

Physics of Ge-related point defects in Sn-based, Ge-doped and Ge-alloyed kesterites

T. Ratz^{1,2}, N-D. Nguyen¹, G. Brammertz³, B. Vermang^{2,3,4}, J-Y. Raty¹

Ž,

0.0

0.5 1 Er[eV]

CESAM I Q-MAT I Solid State Physics, Interfaces and Nanostructures, Physics Institute B5a, Allée du Six Août 19, B-4000 Liège, Belgium
 Institute for Material Research (IMO), Hasselt University, Agoralaan gebouw H, B-3590 Diepenbeek, Belgium
 IMEC division IMOMEC I partner in Solliance, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
 Energywille, Thor Park 8320, B-3600 Genk, Belgium

Motivations

□ Strengthen our knowledge of CZTS and CZGS [1]

-3. -3.0 _____

-5 −2 -1.3

0.8.0

-4.

-3

-3.

9 -2. -3

-0.5 -1.0 -1.5 -2.0 -2.5 µzn [eV]

- □ Study the behaviour of point defects in Sn-based, Ge-doped and Ge-doped kesterites [2]
- $\hfill\square$ Understand the physical origin of the V_{OC} improvement reported upon Ge incorporation
- □ Link defects and kesterite material properties focusing on PV applications

-3.0 -3.3 -4.0

0.5 Er [eV

Es [eV]

LIÈGE université

SPIN

1000

Ŀ

G.

▶ UHASSELT

 $\Delta H_F(X_{Zn})$ (X=Sn,Ge) Low $\Delta H_F(Ge_{Sn})$

Theoretical approach

Thermodynamic conditions

- 1. $\mu_i < 0$
- 2. $\Delta H_F(Cu_2 ZnXS_4) = 2\mu_{Cu} + \mu_{Zn} + \mu_X + 4\mu_S$
- 3. $\sum_{i} n_i \mu_i < \Delta H_F(X_i, n_i)$

- ✓ SCAN ionic relaxation (1E-3 eV/Å)
 ✓ One-shot HSE06 relaxation (1E-3 eV)
 ✓ 64-atoms supercell approach
- 520 eV cut-off energy, 2x2x2 **k**-points grid

- From [1], increase of *V_{oc}* and decrease of *J_{sc}* when Sn is substituted by Ge (perfect crystal)
- Net decrease of the Ge_{Zn} lattice distortion with respect to Sn_{Zn} \rightarrow capture cross-section reduction

References

 Ratz, Thomas, et al. "Opto-electronic properties and solar cell efficiency modelling of Cu.ZnXS. (X= Sn, Ge, Si) kesterites." Journal of Physics: Energy (2021), 3, 035005. [2] Wexler, Robert B., et al. "Optimizing kesterite solar cells from CuzZnSnS₁ to Cu₂CdGe(S,Se)₄." Journal of Materials Chemistry A 9.15 (2021): 9882-9897.

[3] Li, Jiqiang, et al. "Effective and noneffective recombination cen defects in Cu2ZnSnS4: Significant difference in carrier capture cross sections." Chemistry of Materials 31.3 (2019): 826-833.

Lattice distortion associated to dominant point defects

Defect emission rate:

$$= \sigma_n \langle v_i \rangle N_C \exp\left(-\frac{E_t - E_C}{k_B T}\right) \implies \begin{array}{c} \text{capture cross} \\ \text{section } \sigma_n \end{array} \xrightarrow{[2]}$$

Lattice distortion

- □ Large lattice distortion reported for X_{Zn} (X=Sn,Ge)
- Net reduction of the lattice distortion for Ge_{Zn} with respect to Sn_{Zn} defects

attice distortion upon defect incorporation

Doping type defects lead to small lattice distortion