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Abstract

Experimental characterization of nonlinear structures usually focuses on fundamental resonances. However, there is
useful information about the structure to be gained at frequencies far away from those resonances. For instance,
non-fundamental harmonics in the system’s response can trigger secondary resonances, including superharmonic res-
onances. Using the recently-introduced definition of phase resonance nonlinear modes, a phase-locked loop feedback
control is used to identify the backbones of even and odd superharmonic resonances, as well as the nonlinear frequency
response curve in the vicinity of such resonances. When the backbones of two resonances (either fundamental or
superharmonic) cross, modal interactions make the phase-locked loop unable to stabilize some orbits. Control-based
continuation can thus be used in conjunction with phase-locked loop testing to stabilize the orbits of interest. The
proposed experimental method is demonstrated on a beam with artificial cubic stiffness exhibiting complex resonant
behavior. For instance, the frequency response around the third superharmonic resonance of the third mode exhibits
a loop, the fifth superharmonic resonance of the fourth mode interacts with the fundamental resonance of the second
mode, and the second superharmonic resonance of the third mode exhibits a branch-point bifurcation and interacts
with the fourth superharmonic resonance of the fourth mode.
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Introduction

The design of mechanical structures with nonlinear behavior is a challenging task. It is often necessary to build
reliable models upon physical experiments. Usually, post-processing the experimental data is a long procedure.
To accelerate the design iterations, characterization methods relying on control have been proposed that identify
nonlinear modes or nonlinear responses without the need for a priori knowledge about the experiment. Two prominent
methods are phase-locked loop (PLL) testing [1] and control-based continuation (CBC) [2]. They control two different
experimental parameters, the phase lag and the amplitude of the response’s first harmonic respectively.

Until now, PLL testing and CBC were used exclusively to characterize the primary resonance of structures, i.e. the
resonance of the first harmonic. However, important information about the structure can be obtained through higher
harmonics of the response. Typically, nonlinear modes can enter into resonance when the structure is excited at a
fraction of the resonance frequency. These superharmonic resonances are included in the recent definition of phase
resonance nonlinear modes (PRNMs) [3].

This work applies PLL testing to a structure possessing an artificial nonlinear stiffness presented in [4], to identify
the backbone curves of superharmonic resonances and the response curve in their vicinity. In the presence of
modal interactions, the PLL has been shown incapable of stabilizing certain unstable responses [5]. To improve the
stabilization, PLL testing is coupled with online CBC as implemented in [4].



Methods

The structure is excited by a signal that is a sine wave at steady-state f(t) = p sin(Ωt). This work focuses on periodic

responses x of the structure, they can be truncated to NH Fourier coefficients: x(t) =
∑NH

k=1 x̂k sin(kΩt + φk). The
value φk is the phase lag of the kth harmonic. The phase lag of each harmonic is estimated at every moment using
adaptive filtering, as proposed in [4].

When applying PLL testing, the excitation frequency is output by a PI controller as proposed in [1]. The con-

troller’s input is the difference between a phase target φ∗ and the phase lag φk: Ω(t) = κp(φ∗ − φk(t)) + κi
∫ t

0
(φ∗ −

φk(τ)) dτ . The controller, depending on its gains, cannot stabilize every response. To improve stabilization, the
PLL can be coupled with CBC. The excitation signal is output by a PD controller whose input is the differ-
ence between a reference signal whose frequency is determined by the PLL and the response as proposed in [2]:

f(t) = kp

[
x∗ sin(

∫ t

0
Ω(τ) dτ) − x(t)

]
+ kd

d
dt

[
x∗ sin(

∫ t

0
Ω(τ) dτ) − x(t)

]
. The amplitude x∗ of the reference signal

determines the amplitude of the excitation.

Frequency response curves (FRCs) are obtained with PLL testing by keeping the excitation amplitude p constant
and performing a sweep on φ∗. PRNMs are obtained with PLL testing coupled with CBC by keeping φ∗ = −π/2
for odd superharmonic resonances (including primary resonances) [3] or φ∗ = −3π/4 and φ∗ = −7π/4 for even
superharmonic resonances [3] and performing a sweep on x∗.

PRNMs are defined upon the observation that phase lag drops by a value π when the frequency response crosses
a resonance. However, it is observed that φ1 dropping by a value π entails that φ3 drops by a value 3π and φ5 by
a value 5π. The odd harmonics therefore interfere with each other. A similar observation is made between even
harmonics. Such interference is of no concern when the superharmonic resonances are well-separated but become
important in the case of modal interaction. To counteract the interference of lower harmonics, the backbone of a
3rd superharmonic resonance is obtained by keeping φ3 − 3φ1 = −π/2 and the backbone of a 5th superharmonic
resonance by keeping φ5 − φ3 − (5 − 3)φ1 = −π/2. Further analytical work is needed to confirm these assumptions
and find similar expressions for even superharmonic resonances.

Results

By placing four equally spaced accelerometers from one quarter of the beam’s length to its tip, the mode shape
corresponding to the beam’s response can be identified up to the fourth mode. The mode shape is decomposed in
each harmonic. Each superharmonic resonance is associated with a mode, e.g. if the 5th harmonic follows the 4th
mode shape, the superharmonic resonance is dubbed “H5M4”.

Fig. 1 shows all the identified features. In plain black curves, FRCs at different excitation amplitudes p in N,
identified using PLL testing by sweeping φ1 near H1M2, φ2 near H2M3, φ3 near H3M3, and φ5 near H5M4. The
dashed black curves are obtained by an open-loop sine sweep to complete the FRC at p = 1 N. Plain blue curves
in Fig. 1 show the PRNMs identified using PLL testing coupled with CBC and the phase lags controlled at the
displayed values. In the presence of modal interaction, the PRNM does not always correspond to resonant responses,
and resonances can occur at other phase lags. Imposing the phase lag φ1 for the 1st harmonic, φ3 − 3φ1 for the
third, and φ5 − φ3 − (5 − 3)φ1 for the fifth leads to the identification of more consistent superharmonic resonance
backbones. They are shown in dash-dotted orange curves in Fig. 1.

Conclusion

This work is, to our knowledge, the first to identify nonlinear superharmonic resonance backbones and frequency
responses with control-based methods. It is also the first one to propose a coupling of PLL testing and CBC to
improve the stabilization of responses when the PI controller of the PLL is not sufficient, e.g. in the presence of
modal interaction. Further work on the definition of PRNMs is envisioned to include modal interactions.
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Fig. 1 Frequency response of the beam around its second primary resonance for different excitation amplitudes p
in N obtained by PLL testing (plain black curves) and uncontrolled swept sine excitation (dashed black curves);
PRNMs of resonances H1M2, H3M3, H5M4, and H2M3 obtained by PLL testing coupled with CBC (plain blue
lines); backbone curves of the same resonances obtained by PLL testing coupled with CBC (dash-dotted orange
curves)
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