero, namely 0.0603 m/s at the Anyer site and 0.0222 m/s at the Labuan site. Nevertheless, in general dependent validation has been fulfilled. The representativity error ϵ_{rep} values were not zero because of
rounding errors occurring when we inverted the representativity error ϵ_{rep} matrix.

Meanwhile, the blended model using the observations of the other site (independent validation) gives higher the averaged RMS than the blended model using its own observations (dependent validation), however, it is still smaller than that of the model without blending. The blended model in the category of independent validation is the blended model Anyer for Labuan or the blended model Labuan for Anyer. While the blended model in the category of dependent validation is the blended model Anyer or the blended model Labuan. By validating independently, we obtained that each site has own the representativity error ϵ_{rep} with the smallest for the averaged RMS. As a result, we have two representativity errors ϵ_{rep}, each of which have the smallest value for the averaged RMS from the independent validation.

From the two comparisons above, we still have 2 optimal values of the representativity error ϵ_{rep} from each site, namely 0.2704 m/s and 0.4459 m/s, respectively, which are from independent validation. It means that every site has an optimal representativity error ϵ_{rep}. We still need to evaluate which one is the best appropriate value of the representativity error ϵ_{rep} in order to obtain the best blended model for all sites.

Notwithstanding, we blend model with observations from each site, we also have a blended model with observations from both sites simultaneously. The differences with respect to the previous process are that the CMEMS model is blended with the observation Anyer or Labuan, separately. Meanwhile, the further process is that the CMEMS model is blended with the observations from both sites (Anyer and Labuan), simultaneously. Also, this process uses the optimal representative errors from the separated blending process. The blended model of all sites is defined as the CMEMS model, which is already blended with the observed radial velocity from both sites (Anyer and Labuan), simultaneously, and then re-interpolated based on radial velocity coordinates from both sites. The blended model of all sites for Anyer is defined as The CMEMS model, which is already blended with the observed radial velocity from both sites (Anyer and Labuan), simultaneously, and then re-interpolated based on radial velocity coordinates from the Anyer site. The blended model of all sites for Labuan is defined as The CMEMS model, which is already blended with the observed radial velocity from both sites (Anyer and Labuan), simultaneously, and then re-interpolated based on radial velocity coordinates from the Labuan site. The averaged RMS is shown as a bar graph in Fig. 5, displays the blended model of all sites which has been optimized by either 0.2704 m/s of the representativity error ϵ_{rep} or 0.4459 m/s of the representativity error ϵ_{rep} (orange versus blue). However, the averaged RMS of the blended model
of all sites for Anyer (yellow colour) and the blended model of all sites for Labuan (violet colour) are still higher than
the blended model of all sites (orange colour). The blended model of all sites for Anyer (yellow colour) has a good
response at 0.2704 m/s of the representativity error ϵ_{rep} in which the averaged RMS is 0.1782 m/s. While the blended
model of all sites for Labuan (violet colour) has a good response at 0.4459 m/s of the representativity error ϵ_{rep} in
which the averaged RMS is 0.21 m/s. Based on that result, we still have two representativity errors ϵ_{rep}. Hence,
we measured their performance using the averaged RMS, the relative error reduction (RER) and the associated skill
score (SS), either from a blended model from each site or a blended model from all sites as in Table. 1. The blended
model from each site consists of the blended model Labuan for Anyer and the blended model Anyer for Labuan. The
blended model of all sites consists of the blended model of all sites for Anyer and the blended model of all sites for
Labuan.

Table. 1 shows that the blended model of all sites for Anyer is better than the blended model Labuan for Anyer,
using either 0.2704 m/s or 0.4459 m/s. At 0.2704 m/s, we obtain a decreasing averaged RMS, an increasing relative
error reduction, and an increasing skill score. Likewise at 0.4459 m/s, we obtain a reducing the averaged RMS, an
increasing relative error reduction, and an increasing skill score. Although performance of the blended model of all
sites for Anyer at 0.4459 m/s is lower than the blended model of all sites for Anyer at 0.2704 m/s, the blended model
of all sites for Anyer at 0.4459 m/s has a reduced error compared to the blended model Labuan for Anyer. In contrast
with the Labuan site, the averaged RMS of the blended model of all sites for Labuan compared to the blended model
Anyer for Labuan worsened using 0.4459 m/s, and it obtained an increasing averaged RMS. Interestingly, the relative
error reduction and the associated skill score improved. It obtained an increasing relative error reduction, and an
increasing the associated skill score. Unfortunately, if we used 0.2704 m/s, the blended model of all sites for Labuan
was not giving a smaller error as we expected. It obtained an increasing averaged RMS, a reducing relative error
reduction, and a decreasing skill score. Hence, we decided to use 0.4459 m/s, because it gives a better response for
both sites although it gives a lower performance on the blended model of all sites for Anyer, but it is still better than
the blended model Labuan for Anyer.

![Fig. 5. The sensitivity of the averaged RMS relative to the representativity error ϵ_{rep} 23 September - 22 December 2013](image)
Table 1: Comparison of the averaged RMS, the Relative error reduction (RER), the Associated skill score (SS)

<table>
<thead>
<tr>
<th>Site</th>
<th>ϵ_{rep}</th>
<th>The blended model (m/s)</th>
<th>Averaged RMS</th>
<th>RER</th>
<th>SS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anyer</td>
<td>0.2704</td>
<td>Labuan for Anyer</td>
<td>0.2314</td>
<td>0.1619</td>
<td>0.2976</td>
</tr>
<tr>
<td></td>
<td></td>
<td>All sites for Anyer</td>
<td>0.1782</td>
<td>0.2968</td>
<td>0.5055</td>
</tr>
<tr>
<td></td>
<td>0.4459</td>
<td>All sites for Anyer</td>
<td>0.1833</td>
<td>0.2766</td>
<td>0.4767</td>
</tr>
<tr>
<td>Labuan</td>
<td>0.4459</td>
<td>Anyer for Labuan</td>
<td>0.1612</td>
<td>0.1667</td>
<td>0.3056</td>
</tr>
<tr>
<td></td>
<td></td>
<td>All sites for Labuan</td>
<td>0.21</td>
<td>0.1713</td>
<td>0.3132</td>
</tr>
<tr>
<td></td>
<td>0.2704</td>
<td>All sites for Labuan</td>
<td>0.2132</td>
<td>0.1586</td>
<td>0.2921</td>
</tr>
</tbody>
</table>

Fig. 6 shows fluctuations of the RMS signal at 0.4459 m/s of the representativity error ϵ_{rep} in time series. This shows that the blended model of all sites has a significantly reduced error. The maximum RMS signal of the original model is about 0.6575 m/s, while the maximum RMS signal of the blended model of all sites is about 0.3489 m/s.

Once optimal 0.4459 m/s of the representativity error ϵ_{rep} and the best blended model were obtained, then we could use the blended model of all sites of 0.4459 m/s of the representativity error ϵ_{rep} and compare it against the observation and the original model (without blending). We used one of the sample dates, namely 20 November 2013 at 0100 UTC as in Fig. 7, which consists of observations radial velocity (Fig. 7a), radial velocity from the original model (Fig. 7b) and radial velocity of the blended model of all sites (Fig. 7c). The legend of the figure shows positive (red colour) and negative values (blue colour). A positive value means that radial velocity moves towards the HF radar site, while a negative value means that radial velocity moves away from HF radar site.

Radial velocity in Fig. 7b shows a stronger velocity than the velocity in Fig. 7a. Generally, radial velocity in Fig. 7b was dominated by (-0.5) up to 0.5 m/s. Meanwhile, radial velocity in Fig. 7a was about (-0.3) up to 0.3 m/s. After blending, the original model experiences an significant optimisation as radial velocity in Fig. 7c. Radial velocity in Fig. 7c shows a similar distribution of values to radial velocity in Fig. 7a.
Fig. 7. Comparison of radial velocity all sites 20-Nov-2013 01:00 UTC. (a) Radial velocity observations Anyer, (b) The model without blending Anyer, (c) The blended model of all sites for Anyer, (d) Radial velocity observations Labuan, (e) The model without blending Labuan, (f) The blended model of all sites for Labuan.

If the radial velocity from two sites is combined, we will obtain the total velocity. We use the same date as in Fig. 7. We can compare total velocity of the blended model in Fig. 8c against the observation total velocity (Fig. 8a) and original model (Fig. 8b). However, in this study the observation total velocity in Fig. 8a was taken directly from HF radar data. We did not combine all radial velocity sites with the result of Fig. 7a. Note that the tides effect has been removed from it. Fig. 8a shows that currents were distributed only at the Sunda Strait. Weak currents of about 0 - 0.3 m/s were distributed at the eastern part and the northeastern part. Meanwhile, strong currents were located at the northern part of Panaitan Island with velocity at approximately > 0.5 m/s.

The HF radar coverage does not reach the Java Sea and the Indian Ocean, which is different to the original model with its currents being distributed over all areas with the strongest currents, which are elongated diagonally from the Java Sea until the Indian Ocean. We have characteristics of currents that are not only in the Sunda Strait, but also in the Java Sea and the Indian Ocean. However, the original model is only an estimation. After combining the radial velocity of the original model and the observation, we have a new pattern of currents as in Fig. 8c. It shows all areas having values of currents. Nevertheless, currents speed has significantly decreased except in the northeastern part of the Sunda Strait near the Java Sea, which is > 0.4 m/s, while other areas are generally below 0 - 0.4 m/s, including
the Indian Ocean, which is mostly following the speed of currents in the original model. The strong currents at the northern part of Panaitan island and at the centre of the Sunda Strait in the original model are weakening. This is happening not only because of the difference in the speed of the currents but also because of the direction effect of the currents. The direction of the currents near Panaitan Island in the observation move towards the north, whereas the direction of the currents in the original model, generally, moves towards the northeast. In general, all figures show the same direction of the currents, from the Indian Ocean towards the Java Sea. In addition, we involved a monthly mean from November 2013 as shown in Fig. 9, to analyze our blended model. The figure shows generally, that the speed of the currents in the north of Panaitan Island tends to be stronger than in other areas. Our blended model is similar to the monthly mean total velocity from the observation.

![Fig. 8. Comparison of total velocity 20-Nov-2013 01:00 UTC. (a) Observations. (b) Model without blending. (c) The blended model Anyer](image)

![Fig. 9. Monthly mean total velocity November 2013](image)

4 Discussion

We aim at analysing the effect of multiplication of R by 25 using formula Eq. (29) and Eq. (30) to obtain RER and SS of RMS of u and v from Table 3 page 277 of Stanev et al. (2015). The result shows RER for RMS of u and RMS
of \(v \) are 0.043 m/s and 0.0178 m/s. While SS of RMS \(u \) and \(v \) are 0.085 m/s and 0.035 m/s, respectively. Compared to our result in Fig. 5 and Table. 1, RER and SS contain a value of one digit after the decimal point, while their result contain a value of two digits after the decimal point. It turned out that our proposed method of adding the representativity error to spatial quality and temporal quality as per Eq. (27) could give a better improvement.

There are some questions that still remain regarding Fig. 6, which shows periodic fluctuation, that has one peak every day or a diurnal cycle. The other point is that they have a very high RMS value for the original model (blue colour). Hence, we aimed at analysing the RMS signal by comparing it to wind speed 10 meter from the meteorological station at Serang near the HF radar site. We did not compare our data to tides, because we have already removed the tides effect in an earlier step.

We used observational winds from 24 September - 13 October 2013, which are continuously available, to see the effect on the RMS signal; operationally, the observation is running 24 hours per day. There are zero value data each day because the winds are calm during the night until early morning. The comparison of wind signal and RMS signal is shown in Fig. 10 and it displays an interesting fluctuation, which is that RMS signal achieves a maximum once a day. Likewise, the signal from winds has a peak every 24 hours, although there are some dates achieving more than one peak per day. Notwithstanding, the peak of the RMS signal happened a few hours after the wind signal. The fluctuation of the winds is followed by the RMS signal and this indicates that the radial signal is influenced by winds. That result has a similar trend with the result of a study by Oktavia et al. (2011), which concluded that geostrophic currents variation is indirectly influenced by winds in the Sunda Strait. Those authors calculated monthly averaged geostrophic currents from 4 tide-gauge stations (Ciwandan, Panjang, Tanjung Lesung and Kota Agung) and sea surface height of satellite for the period of March 2008 – February 2009 using formula differences in sea level between two stations at a distance 1°.

![Fig. 10. Comparison RMS and Winds](image)

Theoretically, currents can be produced by winds at the ocean surface (wind-driver circulation), density differences (thermohaline circulation), and tides (NOAA, 2020). As we noted in the preprocessing section, we have already removed the tides effect from the radial velocity, hence the velocity could be due to the first two processes. Note that, HF radar can capture currents only at the surface until 2 meters of depth (Rubio et al., 2017). Considering the HF radar capability, the produced currents are at the surface, which is predominantly affected by winds. In addition,
the magnitudes of the winds are strengthened by the narrow channel. The effect of the wind can be explained in the following way. The Sunda Strait has two channels, one of which is narrow in the northeast near the Java Sea, the depth is shallow about 50 meters, and the other is wide in the southwest near the Indian Ocean. It makes sense if the Anyer signal is affected by wind because HF radar at the Anyer site is located near the narrow channel of the Sunda Strait. Typically, winds leaving a narrow channel have stronger wind than the surrounding environment. We conclude that the stronger currents are due to the stronger winds leaving the strait. Hence, in our case, the RMS signal obtained via the radial velocity calculation is strongly influenced by winds. The strong winds generated radial currents that affected the HF radar significantly, which appears in the blended model (the model analysis) on 20 November 2013 at 0100 UTC as can be seen in Fig. 8c. Based on this, the wind influences the magnitude and the frequency of high magnitudes of radial velocity.

Furthermore, we also include the absolute geostrophic velocities, which are the gridded products level 4 of the SSALTO/Duacs Multimission Altimeter as in Fig. 11a and the model analysis on 14 October 2013 as in Fig. 11b. The motivation of comparison is to show what kind of currents characteristics there are in the narrow channel are. We realized that when comparing a blended model, this resulted in HF radar against the currents and from the altimetry data this is not precisely comparable due to the satellite absolute geostrophic velocities only covering within a low resolution, which is derived from sea surface height in 0.25 degrees of the grid. As a result, it is too coarse to cover a strait area and tends to be a similar value. Fig. 11 shows higher velocities than the surrounding environment and appears either in a blended model or the satellite absolute geostrophic velocities. The blended model shows more than 0.5 m/s of currents, and the satellite absolute geostrophic velocities show 0.7 m/s of currents. Further, the currents in a blended model formed a diagonal pattern from the Java sea towards the Indian Ocean. The high absolute geostrophic velocities are located at a full strait. A blended model shows that the direction of the currents moves towards the Indian Ocean, whereas the direction of the absolute currents is coarse and heading towards the coastline. Note that the direction could be changed following a dominant circulation occurring between the Java Sea and the Indian Ocean.

In conclusion, currents in a strait tend to be stronger than surrounding environment and they become increasingly stronger when they flow out from a narrow part of the strait. This pattern is similar to that described in the results of previous studies in Lorente et al. (2019); Soto-Navarro et al. (2016); Xu et al. (2014).

5 Conclusion

Based on the results described in the previous section, we showed that blending HF radar has been reducing the error of the model. Another satisfying result occurs when we blended two sites separately and validated each of them through independent validation. The result shows independent validation giving a lower error than the model without blending, even though it is still higher than with dependent validation.

Dependent validation can be used for any various data with the condition the data is obtained from the other such as the blended model versus model or the blended model versus own observations. On the other hand, independent validation should use an independent real or independent actual data to prove whether a blending process is useful or not in reducing error. Independent validation would have the optimal representativity error ϵ_{rep} when the averaged
RMS is the lowest. We used two sites separately, hence we have two optimal representativity errors ϵ_{rep} from each site, namely 0.2704 m/s and 0.4459 m/s, which means that every observation has its representativity error and contributes to form a model analysis.

We have selected the best optimum of the representativity error ϵ_{rep}, which can be applied for all sites operationally and gave the smallest of possible error. The best optimum of the representativity error ϵ_{rep} is 0.4459 m/s.

Applying the value yields a completed spatial distribution of surface currents, which is the strongest in the narrow part and a lower currents in the surrounding area.

This study can also illustrate how HF radar data from a single site can be used to obtain total currents with the help of a model as long as the model has a realistic variability.

Assessing treatment of R shows that the addition of a representativity error to R could be another way to reduce the error rather than multiplication R by a specific value.

Declaration of competing interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgment
This research could not have been accomplished without the research funding from the Indonesia Endowment Fund for Education (LPDP), Ministry of Finance of the Republic of Indonesia with contract number: PRJ-2378/LPDP.3/2016, HF radar and winds data from the Agency for Meteorology, Climatology, and Geophysics of the Republic of Indonesia (BMKG), and hardware, software and assistance facilities from the University of Liège. We are also grateful for the non material support from BMKG Regional Office III Denpasar Bali. This study has been conducted using E.U. Copernicus Marine Service Information.
References

Kirincich, A. 2016. Remote sensing of the surface wind field over the coastal ocean via direct calibration of HF
radar backscatter power. *Journal of Atmospheric and Oceanic Technology, 33*(7), 1377–1392. doi: 10.1175/JTECH-D-15-0242.1

Stanev, E. V., Ziemer, F., Schulz-Stellenfleth, J., Gurgel, K.-W., Seemann, J., & Staneva, J. 2015. Blending Surface

