Cascade Transformation of Carbon Dioxide and Alkyne-1,n-diols into Densely Substituted Cyclic Carbonates

Xuetong Li, ${ }^{[a] \#}$ Alba Villar-Yanez, ${ }^{[a][b] \# \#}$ Charlene Ngassam Tounzoua, ${ }^{[b] \# \#}$ Jordi BenetBuchholz, ${ }^{[a]}$ Bruno Grignard, ${ }^{[b]}$ Carles Bo, ${ }^{[a][b]^{*}}$ Christophe Detrembleur ${ }^{*[c]}$ and Arjan W. Kleij*[a][d]
[a] X. Li, A. Villar-Yanez, Dr. J. Benet-Buchholz, Prof. C. Bo and Prof. A. W. Kleij Institute of Chemical Research of Catalonia (ICIQ), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 - Tarragona, Spain. E-mail: akleij@iciq.es, cbo@iciq.cat
[b] A. Villar-Yanez, Prof. C. Bo
Departament de Química Física i Inorgánica, Universitat Rovira i Virgili, Marcel•lí Domingo s/n, 43007 Tarragona (Spain).
[c] C. Ngassam Tounzoua, Dr. B. Grignard, Dr. C. Detrembleur
Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liege, Allée de la Chimie, B6a, 4000 Liège, Belgium. Email: christophe.detrembleur@uliege.be
[d] Prof. Dr. A. W. Kleij
Catalan Institute of Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
[\#] Equal contribution.

Table of Contents:

1. General information... 2
2. Optimization of the reaction conditions .. 3
3. Procedures and characterization data for the carbonate products.. 16
4. Catalytic screening towards larger ring cyclic carbonates .. 27
5. References... 37
6. NMR and IR spectra of all compounds .. 38
7. X-ray details... 141
8. Synthetic and analytical details for compound 11 and 12 .. 143
9. DFT details.. 149

1. General information

Unless otherwise noted, all commercially available reagents and solvents were purchased from Sigma-Aldrich, TCI, Strem Chemicals, ABCR GmbH, Acros Organics or Alfa Aesar and were used without further purification. Solvents were dried using an Innovative Technology PURE SOLV solvent purification system. Carbon dioxide was purchased from PRAXAIR and used without further purification. Reactions were performed in a Schlenk tube or a stainless-steel HELmultireactor under CO_{2} atmosphere. Products were purified by flash chromatography or by preparative thin-layer chromatography on silica gel. NMR spectra were recorded on Bruker Bruker 400 MHz and Bruker 500 MHz at room temperature $\left(25^{\circ} \mathrm{C}\right)$. The residual solvent signals were used as references for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra $\left(\mathrm{CDCl}_{3}: \delta_{\mathrm{H}}=7.26 \mathrm{ppm}, \delta_{\mathrm{C}}=77.16 \mathrm{ppm}\right.$, DMSO$\left.\mathrm{d}_{6}: \delta_{\mathrm{H}}=2.50 \mathrm{ppm}, \delta_{\mathrm{C}}=39.52 \mathrm{ppm}\right) .{ }^{19} \mathrm{~F}$ NMR spectra were obtained with ${ }^{1} \mathrm{H}$ decoupling unless stated otherwise. FT-IR measurements were carried out on a Bruker Optics FTIR-ATR TR0 spectrometer. Exact mass analyses and X-ray diffraction studies were performed by the Research Support Area (RSA) at ICIQ.

2. Optimization of the reaction conditions

Table S1:

- Table continued						
26	$\mathrm{AgF}_{6} \mathrm{Sb}$ (5 mol\%)	L6 (5 mol\%)	24	40	0	0
27	AgF ($5 \mathrm{~mol} \%$)	L6 (5 mol\%)	6	40	100	$91(88)^{[c]}$
28	AgF ($5 \mathrm{~mol} \%$)	L6 (5 mol\%)	12	40	100	89
29	AgF ($5 \mathrm{~mol} \%$)	L6 (5 mol\%)	18	40	100	87
30	AgF ($2.5 \mathrm{~mol} \%$)	L6 (2.5 mol\%)	6	40	12	<5\%
31	AgF ($5 \mathrm{~mol} \%$)	L6 (5 mol\%)	6	40	100	$17^{[d]}$
32	AgF ($5 \mathrm{~mol} \%$)	L6 (5 mol\%)	6	40	100	Not detected ${ }^{[\mathrm{e}]}$
33	AgF ($5 \mathrm{~mol} \%$)	L6 (5 mol\%)	6	40	100	Not detected ${ }^{[f]}$
34	AgF ($5 \mathrm{~mol} \%$)	L6 (5 mol\%)	6	40	100	$18^{[8]}$
35	AgF ($5 \mathrm{~mol} \%$)	L6 (5 mol\%)	6	40	100	Not detected ${ }^{[\mathrm{h}]}$

[a] Reaction condition: 1a (0.3 mmol), ACN (0.6 mL). [b] Determined by ${ }^{1} \mathrm{H}$ NMR. [c] Isolated yield of 2a. [d] MeOH as solvent. [e] DMF as solvent. [f] Toluene as solvent. [g] THF as solvent. [h] DCM as solvent. $\mathbf{L} 7$ stands for DPEPhos, $\mathbf{L 8}$ for dppe.

Table S2: ${ }^{\left[{ }^{[a]}\right.}$

Entry	Catalyst	Ligand	Time, pressure [h, bar]	$\begin{gathered} \mathbf{T} \\ {\left[{ }^{\circ} \mathrm{C}\right]} \end{gathered}$	Conv. $[\%]^{[b]}$	$\begin{aligned} & \text { Yield } \\ & {[\%]^{[b]}} \end{aligned}$
1	AgF ($5 \mathrm{~mol} \%$)	L6 (5 mol\%)	6, 1	40	52	29
2	AgF (5 mol\%)	L6 (5 mol\%)	6, 1	60	22	No detected
3	AgF ($5 \mathrm{~mol} \%$)	L6 (5 mol\%)	24, 1	40	83	10
4	AgF ($5 \mathrm{~mol} \%$)	L6 (5 mol\%)	24, 10	rt	100	$85(90)^{[\mathrm{cc]}}$
5	AgOAc (10 mol\%)	L1 (10 mol\%)	24, 1	rt	37	18
6	AgOAc (10 mol\%)	L1 (10 mol\%)	24, 1	50	30	<10\%
7	$\mathrm{AgOAc}(10 \mathrm{~mol} \%)$	L1 (10 mol\%)	48, 1	50	77	<10\%
8	AgOAc (10 mol\%)	L1 (10 mol\%)	24, 10	rt	100	$25(19)^{[c]}$

[a] Reaction conditions: 1a $(0.3 \mathrm{mmol}), \mathrm{ACN}(0.6 \mathrm{~mL})$. [b] Determined by ${ }^{1} \mathrm{H}$ NMR. [c] Isolated yield of 2a in brackets.

Table S3: ${ }^{[\mathrm{a]}}$

Entry	Catalyst	Ligand	Time, pressure $[\mathrm{h}, \mathrm{bar}]$	T $\left[{ }^{\circ} \mathrm{C}\right]$	Conversion $[\%]^{[b]}$	Yield $[\%]^{[b]}$
1	$\operatorname{AgF}(5 \mathrm{~mol} \%)$	$\mathbf{L 6}(5 \mathrm{~mol} \%)$	6,1	40	45	Not detected
2	$\operatorname{AgF}(5 \mathrm{~mol} \%)$	$\mathbf{L 6}(5 \mathrm{~mol} \%)$	6,1	60	42	Not detected
3	$\operatorname{AgF}(5 \mathrm{~mol} \%)$	$\mathbf{L 6}(5 \mathrm{~mol} \%)$	24,10	rt	51	trace
4	$\operatorname{AgF}(10 \mathrm{~mol} \%)$	$\mathbf{L 6}(10 \mathrm{~mol} \%)$	24,10	rt	100	$<10 \%$
5	$\operatorname{AgF}(5 \mathrm{~mol} \%)$	$\mathbf{L 6}(5 \mathrm{~mol} \%)$	24,30	rt	100	$<10 \%$

[a] Reaction conditions: 1a $(0.3 \mathrm{mmol})$, ACN $(0.6 \mathrm{~mL})$. [b] Determined by ${ }^{1} \mathrm{H}$ NMR.

Table S4: ${ }^{[a]}$

Screening data with substrate 1h.

Entry	Catalyst	Ligand	Time, pressure $[\mathrm{h}, \mathrm{bar}]$	T $\left[{ }^{\circ} \mathrm{C}\right]$	Conv. $[\%]^{[b]}$	Yield $[\%]^{[b]}$
1	$\mathrm{AgF}(10 \mathrm{~mol} \%)$	$\mathbf{L 6}(10 \mathrm{~mol} \%)$	24,30	rt	100	95
2	$\mathrm{AgF}(10 \mathrm{~mol} \%)$	$\mathbf{L 6}(10 \mathrm{~mol} \%)$	24,10	rt	100	93
3	$\mathrm{AgF}(5 \mathrm{~mol} \%)$	$\mathbf{L 6}(5 \mathrm{~mol} \%)$	6,1	40	78	74
4	$\mathrm{AgF}(5 \mathrm{~mol} \%)$	$\mathbf{L 6}(5 \mathrm{~mol} \%)$	24,1	40	100	$90(87)^{[\mathrm{c}]}$
5	$\mathrm{AgF}(5 \mathrm{~mol} \%)$	$\mathbf{L 6}(5 \mathrm{~mol} \%)$	24,1	rt	93	83

[a] Reaction conditions: $\mathbf{1 h}(0.3 \mathrm{mmol}), \mathrm{ACN}(0.6 \mathrm{~mL})$. [b] Determined by ${ }^{1} \mathrm{H}$ NMR. [c] Isolated yield of $4 h$.

3. Experimental procedures and characterization data for substrates

The known alkyne-1,2-diols were synthesized as reported in the literature. ${ }^{[1]}$ Below the preparation of new alkyne-1,2-diols.

General Procedure A for alkyne-1,2-diol synthesis:

S1-S3 were synthesized according to a literature procedure. ${ }^{[2]}$ To a solution of the ketone derivative ($30.0 \mathrm{mmol}, 1.0$ equiv) in MeOH (60 mL), (diacetoxyiodo)benzene ($33.0 \mathrm{mmol}, 1.1$ equiv) and KOH ($165.0 \mathrm{mmol}, 5.5$ equiv) were slowly added at $0^{\circ} \mathrm{C}$ in an open round-bottomed flask. After the mixture had been stirred for 0.5 h at the same temperature it was allowed to reach room temperature over night after which TLC analysis showed complete consumption of the starting material. The reaction mixture was concentrated, water (100 mL) was added and the mixture was extracted with EtOAc $(3 \times 100 \mathrm{~mL})$. The combined organic extracts were evaporated in vacuo and the residue was dissolved in a mixture of $\mathrm{MeOH}(20 \mathrm{~mL})$ and aqueous $3 \mathrm{M} \mathrm{HCl}(20$ mL). After stirring overnight at rt , the crude product was concentrated and further purified by column chromatography on silica gel to afford the corresponding α-hydroxy ketones.

The alkyne-1,2-diols $\mathbf{1 d}, \mathbf{1 k}$ and $\mathbf{1 r}$ in this section were prepared according to a literature procedure. ${ }^{[1]}$ In an oven-dried Schleck flask conditioned under a nitrogen atmosphere was introduced the appropriate α-hydroxy carbonyl compound ($5 \mathrm{mmol}, 1.0$ equiv) in anhydrous THF $(40 \mathrm{~mL})$. The solution was cooled down to $0^{\circ} \mathrm{C}$ (ice/water) and ethynyl magnesium bromide (0.5 M in THF, 3.0 equiv, 30 mL) was added dropwise via a syringe. The reaction mixture was allowed to warm to room temperature and further stirred for 16 h . Then, the reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The organic phase was extracted with EtOAc $(3 \times 50 \mathrm{~mL})$. All the organic fractions were combined, dried with anhydrous NaSO_{4}, filtered and concentrated. The crude products were purified by flash chromatography on silica gel to afford the corresponding alkyne-1,2 diols.

Yellow solid ($794.0 \mathrm{mg}, 73 \%$ yield). Eluent hexanes/ $\mathrm{EtOAc}=5 / 1 .{ }^{1} \mathbf{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.56-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.40(\mathrm{~m}, 2 \mathrm{H})$, $3.77(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~s}, 1 \mathrm{H}), 2.25$ (brs, 2H), $1.32(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 151.6, 137.1, 125.6, 125.5, 84.6, 74.8, 73.6, 72.1, 34.7, 31.4. HRMS (ESI/TOF) m / z Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NaO}_{2}[\mathrm{M}$ $+\mathrm{Na}]^{+}$241.1199; Found 241.1203.

2-(m-Tolyl)but-3-yne-1,2-diol (1k)

Yellow solid ($537.0 \mathrm{mg}, 61 \%$ yield). Eluent hexanes/ $\mathrm{EtOAc}=3 / 1 .{ }^{\mathbf{1}} \mathbf{H}$

NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 1 \mathrm{H})$, $7.16-7.14(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.70(\mathrm{~s}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 140.1, 138.3, 129.3, 128.5, 126.5, 123.0, 84.6, 74.9, 73.7, 72.1, 21.7. HRMS (ESI/TOF) m/z Calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$199.0730; Found 199.0735.

2-(Adamantan-1-yl)-but-3-yne-1,2-diol (1r)

White solid ($511.0 \mathrm{mg}, 50 \%$ yield). Eluent hexanes/EtOAc $=3 / 1 .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$

$\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.75(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~d}, J=10.9,1 \mathrm{H}), 2.49$ $(\mathrm{s}, 1 \mathrm{H}), 2.04-2.01(\mathrm{~m}, 4 \mathrm{H}), 1.77-1.65(\mathrm{~m}, 13 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 84.4,77.8,74.7,65.6,38.5,37.1,36.8,28.5$. HRMS (ESI/TOF) m / z Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$243.1356; Found 243.1352.

General Procedure B for alkyne-1,2-diol synthesis:

$\mathbf{S 4}$ and $\mathbf{S 5}$ were synthesized according to the literature procedure. ${ }^{[3]}$ Bromine ($1.0 \mathrm{~mL}, 1.0$ equiv) was added dropwise to a solution of the respective ketone derivative ($20.0 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ in a round-bottomed flask. Then the mixture was allowed to warm to room temperature and stirred for 3 h . When the starting material had disappeared (followed by TLC), the reaction mixture was quenched with ice water $(20 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with saturated aqueous NaHCO_{3} solution (40 mL), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After being filtered and concentrated, the residue was dissolved in a mixture of $\mathrm{EtOH}(80 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL})$, and sodium formate ($120.0 \mathrm{mmol}, 6.0$ equiv) was added. This mixture was stirred for 16 h at $70^{\circ} \mathrm{C}$, then concentrated under vacuum, diluted with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and extracted with EtOAc $(3 \times 20 \mathrm{~mL})$. The combined layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography on silica gel to obtain the respective α-hydroxy ketone.

NB: The alkyne-1,3-diols $\mathbf{1 h}$ and $\mathbf{1 s}$ were obtained according to the final one step from General

Procedure A.

2-(4-Iodophenyl)but-3-yne-1,2-diol (1h)

Brown solid (743.8 mg , 51% yield). Eluent hexanes/ EtOAc $=3 / 1 .{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.72-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.35(\mathrm{~m}, 2 \mathrm{H}), 3.73$ (d, $J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{~s}, 1 \mathrm{H}),{ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 140.0,137.6,127.9,94.4,83.9,75.3,73.4,71.9$. HRMS (ESI/TOF) m / z Calcd for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{INaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 310.9539$; Found 310.9533.

2-Benzyl-but-3-yne-1,2-diol (1s)

Yellow solid ($474.1 \mathrm{mg}, 52 \%$ yield). Eluent hexanes/ EtOAc $=3 / 1 .{ }^{1} \mathbf{H}$

NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.28(\mathrm{~m}, 5 \mathrm{H}), 3.72(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H})$, 3.60 (d, $J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.01$ (dd, $J=16.3,13.4 \mathrm{~Hz}, 2 \mathrm{H}$), 2.52 ($\mathrm{s}, 1 \mathrm{H}$), 2.22 (brs, 2H); ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 135.3,130.9,128.4,127.3$, 84.3, 75.0, 71.6, 69.2, 43.8. HRMS (ESI/TOF) m / z Calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 199.0730$; Found 199.0723.

Procedure C for the synthesis of alkyne-1,2-diol 3b:

S6 was synthesized according to the literature procedure. ${ }^{[4]}$ To a solution of 2bromopropiophenone (16.4 mmol , 1.0 equiv) in $\mathrm{MeOH}(17 \mathrm{~mL}$) was added sodium formate (64.8 $\mathrm{mmol}, 4.0$ equiv), and the reaction mixture was stirred for 16 h at $70^{\circ} \mathrm{C}$. Then, it was concentrated under vacuum, diluted with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and extracted with $\mathrm{EtOAc}(3 \times 20 \mathrm{~mL})$. The combined layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography on silica gel to obtain the corresponding α-hydroxy ketone S6.

NB: Alkyne-1,2-diol 3b was obtained according to the final step General Procedure A.

3-Phenyl-pent-4-yne-2,3-diol (3b)

Yellow oil ($485.6 \mathrm{mg}, 55 \%$ yield). Eluent hexanes/ $\mathrm{EtOAc}=3 / 1 .{ }^{1} \mathbf{H} \mathbf{N M R}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.62-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.30(\mathrm{~m}, 3 \mathrm{H}), 4.04(\mathrm{q}, J=6.3$ $\mathrm{Hz}, 1 \mathrm{H}), 2.68(\mathrm{~s}, 1 \mathrm{H}), 1.06(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.0,128.29,128.27,126.3,85.5,75.9,74.9,74.7,16.2$. HRMS (ESI/TOF) m / z Calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$199.0730; Found 199.0733.

General Procedure D for alkyne-1,2-diol synthesis:

S7-S10 were synthesized according to the literature procedure ${ }^{[5]}$ To a solution of the respective ketone ($10.0 \mathrm{mmol}, 1.0$ equiv) in DMSO (10 mL) was added $\mathrm{I}_{2}(2.0 \mathrm{mmol}, 20 \mathrm{~mol} \%)$ under air, and the reaction mixture was stirred for 24 h at $60^{\circ} \mathrm{C}$ while followed by TLC. When complete consumption of the starting material was observed, the mixture was allowed to cool down to room temperature, and the solution was diluted with ethyl acetate (200 mL), washed with 0.1 M $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(100 \mathrm{~mL})$ aqueous solution and extracted with EtOAc ($3 \times 100 \mathrm{~mL}$). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude product was purified by flash chromatography on silica gel to obtain the respective α-hydroxy ketone.

NB: Alkyne-1,2-diols 3c, 3d, 3e and $\mathbf{3 g}$ were obtained according to the final of General Procedure A.

3-Phenylhex-1-yne-3,4-diol (3c)

Yellow oil ($855.7 \mathrm{mg}, 90 \%$ yield). Eluent hexanes/ $\mathrm{EtOAc}=3 / 1 .{ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.62-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.31(\mathrm{~m}$, 1 H), 3.75 (dd, $J=10.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.93 (brs, 1H), 2.68 (s, 1H), $1.53-1.45$ $(\mathrm{m}, 1 \mathrm{H}), 1.31-1.22(\mathrm{~m}, 1 \mathrm{H}), 0.93(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 140.2$, 128.30, 128.26, 126.3, 85.7, 80.3, 75.9, 74.6, 23.4, 10.9. HRMS (ESI/TOF) m / z Calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$213.0886; Found 213.0887.

6-Chloro-3-phenyl-hex-1-yne-3,4-diol (3d)

Brown oil ($940.1 \mathrm{mg}, 84 \%$ yield). Eluent hexanes/ $\mathrm{EtOAc}=3 / 1$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.62-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.32(\mathrm{~m}, 3 \mathrm{H})$, 4.09 (dd, $J=9.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}$), $3.68-3.58(\mathrm{~m}, 2 \mathrm{H}), 2.94$ (brs, 1 H), 2.71 (s, 1H), 2.40 (brs, 1H), $1.90-1.76(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 139.7, 128.6, 128.5, 126.2, 85.1, 75.54, 75.50, 75.1, 42.0, 33.1. HRMS (ESI/TOF) m / z Calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{ClNaO}_{2}[\mathrm{M}+$ $\mathrm{Na}]^{+}$247.0496; Found 247.0498.

3-Methyl-1-phenyl-pent-4-yne-2,3-diol (3e)

Yellow solid ($287.1 \mathrm{mg}, 30 \%$ yield, 77:23 dr). Eluent hexanes/ EtOAc = 3/1.

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (major) $\delta 7.36-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.23(\mathrm{~m}$, $3 \mathrm{H}), 3.84(\mathrm{dd}, J=10.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{dd}, J=14.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{dd}$, $J=14.0,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{~s}, 1 \mathrm{H}), 2.34(\mathrm{brs}, 2 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)($ minor $) ~ \delta 7.36-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.23(\mathrm{~m}, 3 \mathrm{H}), 3.70(\mathrm{dd}, J=10.3,2.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.07$ (dd, $J=14.0,2.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.80 (dd, $J=14.0,10.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.56 (s, 1H), 2.34 (brs, 2H), 1.55 (s, 3H); ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (major) $\delta 138.7,129.4,128.7,126.7,86.0,78.5,73.2$, $70.8,37.7,24.1 ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (minor) $\delta 138.2,129.5,128.8,126.8,85.0,78.8$, 73.6, 71.0, 38.9, 26.0. HRMS (ESI/TOF) m / z Calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 213.0886$; Found 213.0889 .

3-Methyl-non-1-yne-3,4-diol (3g)

Yellow oil ($299.5 \mathrm{mg}, 35 \%$ yield, $4: 1 \mathrm{dr}$). Eluent hexanes/ $\mathrm{EtOAc}=$
 $3 / 1 .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (major) $\delta 3.60-3.58(\mathrm{~m}, 1 \mathrm{H}), 2.48$ (s, 1H), 2.41 (brs, 1H), 2.23 (brs, 1H), $1.69-1.49$ (m, 3H), 1.44 (s, 3H), 1.38 - 1.30 (m, 5H), 0.90 (t, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , CDCl_{3}) (minor) $\delta 3.41-3.38(\mathrm{~m}, 1 \mathrm{H}), 2.96($ brs, 1 H$), 2.47(\mathrm{~s}, 1 \mathrm{H}), 1.87$ (brs, 1 H), $1.69-1.49$ $(\mathrm{m}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.38-1.30(\mathrm{~m}, 5 \mathrm{H}), 0.90(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ (major) $\delta 86.4,77.6,72.9,71.1,31.90,30.8,26.3,23.6,22.7,14.2 ;{ }^{13} \mathbf{C} \mathbf{~ N M R ~ (1 0 1 ~ M H z , ~} \mathrm{CDCl}_{3}$) (minor) δ 85.1, $78.5,73.4,71.6,32.3,31.87,26.0,25.6,22.7,14.2$. HRMS (ESI/TOF) m / z Calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$193.1199; Found 193.1198.

General Procedure E for alkyne-1,2-diol synthesis:

The α-hydroxy ketones of this section were synthesized according to the literature procedure. ${ }^{[6]}$ $\mathrm{Cs}_{2} \mathrm{CO}_{3}(2.0 \mathrm{mmol}, 20 \mathrm{~mol} \%), \mathrm{P}(\mathrm{OEt})_{3}(20.0 \mathrm{mmol}, 2.0$ equiv), the respective ketone $(10.0 \mathrm{mmol}$, 1.0 equiv.) were added to a 100 mL Schlenk tube under air. DMSO (40 mL) was added, the reaction mixture was stirred for $24-72 \mathrm{~h}$ at room temperature under air (1 atm). When complete consumption of the starting material had been observed (TLC), the solution was diluted with ethyl acetate $(200 \mathrm{~mL})$, washed with brine (50 mL), and extracted with EtOAc $(3 \times 100 \mathrm{~mL})$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude product was purified by flash chromatography on silica gel to obtain the respective α hydroxy ketone.
$\mathbf{N B}$: Alkyne-1,2-diols (3i-3l) were obtained according to the final one step of General Procedure A.

1-(1-Hydroxy-1-phenyl-prop-2-yn-1-yl)cyclopentan-1-ol (3i)

Brown solid (872.0 mg , 80% yield). Eluent hexanes/ $\mathrm{EtOAc}=3 / 1 .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.70-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.29(\mathrm{~m}, 3 \mathrm{H}), 2.67(\mathrm{~s}, 1 \mathrm{H}), 2.17$ $-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.47(\mathrm{~m}, 3 \mathrm{H})$, $1.45-1.37(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.4,128.2,127.8,127.3$, 87.8, 85.9, 77.8, 74.3, 36.2, 34.9, 24.13, 24.07. HRMS (ESI/TOF) m / z Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NaO}_{2}[\mathrm{M}$ + Na] ${ }^{+}$239.1043; Found 239.1051

3-Methyl-2-phenyl-pent-4-yne-2,3-diol (3k)

Yellow solid ($446.7 \mathrm{mg}, 47 \%$ yield). Eluent hexanes/ $\mathrm{EtOAc}=3 / 1 .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.62-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.28(\mathrm{~m}, 3 \mathrm{H}), 4.98(\mathrm{brs}, 1 \mathrm{H})$, 2.71 (brs, 1H), $2.56(\mathrm{~s}, 1 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 142.5,127.8,127.4,126.8,86.3,77.9,74.0,73.9,25.5,25.0$; HRMS (ESI/TOF) m / z Calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$213.0886; Found 213.0885.

2-Methyl-1,1-diphenylbut-3-yne-1,2-diol (31)

Yellow oil ($516.9 \mathrm{mg}, 41 \%$ yield). Eluent hexanes/ $\mathrm{EtOAc}=3 / 1 .{ }^{1} \mathbf{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.74-7.70(\mathrm{~m}, 4 \mathrm{H}), 7.33-7.26(\mathrm{~m}, 6 \mathrm{H}), 3.15(\mathrm{brs}, 1 \mathrm{H}), 2.67$ $(\mathrm{s}, 1 \mathrm{H}), 2.53(\mathrm{brs}, 1 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 128.5,128.1$, 127.8, 127.64, 127.56, 127.4, 86.5, 26.8. HRMS (ESI/TOF) m / z Calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 275.1043$; Found 275.1046.

2,3-Dimethylpent-4-yne-2,3-diol (3m)

Yellow oil ($448.9 \mathrm{mg}, 70 \%$ yield). Eluent hexanes/ EtOAc $=3 / 1 .{ }^{1} \mathbf{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.48(\mathrm{~s}, 1 \mathrm{H}), 2.21(\mathrm{brs}, 2 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~s}$, 3 H); ${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 86.3,75.3,74.0,73.0,25.7,24.3,22.8$. HRMS (ESI/TOF) m / z Calcd for $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$151.0730; Found 151.0729.

4. Procedures and characterization data for the carbonate products

General Procedure F for the synthesis of the cyclic carbonates 2a-2s:

The respective 1,2-diol ($0.3 \mathrm{mmol}, 1.0$ equiv), $\mathrm{AgF}(0.015 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, BrettPhos (0.015 $\mathrm{mmol}, 5 \mathrm{~mol} \%$) were added to a 25 mL reaction tube. The tube was purged three times with CO_{2} and then charged with a CO_{2} balloon (1 bar). Hereafter, $\mathrm{MeCN}(0.6 \mathrm{~mL})$ was added using a syringe. The reaction mixture was stirred at $40^{\circ} \mathrm{C}$ for 6 h . When complete consumption of the starting material had been observed by TLC, the mixture was transferred to a round-bottom flask, concentrated and purified by flash column chromatography on silica to afford the corresponding cyclic carbonate product. Note: only the characteristic carbonyl/carbonate IR frequencies are provided in the analytical data descriptions.

Gram-scale reaction: The 1,2-diol 1a ($6.5 \mathrm{mmol}, 1.0$ equiv), AgF ($0.325 \mathrm{mmol}, 5 \mathrm{~mol} \%$), BrettPhos ($0.325 \mathrm{mmol}, 5 \mathrm{~mol} \%$) were added to an oven-dried Schleck flask. The tube was purged three times with CO_{2} and then charged with a CO_{2} balloon (1 bar). Hereafter, $\mathrm{MeCN}(13.0 \mathrm{~mL}$) was added using a syringe. The reaction mixture was stirred at $40^{\circ} \mathrm{C}$ for 6 h . When complete consumption of the starting material had been observed by TLC, the mixture was transferred to a round-bottom flask, concentrated and purified by flash column chromatography on silica to afford the corresponding cyclic carbonate product $\mathbf{2 a}$ with a 85% isolated yield.

4-Acetyl-4-phenyl-1,3-dioxolan-2-one (2a)

Colorless solid ($54.5 \mathrm{mg}, 88 \%$ yield). Eluent hexanes/EtOAc $=4 / 1 .{ }^{1} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 2 \mathrm{H}), 5.26(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.38(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.9,153.1$, 135.0, 129.8, 129.6, 124.1, 88.6, 72.5, 24.9; IR (neat): $v=1803,1729 \mathrm{~cm}^{-1}$; HRMS (ESI/TOF) m / z Calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$229.0471; Found 229.0474. This compound was further characterized by X-ray crystallography.

4-Acetyl-4-(p-tolyl)-1,3-dioxolan-2-one (2b)

Colorless oil ($58.6 \mathrm{mg}, 88 \%$ yield). Eluent hexanes/EtOAc $=4 / 1 .{ }^{1} \mathbf{H} \mathbf{N M R}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26-7.24(\mathrm{~m}, 4 \mathrm{H}), 5.23(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J$ $=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $203.0,153.2,140.0,132.0,130.3,124.0,88.7,72.5,24.8,21.3$; IR (neat): v $=1806,1724 \mathrm{~cm}^{-1} ;$ HRMS (ESI/TOF) m / z Calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$ 243.0628; Found 243.0626.

4-Acetyl-4-(4-methoxyphenyl)-1,3-dioxolan-2-one (2c)

White solid ($64.0 \mathrm{mg}, 91 \%$ yield). Eluent hexanes/EtOAc $=4 / 1 .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31-7.27(\mathrm{~m}, 2 \mathrm{H}), 6.97-6.93(\mathrm{~m}, 2 \mathrm{H}), 5.22(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 203.1,160.7,153.2,126.7,125.6,115.0,88.6,72.6$, 55.6, 24.8; IR (neat): $v=1796,1721 \mathrm{~cm}^{-1}$; HRMS (ESI/TOF) m / z Calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{NaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+} 259.0577$; Found 259.0575 .

4-Acetyl-4-(4-(tert-butyl)phenyl)-1,3-dioxolan-2-one (2d)

Yellow solid ($56.3 \mathrm{mg}, 71 \%$ yield). Eluent hexanes/EtOAc $=4 / 1 .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.29(\mathrm{~m}, 2 \mathrm{H}), 5.23(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 203.1,153.2,153.1,131.9,126.6,123.9,88.8,72.5$, 34.9, 31.3, 24.9; IR (neat): $v=1809,1725 \mathrm{~cm}^{-1}$; HRMS (ESI/TOF) m / z Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$285.1097; Found 285.1085.

4-Acetyl-4-(4-fluorophenyl)-1,3-dioxolan-2-one (2e)

White solid ($59.1 \mathrm{mg}, 87 \%$ yield). Eluent hexanes $/ E t O A c=4 / 1 .{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.13(\mathrm{~m}, 2 \mathrm{H}), 5.23(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.36(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $203.0,163.5(\mathrm{~d}, J=250.2 \mathrm{~Hz}), 152.9,130.8(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 126.2(\mathrm{~d}, J=8.3$ $\mathrm{Hz}), 116.8(\mathrm{~d}, J=22.1 \mathrm{~Hz}), 88.2,72.6,24.9$, ${ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 110.96; IR (neat): $v=1809,1736 \mathrm{~cm}^{-1} ; \mathbf{H R M S}(E S I / T O F) \mathrm{m} / \mathrm{z}$ Calcd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{FNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$247.0377; Found 247.0383

4-Acetyl-4-(4-chlorophenyl)-1,3-dioxolan-2-one (2f)

White solid ($62.2 \mathrm{mg}, 86 \%$ yield). Eluent hexanes/EtOAc $=4 / 1 .{ }^{1} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.32(\mathrm{~m}, 2 \mathrm{H}), 5.22(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.35(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ $202.8,152.8,136.2,133.4,129.9,125.6,88.2,72.5,24.9$; IR (neat): $v=1810$, $1727 \mathrm{~cm}^{-1} ;$ HRMS (ESI/TOF) m / z Calcd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{ClNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+} 263.0082$; Found 263.0084.

4-Acetyl-4-(4-bromophenyl)-1,3-dioxolan-2-one (2g)

White solid ($71.2 \mathrm{mg}, 83 \%$ yield). Eluent hexanes $/ E t O A c=4 / 1 .{ }^{1} \mathbf{H} \mathbf{N M R}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.19(\mathrm{~m}, 2 \mathrm{H}), 5.15(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 202.7,152.7,134.0,132.9,125.8,124.3,88.2,72.4,24.9 ;$ IR (neat): $v=1809,1725 \mathrm{~cm}^{-1} ;$ HRMS (ESI/TOF) m / z Calcd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{BrNaO}_{4}[\mathrm{M}+$ $\mathrm{Na}]^{+} 306.9576$; Found 306.9581.

4-Acetyl-4-(4-iodophenyl)-1,3-dioxolan-2-one (2h)

White solid ($89.2 \mathrm{mg}, 80 \%$ yield). Eluent hexanes $/ E t O A c=4 / 1 .{ }^{1} \mathbf{H} \mathbf{N M R}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.11(\mathrm{~m}, 2 \mathrm{H}), 5.21(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.34(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 202.6$, $152.8,138.8,134.7,125.9,96.0,88.2,72.3,24.9$; IR (neat): $v=1805,1725 \mathrm{~cm}^{-}$ ${ }^{1}$; HRMS (ESI/TOF) m / z Calcd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{INaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+} 354.9438$; Found 354.9433.

4-Acetyl-4-(4-(trifluoromethyl)phenyl)-1,3-dioxolan-2-one (2i)

White solid ($48.6 \mathrm{mg}, 59 \%$ yield). Eluent hexanes $/ \mathrm{EtOAc}=4 / 1 .{ }^{1} \mathbf{H} \mathbf{N M R}$

($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.74-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.54(\mathrm{~m}, 2 \mathrm{H}), 5.26(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}){ }^{\mathbf{1 3}} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 202.5,152.6,138.8,132.3(\mathrm{~d}, J=32.9 \mathrm{~Hz}), 126.7(\mathrm{~d}, J=3.7 \mathrm{~Hz})$, $124.8,123.6(\mathrm{~d}, J=272.5 \mathrm{~Hz}), 88.2,72.4,25.1 ;{ }^{19} \mathbf{F} \mathbf{N M R}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta-63.10$; IR (neat): $v=1813,1727 \mathrm{~cm}^{-1} ;$ HRMS (ESI/TOF) m / z Calcd for

[^0]
Methyl 4-(4-acetyl-2-oxo-1,3-dioxolan-4-yl)benzoate (2j)

White solid ($61.6 \mathrm{mg}, 84 \%$ yield). Eluent hexanes/EtOAc $=4 / 1 .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.10-8.08(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.45(\mathrm{~m}, 2 \mathrm{H})$, $5.25(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 202.4, 166.1, 152.7, 139.4, 131.7, 130.9, 124.3, 88.4, 72.3, 52.6, 25.0; IR (neat): $v=1811,1714 \mathrm{~cm}^{-1}$; HRMS (ESI/TOF) m / z Calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{NaO}_{6}[\mathrm{M}+\mathrm{Na}]^{+}$287.0526; Found 287.0531.

4-Acetyl-4-(m-tolyl)-1,3-dioxolan-2-one (2k)

Yellow solid ($62.1 \mathrm{mg}, 95 \%$ yield). Eluent hexanes $/ \mathrm{EtOAc}=4 / 1 .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.18$ $-7.15(\mathrm{~m}, 2 \mathrm{H}), 5.24(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~s}$, 3H), 2.26 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.9,153.2,139.7$, $134.9,130.5,129.5,124.5,121.1,88.7,72.5,24.9,21.6$; IR (neat): $v=$ 1805, $1726 \mathrm{~cm}^{-1}$; HRMS (ESI/TOF) m / z Calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+} 243.0628$; Found 243.0623.

4-Acetyl-4-(naphthalen-2-yl)-1,3-dioxolan-2-one (21)

White solid ($42.9 \mathrm{mg}, 57 \%$ yield). Eluent hexanes/EtOAc $=4 / 1 .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.95-7.86(\mathrm{~m}, 4 \mathrm{H}), 7.59-7.56(\mathrm{~m}, 2 \mathrm{H})$, $7.38-7.35(\mathrm{~m}, 1 \mathrm{H}), 5.34(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.30(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.9,153.1,133.6,133.1$, 132.1, 130.0, 128.4, 128.0, 127.6, 127.5, 123.8, 120.8, 88.8, 72.4, 24.9; IR (neat): $v=1820,1720$ $\mathrm{cm}^{-1} ;$ HRMS (ESI/TOF) m / z Calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$279.0628; Found 279.0633

4-Acetyl-4-(benzo[d][1,3]dioxol-5-yl)-1,3-dioxolan-2-one (2m)

Yellow solid ($67.9 \mathrm{mg}, 90 \%$ yield). Eluent hexanes/EtOAc $=4 / 1 .{ }^{1} \mathbf{H} \mathbf{N M R}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.83-6.82(\mathrm{~m}, 3 \mathrm{H}), 6.00-5.99(\mathrm{~m}, 2 \mathrm{H}), 5.18(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 202.8,153.0,148.95,148.93,128.5,118.0,109.2,104.7,101.9$, 88.4, 72.5, 24.7; IR (neat): $v=1796,1721 \mathrm{~cm}^{-1}$; HRMS (ESI/TOF) m / z Calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{NaO}_{6}[\mathrm{M}+\mathrm{Na}]^{+}$273.0370; Found 273.0374.

Brown solid ($52.1 \mathrm{mg}, 81 \%$ yield). Eluent hexanes/EtOAc $=4 / 1 .{ }^{1} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.08-7.04(\mathrm{~m}, 2 \mathrm{H}), 5.11(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.49(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.2$, 152.7, 137.4, 128.0, 127.7, 125.8, 87.0, 73.0, 25.1; IR (neat): $v=1791,1719$ $\mathrm{cm}^{-1} ;$ HRMS (ESI/TOF) m / z Calcd for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{SNaO}_{4}\left[\mathrm{M}+\mathrm{Na}^{+} 235.0036\right.$; Found 235.0039.

4-Acetyl-4-(furan-2-yl)-1,3-dioxolan-2-one (20)

Yellow solid ($45.5 \mathrm{mg}, 77 \%$ yield). Eluent hexanes/EtOAc $=4 / 1 .{ }^{1} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52-7.51(\mathrm{~m}, 1 \mathrm{H}), 6.54-6.53(\mathrm{~m}, 1 \mathrm{H}), 6.46-6.45(\mathrm{~m}, 1 \mathrm{H})$, $4.91(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 201.4,152.9,146.6,145.2,111.2,110.9,84.0,69.9,26.3$; IR (neat): $v=1784,1726 \mathrm{~cm}^{-1}$; HRMS (ESI/TOF) m / z Calcd for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{NaO}_{5}[\mathrm{M}+$ $\mathrm{Na}]^{+}$219.0264; Found 219.0260.

4-Acetyl-4-methyl-1,3-dioxolan-2-one (2p)

Colorless oil ($34.8 \mathrm{mg}, 78 \%$ yield). Eluent hexanes/EtOAc $=4 / 1 .{ }^{1} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.65(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H})$, 1.61 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 206.2,153.5,85.9,72.0,25.2,22.3$; IR (neat): $v=1776,1720 \mathrm{~cm}^{-1}$; HRMS (ESI/TOF) m / z Calcd for $\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{O}_{4}[\mathrm{M}+$ $\mathrm{H}]^{+}$145.0495; Found 145.0494.

4-acetyl-4-cyclohexyl-1,3-dioxolan-2-one (2q)

Colorless oil ($55.3 \mathrm{mg}, 86 \%$ yield). Eluent hexanes/EtOAc $=4 / 1 .{ }^{1} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.48(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H})$, $1.91-1.81(\mathrm{~m}, 3 \mathrm{H}), 1.73-1.64(\mathrm{~m}, 3 \mathrm{H}), 1.28-1.15(\mathrm{~m}, 4 \mathrm{H}), 1.04-0.98(\mathrm{~m}$, 1 H); ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 207.6,153.8,90.7,69.0,43.4,27.4,26.2$, 25.83, 25.77, 25.6; IR (neat): $v=1802,1718 \mathrm{~cm}^{-1} ;$ HRMS (ESI/TOF) m / z Calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$235.0941; Found 235.0941.

White solid ($45.3 \mathrm{mg}, 57 \%$ yield). Eluent hexanes $/ E t O A c=4 / 1 .{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.47(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.34$ (s, 3H), 2.07-2.05 (m, 3H), 1.75-1.71 (m, 6H), 1.65-1.61 (m, 3H), 1.54 $-1.49(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{~ N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 208.9, 153.9, 92.7, 68.1, 38.7, 36.4, 35.5, 29.5, 27.8; IR (neat): $v=1789,1717 \mathrm{~cm}^{-1}$; HRMS (ESI/TOF) m / z Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$287.1254; Found 287.1259.

4-Acetyl-4-benzyl-1,3-dioxolan-2-one (2s)

White solid ($63.0 \mathrm{mg}, 95 \%$ yield). Eluent hexanes/EtOAc $=4 / 1 .{ }^{1} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.21(\mathrm{~m}, 2 \mathrm{H}), 4.54(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.29(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.15$ ($\mathrm{s}, 3 \mathrm{H}$) ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 207.5,153.4,132.0,130.4,129.1,128.3$, 88.2, 70.4, 41.8, 26.9; IR (neat): $v=1807,1719 \mathrm{~cm}^{-1}$; HRMS (ESI/TOF) m / z Calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$243.0628; Found 243.0631.

General Procedure G for synthesis of cyclic carbonates 4a-4g:

In a stainless-steel HEL-multireactor, the respective 1,2- diol ($0.3 \mathrm{mmol}, 1.0$ equiv), AgF (0.015 $\mathrm{mmol}, 5 \mathrm{~mol} \%)$, BrettPhos ($0.015 \mathrm{~mol} \%$) were dissolved in $\mathrm{MeCN}(0.2 \mathrm{~mL})$. The reactor was purged three times with $\mathrm{CO}_{2}(10 \mathrm{bar})$ and then charged with $\mathrm{CO}_{2}(10 \mathrm{bar})$. The reaction mixture was stirred at room temperature for 24 h . The mixture was then transferred to a round-bottom flask, concentrated and purified by flash column chromatography on silica to afford the corresponding carbonate product.

4-Acetyl-4,5-diphenyl-1,3-dioxolan-2-one (4a)

White solid ($77.5 \mathrm{mg}, 90 \%$ yield). Eluent hexanes/EtOAc $=4 / 1 .{ }^{1} \mathbf{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.17-7.10(\mathrm{~m}, 6 \mathrm{H}), 7.04-6.98(\mathrm{~m}, 4 \mathrm{H}), 6.33(\mathrm{~s}, 1 \mathrm{H}), 2.28(\mathrm{~s}$, 3 H); ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 203.2,153.0,133.0,131.3,129.2,129.1$, 128.6, 128.3, 127.3, 125.2, 92.4, 83.3, 25.6; IR (neat): $v=1798,1719 \mathrm{~cm}^{-1}$; HRMS (ESI/TOF) m / z Calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$305.0784; Found 305.0790. This compound was further characterized by X-ray crystallography.

4-Acetyl-5-methyl-4-phenyl-1,3-dioxolan-2-one (4b)

Colorless oil ($56.0 \mathrm{mg}, 85 \%$ yield). Eluent hexanes $/ \mathrm{EtOAc}=4 / 1 .{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.31(\mathrm{~m}, 2 \mathrm{H}), 5.47(\mathrm{q}, J=$ $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 203.7, 152.8, 131.2, 129.7, 129.3, 125.1, 91.5, 78.3, 25.4, 17.4; IR (neat): $v=1807,1722 \mathrm{~cm}^{-1} ;$ HRMS (ESI/TOF) m / z Calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+} 243.0628$; Found 243.0626.

4-Acetyl-5-ethyl-4-phenyl-1,3-dioxolan-2-one (4c)

Yellow oil ($53.8 \mathrm{mg}, 76 \%$ yield). Eluent hexanes/EtOAc $=4 / 1 .{ }^{1} \mathbf{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 2 \mathrm{H}), 5.22(\mathrm{dd}, J=10.5$, $3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 1.32-1.22(\mathrm{~m}, 1 \mathrm{H}), 1.16-1.04(\mathrm{~m}, 1 \mathrm{H}), 0.93(\mathrm{t}, J$ $=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 203.8,152.9,131.3,129.7$, 129.3, 125.1, 91.4, 83.1, 25.4, 25.3, 9.8; IR (neat): $v=1807,1722 \mathrm{~cm}^{-1}$; HRMS (ESI/TOF) m / z Calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$257.0784; Found 257.0790.

White solid ($64.4 \mathrm{mg}, 77 \%$ yield). Eluent hexanes $/ E t O A c=4 / 1 .{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 2 \mathrm{H}), 5.58(\mathrm{dd}, J=$ $10.9,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.60-3.52(\mathrm{~m}, 2 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 1.63-1.48(\mathrm{~m}, 2 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 203.0,152.3,130.8,130.1,129.6,125.0$, 91.0, 78.4, 39.8, 34.8, 25.4; IR (neat): $v=1811,1726 \mathrm{~cm}^{-1}$; HRMS (ESI/TOF) m / z Calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{ClNaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$291.0395; Found 291.0394.

4-Acetyl-5-benzyl-4-methyl-1,3-dioxolan-2-one (4e)

Yellow oil ($54.4 \mathrm{mg}, 77 \%$ yield, 76:24 dr). Eluent hexanes/EtOAc $=4 / 1 .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (major) $\delta 7.35-7.24(\mathrm{~m}, 5 \mathrm{H}), 4.85-4.77(\mathrm{~m}, 1 \mathrm{H})$, $3.03-2.99(\mathrm{~m}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (minor) $\delta 7.35-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.21-7.19(\mathrm{~m}, 2 \mathrm{H}), 4.62(\mathrm{dd}, J=9.5,3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.03-2.99(\mathrm{~m}, 1 \mathrm{H}), 2.73(\mathrm{dd}, J=14.8,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (major) $\delta 206.68,152.7,135.4,129.2,128.9,127.5,88.1,81.8,36.2,25.4$, 17.8; ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (minor) $\delta 206.72,153.1,134.9,129.6,128.9,127.6,88.5$, 85.9, 36.3, 28.1, 23.1; IR (neat): $v=1802,1720 \mathrm{~cm}^{-1}$; HRMS (ESI/TOF) m / z Calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+} 257.0784$; Found 257.0784.

4-Acetyl-4,5-dimethyl-1,3-dioxolan-2-one (4f)

Colorless oil ($35.7 \mathrm{mg}, 73 \%$ yield, $68: 32 \mathrm{dr}$). Eluent hexanes/EtOAc $=4 / 1 .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (major) $\delta 4.79(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.45$ $(\mathrm{s}, 3 \mathrm{H}), 1.43(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (minor) $\delta 4.54$ $(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) (major) δ 206.9, 152.9, 88.2, $77.5,25.4,17.4,15.3 ;{ }^{13} \mathbf{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) (minor) $\delta 206.5,153.3,88.9,81.6,28.0,22.5,16.0$; IR (neat): $v=1800,1721 \mathrm{~cm}^{-}$ ${ }^{1} ;$ HRMS (ESI/TOF) m / z Calcd for $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+} 181.0471$; Found 181.0471.

Colorless oil ($40.8 \mathrm{mg}, 62 \%$ yield, $76: 24 \mathrm{dr}$). Eluent hexanes/EtOAc $=4 / 1 .{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)($ major $) \delta 4.57(\mathrm{dd}, J=10.1,3.1$ $\mathrm{Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.74-1.53(\mathrm{~m}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.34-1.25$ $(\mathrm{m}, 5 \mathrm{H}), 0.89(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ (minor) $\delta 4.35(\mathrm{dd}, J=10.1,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.74-1.53(\mathrm{~m}, 3 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.34-1.25(\mathrm{~m}$, $5 \mathrm{H}), 0.89(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (major) $\delta 207.0,153.0,88.2,81.4$, 31.4, 29.9, 25.53, 25.4, 22.5, 17.6, 14.0, ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (minor) $\delta 206.4,153.5$, 88.7, 85.7, 31.3, 30.3, 28.0, 25.51, 22.7, 22.4, 13.97; IR (neat): $v=1805,1722 \mathrm{~cm}^{-1}$; HRMS (ESI/TOF) m / z Calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$237.1097; Found 237.1092.

General Procedure \mathbf{H} for synthesis of cyclic carbonates $\mathbf{4 h}-4 \mathrm{~m}$:

The respective 1,2-diol ($0.3 \mathrm{mmol}, 1.0$ equiv), AgF ($0.015 \mathrm{mmol}, 5 \mathrm{~mol} \%$), BrettPhos (0.015 $\mathrm{mmol}, 5 \mathrm{~mol} \%$) were added to a 25 mL reaction tube. The tube was purged three times with CO_{2} and then charged with a CO_{2} balloon (1 bar). Hereafter, $\mathrm{MeCN}(0.6 \mathrm{~mL})$ was added using a syringe. The reaction mixture was stirred at $40^{\circ} \mathrm{C}$ for 24 h . When complete consumption of the starting material had been observed by TLC, the mixture was transferred to a round-bottom flask, concentrated and purified by flash column chromatography on silica to afford the corresponding carbonate product.

4-Acetyl-4-phenyl-1,3-dioxaspiro[4.5]decan-2-one (4h)

White solid ($72.0 \mathrm{mg}, 87 \%$ yield). Eluent hexanes/EtOAc $=4 / 1 .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.37$ (m, 3H), $2.29(\mathrm{~s}, 3 \mathrm{H})$, $1.92-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.53(\mathrm{~m}, 4 \mathrm{H}), 1.50-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.24-1.14(\mathrm{~m}$, $2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.6,152.8,132.0,129.4,128.8,126.1$, 93.6, 90.1, 33.1, 32.9, 28.7, 24.7, 22.2, 22.0; IR (neat): $v=1798,1712 \mathrm{~cm}^{-1} ;$ HRMS (ESI/TOF) m / z Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$297.1097; Found 297.1094.

4-Acetyl-4-phenyl-1,3-dioxaspiro[4.4]nonan-2-one (4i)

Yellow oil ($69.5 \mathrm{mg}, 89 \%$ yield). Eluent hexanes/EtOAc $=4 / 1 .{ }^{1} \mathbf{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $87.52-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.38$ (m, 3H), 2.32 ($\left.\mathrm{s}, 3 \mathrm{H}\right), 2.29-$ $2.21(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.74(\mathrm{~m}, 3 \mathrm{H}), 1.72-1.52(\mathrm{~m}, 3 \mathrm{H}), 1.46-1.40(\mathrm{~m}, 1 \mathrm{H})$;
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.7,152.9,132.8,129.4,129.0,125.3,99.3$, 91.3, 35.6, 34.0, 28.0, 23.2, 22.1; IR (neat): $v=1805,1720 \mathrm{~cm}^{-1}$; HRMS (ESI/TOF) m / z Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$283.0941; Found 283.0932.

Colorless oil ($59.5 \mathrm{mg}, 85 \%$ yield). Eluent hexanes/EtOAc $=4 / 1 .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.40(\mathrm{~m}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H})$, $1.58(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{~ N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 204.3,152.8,132.3$, 129.6, 129.0, 125.8, 93.2, 88.4, 28.2, 24.9, 24.7; IR (neat): $v=1803,1720$ $\mathrm{cm}^{-1} ;$ HRMS (ESI/TOF) m / z Calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$257.0784; Found 257.0779 .

4-Acetyl-4,5-dimethyl-5-phenyl-1,3-dioxolan-2-one (4k)

White solid ($58.4 \mathrm{mg}, 83 \%$ yield, $d r>95: 5$). Eluent hexanes/EtOAc $=4 / 1 .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.34(\mathrm{~m}, 3 \mathrm{H}), 2.48$ (s , 3 H), 1.69 ($\mathrm{s}, 3 \mathrm{H}$), $1.10(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 207.2,152.2$, 137.5, 128.8, 128.7, 125.4, 91.7, 88.8, 28.3, 25.3, 22.3; IR (neat): $v=1803$, $1723 \mathrm{~cm}^{-1} ;$ HRMS (ESI/TOF) m / z Calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+} 257.0784$; Found 257.0778.

4-Acetyl-4-methyl-5,5-diphenyl-1,3-dioxolan-2-one (41)

White solid ($84.3 \mathrm{mg}, \mathbf{9 5 \%}$ yield). Eluent hexanes/EtOAc $=4 / 1 .{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.75-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.30$ $(\mathrm{m}, 5 \mathrm{H}), 1.87(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 206.2, $152.7,137.6,136.2,129.1,129.0,128.8,128.6,127.0,126.4,93.8,91.3,27.5$, 22.8; IR (neat): $v=1809,1720 \mathrm{~cm}^{-1} ;$ HRMS (ESI/TOF) m / z Calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$ 319.0941; Found 319.0934.

4-Acetyl-4,5,5-trimethyl-1,3-dioxolan-2-one (4m)

White solid ($46.0 \mathrm{mg}, 91 \%$ yield). Eluent hexanes/EtOAc $=4 / 1 .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 207.1,152.7,91.0,85.8,27.8,23.8,22.4$, 19.7; IR (neat): $v=1783,1715 \mathrm{~cm}^{-1}$; HRMS (ESI/TOF) m / z Calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$195.0628; Found 195.0629.

5. Catalytic screening towards larger ring cyclic carbonates

General procedure for the synthesis of $\mathbf{1 , 3}$ - and $\mathbf{1 , 4}$-diols 5 a and $\mathbf{5 b}$

For 5a: In a clean dry double-neck 2 L round bottom flask conditioned under an inert atmosphere was introduced ethynyl magnesium bromide ($800 \mathrm{~mL}, 0.5 \mathrm{M}$ in THF, 0.4 mole). Then, 4-hydroxy-2-butanone ($13.8 \mathrm{~mL}, 0.16 \mathrm{~mole}$) was added dropwise using a syringe. The reaction mixture was stirred at room temperature for 48 h , during which the conversion of the ketone was monitored by ATR-IR. Then, a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$ was added and the mixture was transferred into a separating funnel to recover the organic phase. The aqueous phase was extracted with diethyl ether $(200+150 \mathrm{~mL})$. The combined organic fractions were dried with anhydrous MgSO_{4} and filtered. Then the organic phase was evaporated in vacuo and the residue purified by fractional distillation. A transparent to light yellow oil was recovered in a yield of around 60% at $55^{\circ} \mathrm{C}$ with a vacuum of $1 \mathbf{m b a r}$. A similar procedure was applied for the synthesis of $\mathbf{5 b}$ using the appropriate hydroxy ketone precursor giving a similar isolated yield.

3-Methylpent-4-yne-1,3-diol (5a)

Light yellow oil. ${ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO-d $_{6}$) $\delta 5.29$ (s, 1H), $4.44(\mathrm{~s}, 1 \mathrm{H})$, DMSO-d ${ }_{6}$) $\delta 73.10,65.62,58.21,46.12,39.56,30.71$.

4-Methylhex-5-yne-1,4-diol (5b)

Light orange oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO-d $\left.{ }_{6}\right) \delta 5.23(\mathrm{~s}, 1 \mathrm{H}), 4.42(\mathrm{t}, ~ J$

$=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.16(\mathrm{~s}, 1 \mathrm{H}), 1.70-1.46(\mathrm{~m}, 4 \mathrm{H})$, $1.33(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (101 MHz, DMSO-d ${ }_{6}$) $\delta 89.69,72.83,66.44,61.47$,
40.60, 30.33, 28.43.

Screening of reaction parameters for the carboxylative coupling of CO_{2} to 3-methylpent-4-yne-1,3-diol (5a)

In a clean dry reactor, equipped with a magnetic rod, a manometer and a gas inlet/outlet were introduced 3-methylpent-4-yne-1,3-diol ($1 \mathrm{~g}, 8.76 \mathrm{mmol}$), tetrabutylammonium phenolate TBAOPh ($0.147 \mathrm{~g}, 0.438 \mathrm{mmol}$), silver iodide (AgI) $(0.102 \mathrm{~g}, 0.438 \mathrm{mmol})$ and dried DMSO (2$4 \mathrm{~mL})$. The reactor was closed and placed in a silicon oil bath set heated at the desired temperature. After 30 minutes, CO_{2} gas was added at a constant pressure. The reaction ran for $24-72 \mathrm{~h}$ after which the reactor was depressurized and placed in a water bath to cool it down to room temperature. The crude reaction mixture was characterized by ${ }^{1} \mathrm{H}$ NMR spectroscopy in DMSOd_{6}.

Isolation of products was achieved by extraction of the crude mixture with 80 mL of salted water and 80 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, followed by a silica gel chromatography (5-50\% ethyl acetate/petroleum ether (40/60)).

4-Methyl-4-(prop-1-en-2-yl)-1,3-dioxan-2-one (6)

White solid, 51%. Eluent petroleum ether $/ \mathrm{EtOAc}=1 / 1^{\mathbf{1}} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, DMSO-d ${ }_{6}$) $\delta 4.37$ (dt, $\left.J=11.3,4.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.10$ (ddd, $J=11.3,10.2,4.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.41(\mathrm{dt}, J=14.7,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{ddd}, J=14.7,10.2,5.0$ $\mathrm{Hz}, 1 \mathrm{H}), 1.53$ ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathbf{C}$ NMR (101 MHz , DMSO- d_{6}) $\delta 206.91,147.83,87.28$, 65.52, 39.57, 28.20, 25.15, 23.35; IR (neat) $v=1750,1720 \mathrm{~cm}^{-1}$; HRMS (QTOF) m / z Calcd for $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$181.0477; Found 181.0472.

3a,6a-Dimethyltetrahydrofuro[2,3-d][1,3]dioxol-2-one (7)

White solid, 70% Eluent hexanes/EtOAc $=5 / 1 .{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO-d $\left.\mathrm{d}_{6}\right) \delta$ 4.05 (dd, $J=9.3,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.77$ (ddd, $J=11.9,9.4,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{dd}, J=$ $13.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{ddd}, J=13.9,11.9,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.57(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 6 \mathrm{H})$; ${ }^{13}$ C NMR (101 MHz, DMSO-d ${ }_{6}$) $\delta 152.7,114.8,91.8,65.6,38.2,20.3,20.0$; IR (neat): $v=1802 \mathrm{~cm}^{-1}$; HRMS (ESI/TOF) m / z Calcd for $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$181.0471; Found 181.0472. This compound was further characterized by X-ray crystallography.

Table S5: Screening of the carboxylative coupling of 1,3-diol 5 a with CO_{2} to give $\mathbf{6}$ and 7. ${ }^{[\text {a] }}$

Entry	Solvent	Conc. $[\mathrm{mol} / \mathrm{L}]$	T $\left[{ }^{\circ} \mathrm{C}\right]$	Conv. of 5a $[\%]^{[b]}$	Sel. for 6 $[\%]^{[b]}$	Sel. for 7 $[\%]^{[b]}$
$\mathbf{1}^{[\mathbf{c]}]}$	DMSO	$\mathbf{2 . 2}$	$\mathbf{2 5}$	$\mathbf{1 0 0}$	$\mathbf{9 8} \mathbf{(5 1) ^ { [d] }}$	-
2	DMSO	2.2	25	100	85	-
3	DMSO	4.4	25	34	84	-
4	ACN	2.2	25	0	-	-
5	-	-	25	0	-	-
$6^{[\text {[]] }}$	DMSO	2.2	60	100	98	-
7	DMSO	4.4	60	100	85	6
$8^{[f]}$	DMSO	4.4	60	100	44	49
9	ACN	4.4	60	100	57	21
10	-	-	60	100	13	42
11	DMSO	2.2	80	100	32	35
$\mathbf{1 2}$	DMSO	$\mathbf{4 . 4}$	$\mathbf{8 0}$	$\mathbf{1 0 0}$	$\mathbf{1 3}$	$\mathbf{6 9}$
13	DMF	4.4	80	100	5	86
$\mathbf{1 4}$	ACN	$\mathbf{4 . 4}$	$\mathbf{8 0}$	$\mathbf{1 0 0}$	$\mathbf{0}$	$\mathbf{9 0}(\mathbf{7 0})^{[\mathrm{d}]}$
15	-	-	80	70	0	67
$16^{[f]}$	-	-	80	100	0	90

[a] Conditions: 1,3-diol 5a ($1 \mathrm{~g}, 8.76 \mathrm{mmol}$), TBAOPh ($0.147 \mathrm{~g}, 0.438 \mathrm{mmol}$), $\mathrm{AgI}(0.102$ $\mathrm{g}, 0.438 \mathrm{mmol}), p\left(\mathrm{CO}_{2}\right)=15$ bar and $\mathrm{t}=24 \mathrm{~h}$. [b] Determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy with 1,3,5-trimethoxybenzene as internal standard. [c] Reaction time was 16 h. [d] Yields in brackets refer to isolated yield after purification by silica gel column chromatography. [e] Reaction time was 3.5 h . [f] Reaction time was 72 h .

Description of the procedure for the SEC analysis: Number-average molecular weight (M_{n}) and dispersity (\boxplus) of the different polymers were determined by size exclusion chromatography (SEC) in dimethyl formamide (DMF) containing $\operatorname{LiBr}(0.025 \mathrm{M})$ at $55^{\circ} \mathrm{C}$ (flow rate: $1 \mathrm{~mL} / \mathrm{min}$) with a Waters chromatograph equipped with two columns dedicated to the analysis of low molar mass polymers (PSS gram analytical $100 \AA$, separation range $300-60000 \mathrm{Da}$) and a pre-column (100 \AA), a dual λ absorbance detector (Waters 2487) and a refractive index detector (Waters 2414). The system was calibrated by polystyrene (PS) standards.

The crude sample of Table S5, entry 12 was injected in SEC equipment and the corresponding SEC chromatogram is shown in Figure S1. It reveals that the crude product contains a small amount of oligomers of very low molar mass (apparent $M_{\mathrm{n}}=440 \mathrm{~g} /$ mol). It is important to note that the tailing at very low molar mass is out of calibration and contains products 6 and 7 , as well as dimers/trimers.

	SampleName	RT	Mn (Daltons)	Mw (Daltons)	MP (Daltons)	Polydispersity
1	chng f40a	15,212				
2	chng f40a	19,750				
3	chng 440 a	23,571	443	591	1033	1,332618

Figure S1. SEC trace and data for the crude mixture of Table S5, entry 12.

Monitoring of the carboxylative coupling of CO_{2} to 3-methylpent-4-yne-1,3-diol 5a by FT-IR spectroscopy

In a clean and dry reactor of 40 mL equipped with a manometer, a heating mantle, gas inlet/outlets, a mechanical stirrer and a high-pressure FT-IR probe were introduced 3-methylpent-4-yne-1,3diol $5 \mathbf{a}(3 \mathrm{~g}, 26.28 \mathrm{mmol})$, tetrabutylammonium phenolate TBAOPh ($0.4410 \mathrm{~g}, 1.3141 \mathrm{mmol}$), $\mathrm{AgI}(0.3085 \mathrm{~g}, 1.3141 \mathrm{mmol})$ and dry DMSO $(12 \mathrm{~mL})$. The reactor was closed and heated to the desired temperature after which the FT-IR acquisition was initiated. Then, CO_{2} gas was added and the pressure maintained at 15 bar. Spectra were recorded every 1-5 min. Once the reaction was complete, the reactor was cooled down to room temperature and depressurized. The crude reaction mixture was recovered and analyzed by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

(a) $25^{\circ} \mathrm{C}$

(b) $80^{\circ} \mathrm{C}$

Figure S2. Online monitoring via operando FT-ATR spectroscopy at $25^{\circ} \mathrm{C}$ (a) or $80{ }^{\circ} \mathrm{C}$ (b) of the carboxylative coupling of 3-methylpent-4-yne-1,3-diol 5a with CO_{2} to afford carbonates $\mathbf{6}$ and 7.

At $25^{\circ} \mathrm{C}$, we briefly observed the formation of the alkylidene cyclic carbonate as attested by the presence of the band at $1820 \mathrm{~cm}^{-1}$, which disappeared after few hours in favour of the sixmembered keto-carbonate 6 with the characteristic bands at $1750 \mathrm{~cm}^{-1}$ (carbonate) and $1720 \mathrm{~cm}^{-1}$ (ketone). At $80^{\circ} \mathrm{C}$, a new bicyclic tetrasubstituted five-membered cyclic carbonate 7, with a characteristic band at $1802 \mathrm{~cm}^{-1}$, was formed together with the 6 -membered keto-carbonate 6
(Figure S2) The formation of both products, 6 and 7, was also confirmed by ${ }^{1} \mathrm{H}$ NMR spectroscopy (Figure S3).

Figure S3. ${ }^{1} \mathrm{H}$ NMR overlay of pure alcohol 5a (bottom), the crude reaction mixtures obtained at $25^{\circ} \mathrm{C}$ (middle) and $80^{\circ} \mathrm{C}$ (top) for the carboxylative coupling of CO_{2} to 3-methylpent-4-yne-2,3diol 5a.

Screening of reaction parameters for the carboxylative coupling of CO_{2} to 4-methylhex-5-

 yne-1,4-diol (5b)Table S6: ${ }^{[a]}$ Screening of parameters for the carboxylative coupling of 1,4 -diol $\mathbf{5 b}$ with CO_{2} to give 8,9 and 10 .

Entry	$\begin{gathered} {[\mathbf{A g}]} \\ {[\mathrm{mol} \%]} \end{gathered}$	$\begin{aligned} & \hline \text { Ligand } \\ & {[\mathrm{mol} \%]} \end{aligned}$	T/pressure $\left[{ }^{\circ} \mathrm{C}\right] /[\mathrm{bar}]$	Conv. 5b $[\%]^{[b]}$	$\begin{gathered} \mathbf{8} \\ {[\%]^{[b]}} \end{gathered}$	$\begin{gathered} 9 \\ {[\%]^{[b]}} \end{gathered}$	$\begin{gathered} \mathbf{1 0} \\ {[\%]^{[b]}} \end{gathered}$
1	AgF, 10	L6, 5	rt, 30	>99	66	30	-
2	AgF, 10	L6, 5	50, 30	>99	-	-	-
3	AgF, 5	L1, 5	rt, 30	>99	31	16	27
4	AgF, 5	L2, 5	rt, 30	>99	-	trace	41
5	AgF, 5	L3, 5	rt, 30	>99	25	32	14
6	AgF, 5	L4, 5	rt, 30	>99	-	10	28
$7^{[c]}$	AgI, 5	TBAOPh, 5	rt, 15	>99	$75,50^{[d]}$	21	-
$8^{[c]}$	AgI, 5	TBAOPh, 5	80, 15	>99	7	1	24
9	AgI, 5	TBAOPh, 5	80, 15	>99	7	3	16
10	AgI, 5	DBU, 5	80, 15	>99	3	5	25
11	-	DBU, 10	80, 15	>99	-	-	$24^{[d]}$
12	AgI, 5	DBU, 10	80, 15	>99	-	12	$45,33^{[d]}$
13	-	DBU, 10	80, 15	>99	-	-	9

[a] Reaction conditions: $\mathbf{5 b}(0.3 \mathrm{mmol}), \mathrm{ACN}(0.2 \mathrm{~mL}), \mathrm{CO}_{2}$ (pressure indicated), 24 h . [b] Determined by ${ }^{1} \mathrm{H}$ NMR using mesitylene as internal standard. [c] DMSO as solvent [d] Isolated yield.

Description of the procedure for the SEC analysis: Number-average molecular weight (M_{n}) and dispersity $(Đ)$ of the polymers were determined by size exclusion chromatography (SEC) in dimethyl formamide (DMF) containing $\operatorname{LiBr}(0.025 \mathrm{M})$ at $55^{\circ} \mathrm{C}$ (flow rate: $1 \mathrm{~mL} / \mathrm{min}$) with a SECcurity GPC1260 chromatograph from PSS equipped with three columns (PSS gram $1000 \AA$ (x2), $30 \AA$) and a pre-column, a SECcurity refractive index detector, a SECcurity variable wavelength UV-Vis detector and a MALLS detector SLD7000. The system was calibrated by polystyrene (PS) standards.

$\overline{\mathbf{M n}}:$	7.7960 e 2	$\mathrm{~g} / \mathrm{mol}$
$\overline{\mathbf{M w}}:$	1.0043 e 3	$\mathrm{~g} / \mathrm{mol}$
$\overline{\mathbf{M z}}:$	1.3266 e 3	$\mathrm{~g} / \mathrm{mol}$
$\overline{\mathbf{M v}}:$	0.000000	$\mathrm{~g} / \mathrm{mol}$
$\mathbf{D}:$	1.2883 e 0	
$\mathbf{I n}:$	0.000000	ml / g
$\mathbf{V p}:$	3.3764 e 1	ml
$\mathbf{M p}:$	7.8137 e 2	$\mathrm{~g} / \mathrm{mol}$
$\mathbf{A}:$	9.8099 e 1	ml V
< 220	0.00	
$\mathbf{w} \%:$	100.00	
$\mathbf{> 6 0 1 0}$	0.00	

Figure S4. SEC chromatogram and data of the crude mixture (Table S6, entry 9).

The reaction of alkyne-1,4 diol (5b) provides the tetrasubstituted carbonate $\mathbf{1 0}$ at lower yield and favors the formation of some oligomeric compounds (Figure S4). The oligomers have an apparent M_{n} of $780 \mathrm{~g} / \mathrm{mol}$ and a dispersity of 1.29 . All attempts to push the polymerization further to reach higher molar masses were unsuccessful as the formation of product $\mathbf{1 0}$ could not be avoided. Products appearing at elution volumes higher than 36 min are out of calibration and correspond to a mixture of products $\mathbf{8}, \mathbf{9}$ and $\mathbf{1 0}$. The intense sharp peak at around 39 min corresponds to DMSO, which was used as the solvent for the reaction.

4-(3-Hydroxypropyl)-4-methyl-5-methylene-1,3-dioxolan-2-one (8)

Yellow oil, NMR yield 75\%, isolated: 50\%. Eluent petroleum ether/ EtOAc 1:1 ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 4.85(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=$ $3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{td}, J=6.3,5.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.89(\mathrm{qdd}$, $J=14.4,9.8,6.0,2 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (101 MHz , DMSO-d ${ }_{6}$) $\delta 157.43,151.46,87.99,86.46,60.56,36.68,26.72,25.94$; IR (neat) $v=1686,1818$ $\mathrm{cm}^{-1} ;$ HRMS (QTOF) m / z Calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$195.1698; Found 195.0633.

4-Acetyl-4-methyl-1,3-dioxepan-2-one (9)

Note: This compound was isolated as a mixture with 8 . The data are here provided for completion. Selected features: ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) δ $4.07(\mathrm{~m}, 2 \mathrm{H}), 2.39(\mathrm{~m}, 2 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{Me}), 1.80(\mathrm{~m}, 2 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}$, Me); ${ }^{13}$ C NMR ($75 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 206.51,153.07,90.31,70.04,36.88$; IR (neat) $v=1720,1752 \mathrm{~cm}^{-1}$.

3a,7a-Dimethyltetrahydro-5H-[1,3]dioxolo[4,5-b]pyran-2-one (10)

White solid, NMR yield 45%, isolated 30%. Eluent hexanes/ $\mathrm{EtOAc}=5 / 1 .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ (400 MHz, DMSO- d_{6}) $\delta 3.72(\mathrm{td}, J=6.4,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.97(\mathrm{ddd}, J=14.8,5.5,4.1$ $\mathrm{Hz}, 1 \mathrm{H}), 1.85$ (ddd, $J=14.7,10.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.76-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H})$, 1.40 (s, 3H); ${ }^{13} \mathbf{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 153.1,107.3,83.6,60.7,28.6,22.9$, 19.8, 18.6; IR (neat): $v=1803 \mathrm{~cm}^{-1} ;$ HRMS (ESI/TOF) m / z Calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$ 195.0628; Found 195.0628.

Monitoring of the carboxylative coupling of CO_{2} to 4-methylhex-5-yne-1,4-diol (5b) by FTIR spectroscopy

A similar procedure to that used for $\mathbf{5 a}$ was followed.
At $25^{\circ} \mathrm{C}$, we observed the formation of the alkylidene cyclic carbonate $\mathbf{8}\left(1818 \mathrm{~cm}^{-1}\right.$ and 1685 cm^{-1}) which could be isolated at 50% yield. The seven-membered carbonate 9 , with its characteristic carbonyl vibration at $1752 \mathrm{~cm}^{-1}$, was also formed at the two investigated temperatures, 25 and $80^{\circ} \mathrm{C}$. Note that the progressive broadening of the band at $1818 \mathrm{~cm}^{-1}$ with time (for the reaction carried out at $80^{\circ} \mathrm{C}$) results from the appearance of a band at $1807 \mathrm{~cm}^{-1}$, the signature of the tetrasubstituted carbonate $\mathbf{1 0}$.

(a) $25^{\circ} \mathrm{C}$

(b) $80^{\circ} \mathrm{C}$

Figure S5. Online monitoring of the carboxylative coupling of 4-methylhex-5-yne-1,4-diol 5b with CO_{2} via operando FT-ATR spectroscopy at (a) $25{ }^{\circ} \mathrm{C}$ and (b) $80{ }^{\circ} \mathrm{C}$ showing the sevenmembered carbonate 9 with absorptions at 1752 and $\mathbf{1 7 2 0} \mathrm{cm}^{-1}$.

6. References

[1] Gómez, J. E.; Cristòfol, A.; Kleij, A. W. Copper-Catalyzed Enantioselective Construction of Tertiary Propargylic Sulfones. Angew. Chem. Int. Ed. 2019, 58, 3903-390.
[2] Liu, Z.; Zhang, W.; Guo, S. Spiro[indene-1,4' -oxa-zolidinones] Synthesis via Rh(III)Catalyzed Coupling of 4-Phenyl-1,3-oxazol-2(3H)-ones with Alkynes: A Redox-Neutral Approach. J. Org. Chem. 2019, 84, 11945-11957.
[3] Guo, K.; Kleij, A. W. Cu-Mediated Dichotomic Borylation of Alkyne Carbonates: Stereoselective Access to (E)-1,2-Diborylated 1,3-Dienes versus Traceless Monoborylation affording α-Hydroxyallenes. Angew. Chem. Int. Ed. 2021, 60, 4901-4906.
[4] Kang, S.; Han, J.; Lee, E. S. Enantioselective Synthesis of Cyclic Sulfamidates by Using Chiral Rhodium-Catalyzed Asymmetric Transfer Hydrogenation. Org. Lett. 2010, 12, 4184-4187.
[5] Liang, Y. F. ; Wu, K. ; Song, S. I 2^{-}- or NBS-Catalyzed Highly Efficient α-Hydroxylation of Ketones with Dimethyl Sulfoxide. Org. Lett. 2015, 17, 876-879.
[6] Liang, Y. F.; Jiao, N. Highly Efficient C-H Hydroxylation of Carbonyl Compounds with Oxygen under Mild Conditions. Angew. Chem. Int. Ed. 2014, 53, 548-552.

7. NMR and IR spectra of all compounds

Alkyne-1,2-diols:

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for $\mathbf{1 h}$

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for $\mathbf{1 h}$

IR (neat) spectrum for $\mathbf{1 h}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for $\mathbf{1 k}$

${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for $\mathbf{1 k}$

IR (neat) spectrum for $\mathbf{1 k}$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum for $\mathbf{1 r}$

${ }^{13} \mathrm{H}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for $\mathbf{1 r}$

IR (neat) spectrum for $\mathbf{1 r}$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum for $\mathbf{1 s}$

${ }^{13}$ C NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for $\mathbf{1 s}$

IR (neat) spectrum for $\mathbf{1 s}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for 3b

${ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum for $\mathbf{3 b}$

IR (neat) spectrum for $\mathbf{3 b}$

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for $\mathbf{3 c}$

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for $\mathbf{3 c}$

IR (neat) spectrum for 3c

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for 3d

${ }^{13} \mathrm{H}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for 3d

IR (neat) spectrum for $\mathbf{3 d}$
(
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for $\mathbf{3 e}$

${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for $\mathbf{3 e}$

IR (neat) spectrum for $\mathbf{3 e}$
(
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for $\mathbf{3 g}$

${ }^{13}$ C NMR (101 MHz, CDCl_{3}) spectrum for $\mathbf{3 g}$

IR (neat) spectrum for $\mathbf{3 g}$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for $\mathbf{3 i}$

IR (neat) spectrum for $\mathbf{3 i}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for $\mathbf{3 k}$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for $\mathbf{3 k}$

IR (neat) spectrum for $\mathbf{3 k}$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for 31

IR (neat) spectrum for 31

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for $\mathbf{3 m}$

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for $\mathbf{3 m}$

IR (neat) spectrum for $\mathbf{3 m}$

Spectra for the cyclic carbonates:

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum for 2a

IR (neat) spectrum for 2a

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for 2b

${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for $\mathbf{2 b}$

IR (neat) spectrum for 2b

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for $\mathbf{2 c}$

${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for $\mathbf{2 c}$

IR (neat) spectrum for 2c
(1)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for $\mathbf{2 d}$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for $\mathbf{2 d}$

IR (neat) spectrum for $\mathbf{2 d}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for $\mathbf{2 e}$

${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for $\mathbf{2 e}$
(s)
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for $\mathbf{2 e}$

IR (neat) spectrum for $\mathbf{2 e}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for $\mathbf{2 f}$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for $\mathbf{2 f}$

IR (neat) spectrum for $\mathbf{2 f}$
(
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for $\mathbf{2 g}$

${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) spectrum for $\mathbf{2 g}$

IR (neat) spectrum for $\mathbf{2 g}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for $\mathbf{2 h}$

IR (neat) spectrum for $\mathbf{2 h}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for $\mathbf{2 i}$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for $\mathbf{2 i}$
(s)
$\begin{array}{lllllllllllllllllllllllllllllllllll}-15 & -20 & -25 & -30 & -35 & -40 & -45 & -50 & -55 & -60 & -65 & -70 & -75 & -80 & -85 & -90 & -95 & -100 & -105 & -110 & -115 & -120 & -125 & -130 & -135 \\ f 1(\mathrm{ppm})\end{array}$
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for $\mathbf{2 i}$

IR (neat) spectrum for $\mathbf{2 i}$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum for $\mathbf{2} \mathbf{j}$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for $\mathbf{2} \mathbf{j}$

IR (neat) spectrum for $\mathbf{2 j}$
(1)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for $\mathbf{2 k}$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for $\mathbf{2 k}$

IR (neat) spectrum for $\mathbf{2 k}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for $\mathbf{2 l}$

${ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum for 21

IR (neat) spectrum for $\mathbf{2 I}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for $\mathbf{2 m}$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for $\mathbf{2 m}$

IR (neat) spectrum for $\mathbf{2 m}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for $\mathbf{2 n}$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for $\mathbf{2 n}$

IR (neat) spectrum for $\mathbf{2 n}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for 2 o

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for $\mathbf{2 o}$

IR (neat) spectrum for $\mathbf{2 0}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for $\mathbf{2 p}$
(

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for $\mathbf{2 p}$

IR (neat) spectrum for $\mathbf{2 p}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for $\mathbf{2 q}$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for $\mathbf{2 q}$

IR (neat) spectrum for $\mathbf{2 q}$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum for $\mathbf{2 r}$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for $\mathbf{2 r}$

IR (neat) spectrum for $\mathbf{2 r}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for $\mathbf{2 s}$

${ }^{13}$ C NMR (101 MHz, CDCl_{3}) spectrum for $\mathbf{2 s}$

IR (neat) spectrum for $\mathbf{2 s}$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum for $\mathbf{4 a}$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for $\mathbf{4 a}$

IR (neat) spectrum for $\mathbf{4 a}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for $\mathbf{4 b}$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for $\mathbf{4 b}$

IR (neat) spectrum for 4b
(
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum for $\mathbf{4 c}$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for $\mathbf{4 c}$

IR (neat) spectrum for $\mathbf{4 c}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for $\mathbf{4 d}$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for $\mathbf{4 d}$

IR (neat) spectrum for $\mathbf{4 d}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for $\mathbf{4 e}$

${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for $\mathbf{4 e}$

IR (neat) spectrum for $\mathbf{4 e}$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for $\mathbf{4 f}$

IR (neat) spectrum for $\mathbf{4 f}$
(
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for $\mathbf{4 g}$

${ }^{13}$ C NMR (101 MHz, CDCl_{3}) spectrum for $\mathbf{4 g}$

IR (neat) spectrum for $\mathbf{4 g}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for $\mathbf{4 h}$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for $\mathbf{4 h}$

IR (neat) spectrum for $\mathbf{4 h}$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum for $\mathbf{4 i}$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for $\mathbf{4 i}$

IR (neat) spectrum for $\mathbf{4 i}$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum for $\mathbf{4} \mathbf{j}$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for $\mathbf{4} \mathbf{j}$

IR (neat) spectrum for $\mathbf{4} \mathbf{j}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for $\mathbf{4 k}$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for $\mathbf{4 k}$

IR (neat) spectrum for $\mathbf{4 k}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for $\mathbf{4 1}$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for 41

IR (neat) spectrum for $\mathbf{4 I}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for $\mathbf{4 m}$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for $\mathbf{4 m}$

IR (neat) spectrum for $\mathbf{4 m}$

${ }^{1}$ H NMR (400 MHz , DMSO- d_{6}) spectrum for $\mathbf{5 a}$

${ }^{13}$ C NMR (101 MHz, DMSO-d ${ }_{6}$) for $\mathbf{5 a}$

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) for $\mathbf{5 b}$

${ }^{13}$ C NMR (101 MHz, DMSO-d $_{6}$) for 5b
(
${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) for 6

${ }^{13}$ C NMR (101 MHz, DMSO-d $_{6}$) for $\mathbf{5 b}$

IR (neat) spectrum for 6

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) for 7

${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) for 7

IR (neat) spectrum for 7

${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) for $\mathbf{8}$

${ }^{13}$ C NMR (101 MHz , DMSO- d_{6}) for $\mathbf{8}$

IR (neat) spectrum for 8

Note: A mixture of both α-alkylidene carbonate $\mathbf{8}$ and seven-membered carbonate $\mathbf{9}$:

${ }^{1} \mathrm{H}$ NMR (400 MHZ, DMSO- d_{6}) of a mixture of $\mathbf{8}$ and $\mathbf{9}$

${ }^{13} \mathrm{C}$ NMR (101 MHZ, DMSO- d_{6}) of a mixture of $\mathbf{8}$ and $\mathbf{9}$

${ }^{1} \mathrm{H}$ NMR (400 MHZ, DMSO- d_{6}) of $\mathbf{1 0}$

${ }^{13}$ C NMR (101 MHZ, DMSO-d 6) of 10

IR (neat) spectrum of 10

8. X-ray details

Procedure: single crystals of each compound suitable for X-ray diffraction were stable under atmospheric conditions; nevertheless, they were treated under inert conditions immersed in perfluoro-polyether as protecting oil for manipulation. Data Collection: measurements were made on a Bruker-Nonius diffractometer equipped with an APPEX II 4K CCD area detector, a FR591 rotating anode with $\mathrm{MoK} \alpha$ radiation, Montel mirrors and a Kryoflex low temperature device ($T=$ $-173{ }^{\circ} \mathrm{C}$). Full-sphere data collection was used with ω and ϕ scans. Programs used: Data collection Apex2 V2011.3 (Bruker-Nonius 2008), data reduction Saint+Version 7.60A (Bruker AXS 2008) and absorption correction SADABS V. 2008-1 (2008). Structure Solution: SHELXTL Version 6.10 (Sheldrick, 2000) was used (Sheldrick, G. M. SHELXTL Crystallographic System, version 6.10; Bruker AXS, Inc.: Madison, WI, 2000). Structure Refinement: SHELXTL-97-UNIX VERSION.

Disubstituted keto-carbonate 2a (CCDC-2088491):

Trisubstituted keto-carbonate $\mathbf{4 a}$ (CCDC-2088492):

Bicyclic carbonate 7 (CCDC-2112335):

9. Synthetic and analytical details for compound 11 and 12

Procedures for the synthesis of the cyclic carbonates 11 and 12:

To a solution of 1,3-dioxolan-2-one product 2a ($0.3 \mathrm{mmol}, 1.0$ equiv) in a $4: 1$ mixture of tetrahydrofuran and methanol (1.5 mL) was added $\mathrm{NaBH}_{4}(0.33 \mathrm{mmol}$, 1.1 equiv) under an argon atmosphere at $0^{\circ} \mathrm{C}$. Then, the reaction mixture was stirred for 1 h . When the starting material had disappeared (as followed by TLC), the solvent was removed by evaporation and the residue was quenched by addition of a saturated ammonium chloride (5 mL) solution. Ethyl acetate (5 mL) was added to it and the aqueous layer was separated. Further extraction was carried out of the aqueous layer with ethyl acetate ($3 \times 5 \mathrm{~mL}$). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography on silica gel to obtain the corresponding product.

4-(1-Hydroxyethyl)-4-phenyl-1,3-dioxolan-2-one (11)

Colorless oil ($42.8 \mathrm{mg}, 67 \%$ yield, 2:1 dr). Eluent hexanes/EtOAc $=4 / 1 .{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44-7.33(\mathrm{~m}, 7.6 \mathrm{H}), 4.95(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.81(\mathrm{q}, J$ $=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.16-4.07(\mathrm{~m}, 1.5 \mathrm{H}), 3.95(\mathrm{~d}, J=12.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.55$ (brs, 1.6 H), 1.78 (d, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.06$ (d, $J=6.6 \mathrm{~Hz}, 1.6 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.5,154.3,137.6,137.0,129.2,129.12,129.07,128.8,125.7,124.2$, 88.1, 88.0, 82.0, 71.5, 71.0, 65.4, 17.1, 14.8; IR (neat): $v=1770 \mathrm{~cm}^{-1} ;$ HRMS (ESI/TOF) m / z Calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{NaO}_{4}\left[\mathrm{M}+\mathrm{Na}^{+}\right.$231.0628; Found 231.0620.

To a stirred solution of hydroxylamine hydrochloride ($0.6 \mathrm{mmol}, 2.0$ equiv), pyridine (0.6 mmol , 2.0 equiv) in ethanol (3 mL) maintained at room temperature was added the 1,3-dioxolan-2-one $\mathbf{2 a}$ ($0.3 \mathrm{mmol}, 1.0$ equiv) dissolved in ethanol (3 mL). After the reaction was complete (followed by TLC), the solvent was removed under reduced pressure. To the residue was added water and the product was extracted twice with methylene chloride $(2 \times 5 \mathrm{~mL})$ and washed with a 0.1 M HCl solution. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude product was purified by flash chromatography on silica gel to obtain the final product.

4-(1-(Hydroxyimino)ethyl)-4-phenyl-1,3-dioxolan-2-one (12)

White solid ($55.3 \mathrm{mg}, 85 \%$ yield, $Z / E=3: 1$). Eluent hexanes $/ E t O A c=5 / 1 .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45-7.34(\mathrm{~m}, 6.9 \mathrm{H}), 5.45(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.49$ $(\mathrm{d}, J=10.3 \mathrm{~Hz}, 0.3 \mathrm{H}), 4.40(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 0.3 \mathrm{H}), 4.28(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.85$ ($\mathrm{s}, 1 \mathrm{H}$), $1.82(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 159.7,155.0,154.1,139.1$, $137.8,129.4,129.3,128.9,128.4,125.1,124.4,89.5,86.9,82.6,72.6,10.6,8.7 ;$ IR (neat): $v=1804 \mathrm{~cm}^{-1} ;$ HRMS (ESI/TOF) m / z Calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NNaO} \mathrm{N}_{4}[\mathrm{M}+\mathrm{Na}]^{+} 244.0580$; Found 244.0578.

NB. The NMR and IR spectra for compounds $\mathbf{1 1}$ and $\mathbf{1 2}$ are provided on the following pages

$\xrightarrow[\sim]{\sim}$

${ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectrum for $\mathbf{1 1}$

${ }^{13} \mathrm{C}$ NMR（ $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）spectrum for $\mathbf{1 1}$

IR (neat) spectrum for carbonate 11

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for $\mathbf{1 2}$

${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum for $\mathbf{1 2}$

IR spectrum (neat) for carbonate $\mathbf{1 2}$

10. DFT details

As indicated in footnote 17 of the main text, the Gaussian $16^{[51]}$ program was used with the implemented functional and basis set PBE0-D3(BJ)/SDD/def2tzv being chosen using dispersion correction with Becke-Johnson damping. All calculations were carried out at 298 K using an acetonitrile implicit solvent model SMD.

Full access to the computational data set is provided through:
http://dx.doi.org/10.19061/iochem-bd-1-214.
Please find below (Figure S6, next page) a full description of all energies involved in the conversion of both (R) - and (S)-1a using the selected chiral conformation of $\mathbf{L} \mathbf{1}$ in the $\mathrm{Ag}(\mathbf{L 1}) \mathrm{OAc}$ (pre)-catalyst. Obviously, upon using the other catalyst enantiomer, the energies for the conversion of (R) - and (S)-1a should be reversed.
[S1] Gaussian 16, Revision A.03, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., J.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2016.

Figure S6. DFT-calculated pathway for the conversion of $(R) \mathbf{- 1 a}$ and $(S) \mathbf{- 1 a}$ into keto-carbonate $\mathbf{2 a}$ by catalyst $\mathrm{Ag}(\mathbf{L 1}) \mathrm{OAc}$ in the presence of carbon dioxide.

[^0]: $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$297.0345; Found 297.0351.

