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ABSTRACT: A silver-catalyzed cascade conversion of modular
alkyne-1,n-diols and carbon dioxide has been developed allowing
for the selective formation of keto-functionalized cyclic carbonates.
The protocol is characterized by its operational simplicity, excellent
scope of carbonate-based heterocycles, and mild reaction con-
ditions. In situ IR studies, control experiments, and detailed com-
putational analysis of these manifolds reveal the intermediacy of an
α-alkylidene carbonate that is intercepted by an intramolecular
alcohol nucleophile. The synthetic potential of this conceptually
attractive CO2 transformation is demonstrated in the preparation
of larger ring carbonates and their thermal rearrangement to
sterically crowded, five-membered fused carbonate products.
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The reutilization of carbon-containing waste into value-
added products through catalysis provides an attractive

route in the context of circular chemistry.1 The implication of
circular principles will realize an improved usage of our natural
resources, thereby embracing a sustainable future and a more
efficient carbon management.2 Carbon dioxide (CO2) repre-
sents the most simple carbon-based reagent available for the
fabrication of various products including pharmaceuticals,3

polymerizable monomers,4 synthetic intermediates,5 and bulk
chemicals.6 Despite the difficulties encountered in the catalytic
transformation of CO2, much progress has been noted in the last
10 years with outstanding advances in both reductive7 and
nonreductive conversions.8 A prominent, nonreductive con-
version process is the [3 + 2] cycloaddition of CO2 to epoxides
providing cyclic carbonates as products. These compounds have
gained a great deal of synthetic importance over the last few
years as suitable starting points for decarboxylative formation of
compounds with elusive stereocenters9 and the creation of more
sustainable CO2-based polymers and materials.10

The [3 + 2] cycloaddition strategy for the generation of cyclic
carbonates generally works well for mono- and disubstituted
epoxides but shows important limitations for even more
sterically demanding oxiranes. To overcome this challenge,
new conceptual designs have emerged that capitalize on
alternative reactivity patterns.
For instance, the use of substrate-controlled manifolds such as

the one presented in Scheme 1a allows for the design of highly
elusive and complex carbonate structures through unique

cascade processes, provided that a suitable trapping mechanism
is available.11

Similar though different in its design is the interception of reactive
in or ex situ prepared α-alkylidene carbonates by diol reagents in a
formal domino transesterification process (Scheme 1b) giving a 1:1
mixture of a new cyclic carbonate and an α-hydroxy ketone.12

Whereas these cascade designs are able to provide some though a
rather limited degree of structural diversity, the coformation of a
ketone byproduct renders them atom-inefficient. To expedite new
types of cascade processes providing new types of carbonate
structures, we sought to merge the presence of an intramolecular
alcohol (pro)nucleophile and a reactive exocyclic double bond to
promote a new rearrangement process that would give access to
keto-functionalized cyclic carbonates while enabling an ample scope
in substitution and functionality (Scheme 1c). The key to this new
approach is the use of an alkyne-1,2-diol that under appropriate
reaction conditions induces a skeletal rearrangement of an initially
formed α-alkylidene carbonate with the formation of the keto
group as a thermodynamic driving force. Here, we describe the
development and mechanistic rationale for this conceptual novel
catalytic domino process, thus expanding the current portfolio of
highly substituted (saturated) cyclic carbonates.
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At the onset of our studies, we selected an alkyne-1,2-diol
reagent 1a as a model substrate (Tables 1 and S1)13 and
AgOAc/DavePhos (rac-L1) as catalyst precursors using
CH3CN as a solvent.14 Both the Ag salt and phosphine ligand
alone are not effective (Table S1), but their combination
(Table 1, entry 1: 10 mol % each) provides a high level of
substrate conversion at 35 °Cwith amoderate yield of 2a (56%).
Since theNMR and IR analyses (ν = 1803 and 1729 cm−1) of the
isolated sample of 2a were not conclusive and indicated the
formation of a product different from an α-alkylidene carbonate,
X-ray analysis was performed, which unambiguously confirmed
the formation of a keto-substituted cyclic carbonate (vide inf ra,
Scheme 2).15 The transformation of 1a into 2a can also be
performed at 25 °C (entry 2) but requires a longer reaction time
(48 h) to afford a similar yield of 2a. The nature of the phosphine
ligand is crucial as simple ligands such as PPh3, dppe (entries 3
and 4, Table 1), and DPEPhos (entry 14, Table S1) proved to
be unproductive. Then, we decided to examine other bulky
monophosphine ligands (L2−L6, entries 5−9), with BrettPhos
L6 providing the best performance with 2a produced in
excellent yield (91% by NMR, 85% isolated; entry 9, Table 1).
To make the protocol more attractive, we investigated the use

of lower loadings of both the Ag precursor and L6 (entries 10−
13, 5.0mol %). By slightly increasing the reaction temperature to
40 °C, the full conversion of 1a could be realized within 6 h while
using AgF as a precursor (entry 13), giving 2a in high isolated
yield (88%). Lower loadings of AgF/L6 or changing the solvent
(entries 14−16, Table 1, and Table S1) did not further improve
the process outcome.16

The scope of this transformation (Scheme 2) was then further
explored using the optimized conditions (Table 1, entry 13).
In general, good-to-excellent isolated yields of the keto-
carbonates were achieved under mild temperature (40 °C)
and pressure (1 bar) conditions. A wide range of 3-aryl-3-keto-
carbonates could be produced (2a−2k) with electronically
diverse para- and meta-substituents. The presence of other

(hetero)aryl groups (2l−2o) in the keto-carbonate product is
also tolerated, though for naphthyl-substituted 2l, a reaction
temperature of 60 °C was required to allow for an appreciable
product yield, most likely as a result of increased steric
congestion in the intermediate of Scheme 1c. Apart from aryl
groups, various primary, secondary, and tertiary alkyl groups can
also be introduced as illustrated by the successful preparation of
2p−2s, with the adamantyl-based 2r (57%) being particularly
noteworthy.
Next, we decided to challenge the developed protocol further

using substituted (cf., R2) alkynyl-1,2-diols 3a−3m. Trisub-
stituted, aryl-functionalized keto-carbonates 4a−4d were
obtained in good isolated yields (76−90%) and under high
diastereocontrol (dr > 95:5), whereas methyl-substituted
products 4e−4g (62−77%) were produced with lower dr values,
which is ascribed to an apparent lower degree of diastereocon-
trol in the intramolecular attack of the secondary alcohol on the
α-alkylidene carbonate intermediate (Scheme 1c). Encouraged
by the low-temperature formation of typically challenging
trisubstituted keto-carbonates,5e we then considered alkyne-
1,2-diols with three substitutions (R1−R3, Scheme 3, top) to
forge sterically more demanding keto-carbonates. Under
relatively mild conditions (40 °C, 1 bar), the formation of
tetrasubstituted carbonate heterocycles 4h−4m could be
accommodated in typical good isolated yields of up to 91%.
Both spirofused cycloalkyl rings (4h and 4i) and different
combinations of aryl/alkyl substituents (4j−4m) are tolerated in
the product skeletons, further highlighting the excellent scope of
this transformation. It should be noted that the formation of
highly substituted cyclic carbonates such as those in Scheme 3
represents a huge challenge, and the results described so far thus
demonstrate a substantial advance in this area.

Scheme 2. Scope of Disubstituted Keto-Based Cyclic
Carbonates (2a−2s) Derived from Alkyne-1,2-diols 1a−1s

aThe reaction was performed at 60 °C.

Scheme 1. (a) Substrate-Controlled Cascade Leading to
Highly Substituted Cyclic Carbonates, (b) Domino
Transesterification Process Involving External Diols, and (c)
This Work: A Novel Cascade Process
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To shed light on the formation mechanism of these keto-
carbonates, DFT analysis17 of the benchmark reaction involving
1a and CO2 was performed using a Ag catalyst derived from L1
(Figure 1).18−21 The reason for this catalyst choice was to be
able to directly compare the first part of the manifold with that
computed previously14 in the conversion of a more simple
propargylic alcohol precursor by the Ag(L1)OAc catalyst. In our
calculations, we used therefore the same complex as a starting
point together with substrate 1a and CO2 as a zero reference
(Figure 1, denoted as Reactants). The phosphine substituents
are not symmetric and can rotate at room temperature. All
structures were therefore calculated with the same fixed
phosphine chiral conformation. Note that substrate 1a has a
chiral center giving rise to diastereoisomeric intermediates and
transition states for the chosen conformation of the Ag complex
derived from L1. For simplicity, we provide in Figure 1 only the
lowest energetic pathway based on (R)-1a (see the Supporting
Information for full details and comments).
The overall mechanistic pathway for the conversion of

(R)-1a includes different key stages: initial CO2 activation by
propargylic diol followed by an attack on the triple bond, a
carbonate isomerization step involving a pendant alcohol, and a
tautomerization step. Notably, all of these steps are facilitated by
several proton transfer/H-abstraction sequences that advance
the reaction manifold. First, the tertiary alcohol in substrate
(R)-1a is deprotonated by the acetate anion bound to Ag(L1),
thereby obtaining an alkoxide species while activating CO2 via a

concertedTS-1 (19.7 kJ·mol−1) producing the first intermediate
A located at 15.6 kJ·mol−1 together with a molecule of acetic
acid.21 The latter is not involved during the formation of the
subsequent intermediates B, C, and D. In intermediate B
(at −0.2 kJ·mol−1), the initial alkyne coordination is replaced
by an O-coordination of the formed linear carbonate after
CO2 activation. Then, the alkyne coordination is restored in
intermediate C (−4.1 kJ·mol−1), giving rise to a bidentate
coordination mode. Through intermediate C, the system is set
up toward the formation of an alkylidene cyclic carbonate going
through TS-2: in this transition state, the cyclic carbonate ring
that is formed can have two mutual orientations with respect to
the fixed conformation of the Ag(L1) complex, thus producing
two different diastereoisomers.22

In TS-2 (at 63.0 and 55.1 kJ·mol−1), both TS-2A and TS-2B
differ in the double-bond configuration being Z and E,
respectively. The resultant isomers D-A (at -5.0 kJ·mol−1) and
D-B (at −19.6 kJ·mol−1) mimic the structures reported by
Schaub, Hashmi, and co-workers before final protodemetalation
affording alkylidene carbonates. Our pathway aligns well with
the possibility of having Z- and E-configured TSs, and the
energetic spans related to this first part of the mechanism for the
conversion of (R)-1a are 67.1 and 59.2 kJ·mol−1, with the (E)
isomer being most favored.23

For the other intermediateE, located betweenTS-2 andTS-3,
also the Z and E isomers (designated A and B) were calculated.
For intermediates E (at 27.2 and 12.1 kJ·mol−1) also the Z

Table 1. Screening and Optimization of the Ag-Catalyzed Conversion of Alkyne-1,2-diol 1a and CO2 into Keto-Substituted
Cyclic Carbonate 2aa

entry t, Tb [Ag]b [L]b Cb, c Yieldb, c

1 24, 35 AgOAc, 10 L1, 10 96 56

2 48, 25 AgOAc, 10 L1, 10 83 62

3 24, 25 AgOAc, 10 PPh3, 10 <10 <10

4 24, 25 AgOAc, 10 dppe, 10 0 0

5d 24, 25 AgOAc, 10 L2, 10 77 66 (63)

6d 24, 25 AgOAc, 10 L3, 10 82 74 (66)

7d 24, 25 AgOAc, 10 L4, 10 84 73 (68)

8 24, 25 AgOAc, 10 L5, 10 85 63

9d 24, 25 AgOAc, 10 L6, 10 >99 91 (85)

10 24, 25 AgOAc, 5 L6, 5.0 73 69

11 24, 40 AgOAc, 5 L6, 5.0 93 85

12 24, 40 AgF, 5 L6, 5.0 >99 90

13d 6, 40 AgF, 5 L6, 5.0 >99 91 (88)

14 6, 40 AgF, 2.5 L6, 2.5 12 <5

15e 6, 40 AgF, 5 L6, 5.0 >99 18

16f 6, 40 AgF, 5 L6, 5.0 >99 17
aGeneral conditions: 1a (0.30 mmol), CH3CN (0.60 mL), [Ag]/[L], and T/t as indicated. bTime in h, temperature in °C, [Ag] and [L] in mol %,
and conversion (C) of 1a and the yield of 2a in %. cConversion and yield based on 1H NMR (CDCl3) analysis, using mesitylene as the internal
standard. dIn brackets, the isolated yield of 2a. eTHF as a solvent. fMeOH as a solvent.
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isomer is energetically less favored. The only difference
compared to intermediates D is the presence of a molecule of
acetic acid, which enables a protodemetalation through TS-3A
and TS-3B (at 39.3 and 19.2 kJ·mol−1, respectively). The
following intermediate F located at −61.6 kJ·mol−1 has an OAc
ligand coordinating to the metal center, and the stereogenic
information around the double bond is erased from this stage on.
In F, the pendant alcohol of the cyclic carbonate is prepared for
deprotonation by the OAc ligand, providing intermediate G
(at −5.0 kJ·mol−1). It was not possible to determine a transition
state structure for this uphill process.
Subsequent decoordination of the carbonate-O through

intermediate H (at −38.8 kJ·mol−1) and rotation and re-coor-
dination of the carbonate via the O-atom next to the olefin unit
give intermediate I (at -20.6 kJ·mol−1). An isomerization process
occurs via tetrahedral TS-4 (at −8.2 kJ·mol−1), and a new five-
membered cyclic carbonate is produced with an enol substituent
coordinated to the metal via the O-center (i.e., intermediate J at
−93.3 kJ·mol−1). Amore stable intermediateK (at−103.8 kJ·mol−1)
is obtained via an O-to-C rearrangement that involves the
coordinated enolate.
To form the final product, first, a molecule of HOAc

approaches the Ag complex in intermediate L (−83.1 kJ·mol−1)
and a proton transfer from HOAc to the C atom of the initial
enolate fragment through TS-5 (at −21.6 kJ·mol−1) releases the
ensemble based on the keto-carbonate 2a and the catalyst
Ag(L1)OAc (at −140.5 kJ·mol−1). From Figure 1, the deter-
mining transition state (TDTS) is TS-2, with a maximum
energetic span of 67.1 kJ·mol−1 (16.0 kcal·mol−1). This data
corroborates well with the experimental finding that substrate
(R)-1a can be converted into keto-carbonate 2a under ambient

Figure 1. DFT-calculated pathway for the conversion of (R)-1a into keto-carbonate 2a by catalyst Ag(L1)OAc in the presence of carbon dioxide.

Scheme 3. Scope of Tri- and Tetrasubstituted Keto-Based
Cyclic Carbonates (4a−4m) Derived from Substituted
Alkyne-1,2-diols 3a−3m

aThe reaction time was 48 h.
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conditions, while the same profile holds for (S)-1a using the
other catalyst enantiomer.
Finally, we examined whether the use of higher homologues

of the alkyne-1,2-diols would serve as suitable reagents toward
larger ring carbonates (Scheme 4) and their synthetic utility.
The treatment of alkyne-1,3-diol 5a with CO2 (15 bar) at 25 °C
in the presence of the catalyst AgI/TBAOPh in DMSO (2.2 M)
gave the six-membered keto-carbonate 6 with high chemo-
selectivity (98%) and appreciable isolated yield (51%, see the
Supporting Information for further details; entry 1, Table S5).24

Interestingly, we found that under similar conditions while
raising the reaction temperature and changing the solvent to
ACN (4.4 M), the chemoselectivity changed toward a unique,
bicyclic tetrasubstituted five-membered cyclic carbonate 7
(70%; entry 14, Table S5), which was unambiguously identified
by X-ray crystallography.15 Although its formationmechanism is
yet unclear, we believe that 6 is a viable precursor for 7 and ring
opening of 6 by the phenolate salt is likely involved, followed by
rearrangement into the thermodynamically more stable product
7. To further examine the utility of our cascade protocol, we also
subjected alkyne-1,4-diol 5b to a similar carboxylation process.
After some optimization (see the Supporting Information,
Table S6), we found that a bicyclic, tetrasubstituted carbonate
10 could be produced in 45% NMR yield (33% isolated) in the
presence of AgI/DBU as the catalyst (entry 11, Table S6).

Analogous to the formation of 6, product 10 needs a seven-
membered keto-carbonate 9 with the alkylidene carbonate 8
being the precursor for 9. Both could indeed be observed and
identified by both 1H NMR and operando IR spectroscopy
(see the Supporting Information for details). These combined
findings indeed suggest further potential of our cascade protocol
to access otherwise elusive cyclic carbonate scaffolds.
We then finally probed whether the keto-based carbonate 2a

could be transformed while maintaining the carbonate ring
intact (Scheme 4, lower part). The scale-up of 2a was easily
performed to gram quantities allowing for postsynthetic
transformations to be examined. The ketone group could be
reduced in the presence of NaBH4 to afford the corresponding
alcohol 11 in 67% yield, where the ketone could also be
converted into an imine (12: 85% yield). These results suggest
that the carbonate rings in the five-membered keto-carbonates
are rather stable.
In summary, we have developed an efficient and new cascade

process promoted by a Ag catalyst that involves the use of
alkyne-1,2-diols as modular substrates providing access to a wide
range of keto-substituted five-membered carbonates with
different and unique degrees of substitutional complexity.
Detailed computational analysis has shown the key rationale
for the formation of these keto-carbonates, with the five-
membered carbonates being the most thermodynamically stable
products. Preliminary investigations focusing on applying the
cascade protocol for the creation of larger ring carbonates
demonstrate that these less stable analogues of their five-
membered congeners can be used as intermediates of otherwise
elusive tetrasubstituted carbonate scaffolds and therefore
expand the synthetic importance of cascade approaches in the
valorization of carbon dioxide.
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